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Abstract: Generalized distributions have been studied a lot recently because of their flexibility and
reliability in modeling lifetime data. The two-parameter Exponentially-Modified Logistic distribution
is a flexible modified distribution that was introduced in 2018. It is regarded as a strong competitor
for widely used classical symmetrical and non-symmetrical distributions such as normal, logistic,
lognormal, log-logistic, and others. In this study, the unknown parameters of the Exponentially-
Modified Logistic distribution are estimated using the maximum likelihood method. Five meta-
heuristic algorithms, including the genetic algorithm, particle swarm optimization algorithm, grey
wolf optimization algorithm, whale optimization algorithm, and sine cosine algorithm, are applied in
order to solve the nonlinear likelihood equations of the study model. The efficiencies of all maximum
likelihood estimates for these algorithms are compared via an extensive Monte Carlo simulation
study. The performance of the maximum likelihood estimates for the location and scale parameters
of the Exponentially-Modified Logistic distribution developed with the genetic algorithm and grey
wolf optimization algorithms is the most efficient among others, according to simulation findings.
However, the genetic algorithm is two times faster than grey wolf optimization and can be considered
better than grey wolf optimization considering the computation time criterion. Six real datasets are
analyzed to show the flexibility of this distribution.

Keywords: maximum likelihood; exponentially-modified logistic distribution; genetic algorithm;
grey wolf optimization; Monte Carlo simulation

1. Introduction

The two-parameter exponentially-modified logistic (EMLOG) distribution is one of the
distributions that have been generalized recently. It is a distribution with more flexibility
than other similar distributions for fitting data in many scientific fields, such as biological
and psychological evolution, energy resource prediction, and technological and economic
diffusion. Practically, it can be considered a better alternative than symmetrical distribu-
tions such as logistic and normal distributions, as well as many other non-symmetrical
statistical distributions in different application cases, especially when a little skewness
exists. Therefore, this distribution can be considered important for application studies in
terms of data fit, and estimating its unknown parameters will contribute significantly to
the literature.

EMLOG distribution has emerged from the importance of logistic and exponential
distributions, which have both been combined to form a new, more reliable distribution
called the two-parameter exponentially-modified logistic distribution. Reyes et al. first
presented this distribution in 2018 [1]. The logistic distribution is recognized to be similar
to the normal distribution; they are both members of the location-scale family, but the
difference is that the logistic distribution has heavier tails. The importance of logistic
distribution is that it has the ability to be used in many scientific areas like physical science
and finance, and many applications in reliability and survival analysis, besides the major
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utility of its distribution function in logistic regression, logit models, and neural networks.
More properties and details about logistic distribution are available in [2]. On the other
hand, the exponential distribution, which is concerned with the measurement of time
needed until the occurrence of a specific event, previously was the basis of reliability and
life expectancy evaluation for many lifetime data distributions, but in further research in
reliability theory, it was revealed that modeling by the exponential distribution is only
useful for the first approximation and cannot be enough for a lot of problems in many cases.
More details about the exponential distribution can be found in [3].

In the last two decades, in order to give better-fitting solutions and increase fit effec-
tiveness for model functions that have no closed form and require a numerical method in
lifetime data analysis, many generalizations and modified extensions of the exponential
distribution have been suggested to become more flexible and capable for modeling real-
world data, especially when the characteristics of classical distributions are limited and,
practically, they cannot provide a good fit in many situations [4]. Various exponentiated
distributions have been generalized; for instance, in 1998, the exponentiated exponential
(EE) distribution was first introduced by Gupta and Kundu [5] and is considered the first
extension of the exponential distribution family. The exponentiated Weibull (EW) distribu-
tion was presented in 2006 by Pal et al. [6], the exponentiated Gamma (EG) distribution
was generalized in 2007 by Nadarajah & Gupta [7], another extension was proposed in
2011 by Nadarajah & Haghighi [8], the exponentiated log-logistic (ELL) distribution with
two parameters was introduced in 2019 by Chaudhary [9], and many other well-known
distributions have been extended and modified by the exponential distribution family.

In general, there are many different statistical methodologies for estimating the pa-
rameters of any distribution, such as the maximum likelihood (ML) method, the Method
of Moments (MOM), the Least Squares (LS) method, the Bayes method, and so forth. ML
is the most widely used methodology among all statistical methods because of its high
performance and well-known asymptotic properties for parameter estimators such as bias,
consistency, efficiency, and so forth in comparison with any other method [10]. The basic
principle of the ML methodology is to find the estimator values for the parameters of
concern that maximize the likelihood function of the model, but in most cases, an explicit
solution is rarely available because of the presence of nonlinear functions. Therefore,
iterative algorithms to maximize the likelihood function are needed [11].

The primary goal of this research is to choose the best algorithm for calculating the
maximum likelihood estimation of the location α and scale β parameters of the EMLOG
distribution and to show the applicability of this distribution in many areas, which is the
primary contribution of this study too. However, for the ML estimation of the EMLOG
distribution, explicit solutions to the likelihood equations have not been found, and this
is the main problem underlined by this study. To solve this problem, ML estimates are
obtained through the use of iterative numerical techniques based on traditional or non-
traditional algorithms.

In general, the Newton method is a common type of traditional iterative technique
that is commonly used to solve the equation system generated by partial derivatives of
the likelihood function to find estimated values of the parameter of interest for statistical
distributions, but its major drawback is that it uses a gradient-based search algorithm
to find the best parameter values based on the inverse of the hessian matrix, making it
only applicable to functions that can be differentiated at least twice. At the same time, to
stay in the same category and avoid such limitations, another type of traditional iterative
technique based on direct search algorithms without any need for the gradient information
of the likelihood function can be used, such as the Nelder Mead (NM) algorithm. However,
all traditional numerical algorithms start with a randomly selected initial guess and move
towards the optimum solution iteratively, with no guarantee that the final solution is
globally optimal. In addition to that, the gradient-based methods cannot be used for
discontinuous functions. Moreover, the final solution may become stuck at local optimum
points, and the global optimum may never be reached. To avoid such drawbacks, the use of
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population-based algorithms like meta-heuristic algorithms is preferable and recommended
for solving complex problems, especially when traditional algorithms fail. At the same time,
meta-heuristic algorithms guarantee global convergence with more simplicity, flexibility,
and a derivation-free mechanism [12].

In this study, five meta-heuristic algorithms have been applied in the ML method for
estimating the parameters of the EMLOG distribution, which are the genetic algorithm
(GA), particle swarm optimization (PSO), grey wolf optimization (GWO), whale optimiza-
tion algorithm (WOA), and sine cosine algorithm (SCA). GA and PSO are well-known
algorithms used in many fields [13,14], while GWO, WOA, and SCA, newer than GA
and PSO, are distinguished by their simplicity, flexibility, ease of implementation, and
lower number of required parameters [15–17]. These algorithms have demonstrated their
reliability in solving real optimization problems with nonlinear objective functions and
their high efficiency in estimating the parameters of many models and distributions. These
algorithms have been implemented in the ML method in various studies. For instance,
the GA algorithm was applied to find the ML estimators of the skew normal distribution
parameters, then compared with other numerical algorithms and showed the best perfor-
mance [18]. Also, GA was used to find the ML estimators of the Weibull distribution and
various regression model parameters [19,20] and GA was used in the first stage as a starting
point to obtain the final posterior ML estimates for logit models [21]. It is further employed
to estimate the ML values for the parameters of a cosmological model by maximizing its
likelihood function [22]. Other studies, including [23–26] considered the PSO algorithm for
estimating parameters of the Weibull, logistic model, Three Parameter Gamma, Nakagami,
and mixture of two Weibull distributions. PSO has been employed in statistical population
reconstruction using the ML estimation method, and it showed the best performance when
compared with alternative numerical algorithms [27]. GWO is applied for the estimation
of three parameters of the Marshall Olkin Topp Leon exponential distribution [28]. The
ML estimation method is used for solving localization problems, and to improve the accu-
racy of localization at high levels of noise, a GWO algorithm with slight improvement is
implemented to enhance the results [29]. In [30], WOA is implemented for estimating the
parameters of the log-logistic distribution and showed better performance in comparison
with another numerical algorithm. Furthermore, WOA is used in the ML estimation method
to obtain ML estimates for statistical distribution parameters such as Weibull, Rayleigh, and
Gamma to model wind speed data [31]. Wang et al. applied three meta-heuristic algorithms,
including the GWO, PSO, and four numerical methods for estimating the parameters of the
Weibull distribution [32]. However, the outcomes of the experimental work showed that
the GWO gave the most accurate and efficient results. Wadi [33] estimated the parameters
of five statistical distributions, including Rayleigh, Weibull, Gamma, Burr Type XII, and
generalized extreme value distributions, by using the ML method based on two heuristic
algorithms: GWO and WOA. The results showed that the Gamma distribution based on
GWO and WOA outperformed other distributions in modeling wind speed data and that
GWO was more robust and faster than WOA. Furthermore, Wadi and Elmasry [34] used
GWO, WOA, and other three metaheuristic algorithms for estimating the parameters of
the Rayleigh, Weibull, inverse Gaussian, Burr Type XII, and generalized Pareto to describe
different wind speed data. According to the performance criteria, the Weibull distribution
based on GWO and WOA has the best goodness of fit. Al-Mhairat and Al-Quraan [35]
estimated distribution parameters for Weibull, Rayleigh, and Gamma distributions by
using the ML method based on three heuristic algorithms, which are PSO, GWO, and WOA,
by implementing wind speed data. According to the performance indicators, SCA is used
for solving many optimization problems in various scientific areas; furthermore, it was
successfully used to address a range of optimization problems in the context of estimating
the parameters of several models and signals [36]. GWO and SCA were implemented in
the ML estimation method for optimizing the ML function for estimating signal angle for a
uniform linear array. The simulated results show that GWO performs better than SCA [37].
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This paper’s originality is to employ and examine five meta-heuristic optimization
algorithms, including GA, PSO, GWO, WOA, and SCA, by applying the ML method
to obtain the ML estimator’s values for the location and scale parameters of the two-
parameter EMLOG distribution based on these meta-heuristic algorithms, then comparing
and evaluating their performances by conducting an extensive Monte Carlo simulation
study. To the best of our knowledge, this is the first study to obtain the ML estimators
for the location α and scale β parameters of the EMLOG distribution by using various
meta-heuristic algorithms.

The following is how the rest of the article is organized: In Section 2, the EMLOG dis-
tribution and its basic properties are presented, along with the ML estimation methodology
based on the meta-heuristic algorithms used in this study. In Section 3, the efficiencies of
the parameter estimators are compared via a comprehensive Monte Carlo simulation study.
Six applications of real datasets are implemented in Section 4. In the last section, the study
ends with some conclusions.

2. Materials and Methods
2.1. Two-Parameter Exponentially-Modified Logistic Distribution

The generalization of EMLOG distribution is made by the combination of logistic
distribution with parameters for location α and scale β and the same scale parameter for
the exponential distribution. As a result, the two-parameter exponentially modified logistic
distribution is produced, with the left tail influenced by exponential distribution and the
right tail by logistic distribution.

If X is a random variable with a parameterized location α and scale β that follows an
EMLOG distribution, X∼EMLOG (α, β), then the probability density function (pdf) of X is:

f (x; α, β) = 1

β

(
e
( x−α

β
)
+1

) [(
e−( x−α

β )
+ 1

)
log

(
e(

x−α
β )

+ 1
)
− 1

]
,

x ∈ R, α ∈ R, β > 0
(1)

where log (.) refers to the natural logarithm. X’s cumulative distribution function (cdf)
seems to be as follows:

F(x; α, β) = 1 − e−( x−α
β )log

(
e(

x−α
β )

+ 1
)

(2)

See the EMLOG distribution in Figure 1, where the plots of the EMLOG distribution are
illustrated for certain values of α and β. The general formula for the EMLOG distribution’s
kth moment (µk) expression (for k = 1, 2, 3, · · · ) is:

E
(

Xk
)
=

k

∑
i=0

(
k
i

)(
2i − 2

)
πi|Bi|βk−iΓ(k − i + 1) (3)

where Bi and Γ(.) refer to Bernoulli numbers and the Gamma function, respectively. The
first four values of Bi and Γ(.) that are useful for calculating the mean E(X), variance Var(X),
skewness (γ1), and kurtosis (γ2) are given in Table 1 below.

Table 1. The first four values of Bi and Γ(i).

i Bi Γ(i)

1 ±1/2 1
2 1/6 1
3 0 2
4 −1/30 6
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The mean, variance, skewness (γ1), and kurtosis (γ2) values of the random variable X
are computed using Equation (3); see [1].

E(X) = α + β (4)

Var(X) =

(
1 +

π2

3

)
β2 (5)

γ1 =
2(

1 + π2

3

)3/2 = 0.2251 (6)

γ2 =
7π4

15 + 2π2 + 9(
1 + π2

3

)2 = 4.0318 (7)

2.2. Maximum Likelihood Estimation

The ML estimates for the parameters of interest are the values in the parameter
space that maximize the likelihood function; in most cases, for calculation simplicity, the
likelihood function’s logarithm is used. In this study, the log-likelihood (ln L) function is
given below for estimating the unknown parameters α and β for the EMLOG distribution.

ln L(α, β) = −nlog(β)−
n

∑
i=1

log(e zi + 1) +
n

∑
i=1

log
[(

e−zi + 1
)
log(e zi + 1)− 1

]
(8)

where zi = (xi−α)/β. In order to estimate the likelihood parameters for the ln L function for
the EMLOG distribution, the partial derivatives with respect to the parameters of interest
are taken and equated to zero. The likelihood equations are shown below.

∂lnL(α, β)

∂α
=

1
β

n

∑
i=1

(xi − α)e zi

1 + e zi
− 1

β

n

∑
i=1

(xi − α)e zi (1 + e−zi )

[(1 + e zi )− 1](1 + e−zi )log(1 + e zi )− 1
− 1

β

n

∑
i=1

(xi − α)e−zi [log(1 + e zi )− 1]
(1 + e−zi )log(1 + e zi )− 1

= 0 (9)

and

∂lnL(α, β)

∂β
=

−n
β

+
1
β2

n

∑
i=1

(xi − α)e zi

1 + e zi
− 1

β2

n

∑
i=1

(xi − α)e zi (1 + e−zi )

[(1 + e zi )− 1](1 + e−zi )log(1 + e zi )− 1
− 1

β2

n

∑
i=1

−(xi − α)e−zi [log(1 + e zi )− 1]
(1 + e−zi )log(1 + e zi )− 1

= 0 (10)

As we can see from Equations (9) and (10), they have nonlinear functions, and an
explicit solution for the likelihood equations cannot be obtained. Therefore, iterative
algorithms are needed to solve these equations and obtain ML estimates for the location
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and scale parameters. In this study, GA, PSO, GWO, WOA, and SCA are some effective
and powerful meta-heuristic algorithms considered numerical techniques for estimating
the likelihood estimators for the EMLOG distribution, and they are briefly introduced in
the next few subsections.

2.2.1. Genetic Algorithm

The GA is an evolutionary meta-heuristic search algorithm used for optimization
issues, taking into account a procedure of natural selection that imitates Darwin’s theory of
biological evolution. It was introduced for the first time by John Holland [13], and then
significantly enhanced by Goldberg [38]. Each possible solution indicates a chromosome,
and each set of chromosomes indicates a population in GA. The fitness value for every
chromosome is evaluated by the main objective function of this study, which is the same as
the log-likelihood function provided in Equation (5) with a negative sign. The chromosomes
with the highest fitness values are selected and directly transmitted without any alteration
to the new generation, which are assigned as elite chromosomes. However, these elite
chromosomes are selected according to the predefined elite number parameter (EN). Since
GA is motivated by natural selection and genetic mechanisms, it includes genetic operators
called crossover and mutation. Crossover operators are used to produce new chromosomes
that hold good features from the prior generation, so the parents can pass segments of their
own chromosomes onto their generated offspring. By doing so, the potential of the current
desired chromosomes is exploited. However, mutation operators explore new solutions and
provide a diversity of solutions in order to prevent the solutions from being locked in the
local optimum, and they are usually kept with very low probability so good chromosomes
obtained from crossover are not lost. Mutation probability (MP) and crossover probability
(CP), are assumed to be 0.8 and 0.01, respectively, in accordance with the literature). Figure 2
depicts a flow diagram of the GA.
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The solution values are called the GA estimates of the parameters. The GA algorithm
steps are given in Algorithm 1.

Algorithm 1. GA Algorithm

Input:
Population Size (n), Maximum Number of Iteration (Tmax), Search Space, Mutation
Probability (MP), Crossover Probability (CP), and Elite Number (EN)

Output:
Global best solution, gbest

Begin
Generate initial population of n chromosomes Xi (i = 1, 2, . . . , n)
Calculate the fitness value of each Xi
Set iteration counter t = 0
while (t < Tmax) do

Assign elite chromosomes to be directly transmitted to the new generation
Select a pair of chromosomes from the initial population based on fitness
function apart from the elite chromosomes
Apply the crossover operation to the selected pair with crossover probability
Apply mutation to the offspring with mutation probability
Replace the old population with a newly generated population
Increment the current iteration t by 1

end while
return gbest
end

2.2.2. Particle Swarm Optimization

The PSO is considered one of the best-known population-based meta-heuristic algo-
rithms dependent on swarm intelligence. It was proposed by Eberhart and Kennedy in
1995 [14]. PSO is a simulation of the continuous movements of particles in a swarm in
a specific search area that mimics the movement behavior of bird flocks in nature using
certain formulas until finally reaching the optimal solution. It can be used to solve various
constrained or unconstrained optimization problems, multi-objective optimization, non-
linear programming, probabilistic programming, and combinatorial optimization issues.
The PSO algorithm has fixed parameters, including c1, c2 representing acceleration coef-
ficients, r1, r2 representing random numbers uniformly distributed among 0 and 1, and
ω indicating the inertia weight parameter. The fitness value of each generated solution
(particle) in the population refers to its position. The best fitness value of each particle in
the population is found, compared with its previous historical movement, and then saved
as a personal best solution (pbest) value. At the same time, the best value for the fitness of
each and every particle is found, compared with the previous historical global best, and
saved as a (gbest) value. Each particle’s position and velocity are updated in every iteration
by using the following equations:

Vt+1
i = ωVt

i + c1r1(pbestt
i − Xt

i ) + c2r2(gbestt − Xt
i ) (11)

xt+1
i = xt

i + Vt+1
i (12)

The solution values are called the PSO estimates of the parameters. The PSO algorithm
steps are given in Algorithm 2.
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Algorithm 2. PSO Algorithm

Input:
Population Size (n), Maximum Number of Iteration (Tmax), Search Space

Output:
Global best solution, gbest

Begin
Generate the initial position and velocity of n particles Xi (i = 1, 2, . . . , n)
Calculate the fitness value of each Xi
Set iteration counter t = 0
while (t < Tmax) do

for each Xi
assign pbest and gbest

If the fitness value is better than the Pbest in history, current fitness
value set as the new Pbest
end if

end for
from all the particles choose the particle with best fitness value as the gbest
for each Xi

update the particle velocity according to the Equation (11)
update the particle position according to the Equation (12)
Increment the current iteration t by 1

end for
end while
return gbest

end

2.2.3. Grey Wolf Optimization

The GWO is an intelligent algorithm that is obtained from swarms based on meta-
heuristic techniques that were modeled by the grey wolf leadership hierarchy in the process
of trapping and hunting prey in nature. Mirjalili et al. made the first proposal in 2014 [15].
GWO has become a widely known critical device in swarm intelligence for optimization
in almost all areas, such as engineering, physics, and many other applications in various
scientific fields. GWO is a straightforward population-based probabilistic algorithm moti-
vated by the hunting and socialization of grey wolves. According to the swarm intelligence
categorization, it is classified as the only algorithm for solving continuous real-life opti-
mization problems that rely on a leadership hierarchy [39]. For the hunting process, the
groups of grey wolves are categorized into four types to compose hierarchical commands.
These types are called alpha (α), beta (β), delta (δ), and omega (ω), in that order. Figure 3
shows this hierarchy.
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At the first level of the hierarchy, type alpha (α) represents the dominant gray wolf
that makes decisions and gives orders to the other wolves in the pack. Type beta (β)
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represents the gray wolf that helps the alpha (α) type in making decisions and observing
the movements of other wolves at the next level of the hierarchal chain. A group of alpha
types will be replaced by beta types when a group of alphas dies or becomes older. Types
delta (δ) and omega (ω) are the third and fourth types of gray wolves, respectively. For
sure, the delta (δ) wolf type dominates the omega (ω) wolf type, and both of them represent
the lowest level in the hierarchy; they are allowed to eat after the alpha (α) and beta (β)
types have finished eating. Figure 4 depicts a flow diagram of the GWO.
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iteration in the range [0, 2] used in this algorithm. This parameter can indeed be de-
termined using the formula: 𝑎 = 2 ∗ 1 − 𝑡𝑇   (14) 

where the iteration in progress (current) and the entire number of iterations are denoted 
by t and Tmax, respectively.  

Figure 4. Flow diagram of the GWO.

The GWO algorithm consists of three main phases, which are: (1) searching; (2) encircling;
and (3) hunting the prey. The solution starts by initializing wolves’ positions randomly within
the search space. Generally, the formula in Equation (13), given below, is recommended for
initializing diverse solutions within the search space in all meta-heuristic algorithms.

x = L + rand × (U − L) (13)

where L and U are the lower and upper limits of the search space, and rand is a random
number between 0 and 1. The main GWO algorithm parameters for the mathematical
modelling are assigned as follows:
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• Control parameter (a), which is an important parameter that declines linearly for each
iteration in the range [0, 2] used in this algorithm. This parameter can indeed be
determined using the formula:

a = 2 ∗
(

1 − t
Tmax

)
(14)

where the iteration in progress (current) and the entire number of iterations are denoted by
t and Tmax, respectively.

• The coefficient vectors, A and C, can be found using the following formulas:

A = 2a ∗ r1 − a (15)

C = 2 ∗ r2 (16)

where r1 and r2 are arbitrary vectors ranging from [0, 1]. Fitness value of each wolf type is
the same as the objective function represented by the ln L function in this study, and this
fitness value refers to each wolf’s site in the pack. The highest value of the fitness function
is considered the best position and assigned to the wolf of type alpha (α). The second
and third highest fitness values are assigned to beta (β) and delta (δ) types of wolves,
respectively. The position of each wolf in the pack surrounding the prey is updated by
calculating the distance between the current location (denoted by D) and the next location
using the equations below.

D =
∣∣C.Xp(t)− X(t)

∣∣ (17)

X(t + 1) = Xp(t)− A ∗ D (18)

where X(t) is the current position vector at iteration t and Xp(t) is the best solution’s
position vector (optimal) when iterating to the tth time. The average value of the first three
best solutions that refer to alpha (α), beta (β), and delta (δ) types of wolves is calculated
because they have the best positions in the population. Furthermore, they have the best
knowledge of the prey’s potential location, which forces and obliges all the other wolves,
including omega (ω), to change their current positions toward the best position, which has
been determined by the following equations:

X(t + 1) =
X1(t) + X2(t) + X3(t)

3
(19)

where 
X1(t) = Xα(t)− A1 ∗ Dα

X2(t) = Xβ(t)− A1 ∗ Dβ

X3(t) = Xδ(t)− A1 ∗ Dδ

(20)

and 
Dα = |C.Xα(t)− X(t)|
Dβ =

∣∣C.Xβ(t)− X(t)
∣∣

Dδ = |C.Xδ(t)− X(t)|
(21)

The fitness value of the new position is calculated, and according to that, the wolves’
alpha (α), beta (β), and delta (δ) types are updated. The attack happens with respect to
the changing value of the coefficient vector A, which depends on the parameter (a) and
decreases from 2 to 0 for each iteration step while the algorithm is working. Therefore, A is
a value generated randomly within the interval [−2a, 2a]. If |A| < 1, the wolves are ready
to attack the prey. Otherwise, the wolves are forced to diverge to explore a better location.
The solution values are called the GWO estimates of the parameters. The GWO algorithm
steps are given in Algorithm 3.



Symmetry 2024, 16, 259 11 of 27

Algorithm 3. GWO Algorithm

Input:
Population Size (n), Maximum Number of Iteration (Tmax), Search Space.

Output:
Xα

Begin
Generate initial population of n wolves Xi (i = 1, 2, . . . , n)
Initialize a, A, and C
Calculate the fitness value of each Xi
Xα = the best wolf

Xβ = the second best wolf
Xδ = the third best wolf
Set iteration counter t = 0
while (t < Tmax) do

for each Xi do
Update the position of the current wolf by Equation (19)–(21)

end for
Update a, A, and C
Calculate the fitness of all wolves
Update Xα, Xβ and Xδ

Increment the current iteration t by 1
end while
return Xα

end

2.2.4. Whale Optimization Algorithm

The WOA is also a unique swarm-based intelligent meta-heuristic methodology, rec-
ommended in 2016 by Mirjalili as well as Lewis for continuous optimization problems [16].
The inspiration for this algorithm has come from mimicking the hunting behavior of a spe-
cific type of whale (called a humpback) that applies a hunting strategy called the bubble-net
feeding technique by creating bubbles along a circle around the prey, then slowly shrinking,
encircling, and approaching the prey in a spiral shape through random search concerning
each search agent’s location until finally, the hunt is complete.

The algorithm has three main phases that are: (1) encircling; (2) attacking by using the
bubble net method, which includes shrinking encircling besides the mechanisms for spiral
position updating; and (3) searching to catch prey. The position of the whale population
is randomly initialized using Equaiton (13) in the search space for the first iteration. Also,
the WOA parameters (a), A, and C, which are similar to GWO parameters previously
calculated by Equations (11), (12), and (13), respectively, are generated, as well as other
parameters such as parameter (b), which is a fixed value used to define the shape of the
logarithmic spiral, and (l), a number drawn at random from the interval [−1, 1]. Finally,
the probability parameter (P) is set to 0.5 to give an equal chance of simulating both the
shrinking surrounding and spiral approach movements of whales. Each whale’s fitness
value is evaluated by the objective function ln L in this study, and the best whale position in
the initialized population is found and saved. If p < 0.5 and |A| < 1, the ongoing whale’s
location is updated using the same Equations (17) and (18) as in GWO. Otherwise, if
|A| ≥ 1, one of the whales is chosen at random, and its position is updated using the
following formulas:

D = |C.Xrand(t)− X(t)| (22)

X(t + 1) = Xrand(t)− A ∗ D (23)

where Xrand is the position vector of any whale chosen at random from the current whale
population. If p ≥ 0.5, the current whale’s location is updated by the following formulas:

D′ =
∣∣Xp(t)− X(t)

∣∣ (24)
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X(t + 1) = D′eblcos(2πl) + Xp(t) (25)

where D’refers to the path length between both the ith whale and the best solution (prey)
currently available. The solution values are called the WOA parameter estimates. The
WOA algorithm steps are given in Algorithm 4.

Algorithm 4. WOA Algorithm

Input:
Population Size (n), Maximum Number of Iteration (Tmax), Search Space.

Output:
X∗

Begin
Generate initial population of n whales Xi (i = 1, 2, . . . , n)
Initialize a, A, and C
Calculate the fitness value of each Xi and determine the best whale X∗

Set iteration counter t = 0
while (t < Tmax) do

for each Xi do
If p < 0.5 then

If |A| < 1 then update D by Equaiton (17) and X by Equaiton (18).
else if |A| ≥ 1 then update D by Equaiton (22) and X by Equaiton (23).
end if

else if p ≥ 0.5 then the whale’s location is updated by Equaitons (24) and (25)
end if

end for
Calculate the fitness of each whale and update X∗

Update a, A, and C
Increment the current iteration t by 1

end while
return X∗

end

It should be noted that if the probability of p is always less than 0.5 (p < 0.5), then we
look at the value of A; if |A| < 1, then we use Equations (17) and (18) in step 4. Otherwise,
if (|A| ≥ 1), we use Equations (22) and (23) to update the position of only the current
whale according to any random whale from the population (and all the other whales will
remain in their locations with no change in their positions). In step 5, if the probability of p
is greater than or equal to 0.5 (p ≥ 0.5), then we use Equations (24) and (25) to update the
position of the current whale.

2.2.5. Sine Cosine Algorithm

The SCA is a population-based meta-heuristic technique proposed by Mirjalili in 2016,
which is motivated by the mathematical trigonometric sine and cosine functions [17]. It has
been utilized to overcome a wide range of optimization issues in several areas by initializing,
within the search space, a collection of a population of solutions that are iteratively assessed
in relation to the objective function under the control of a set of developed optimization
parameters. After that, the algorithm keeps the better solution and continuously updates it
until convergence is satisfied by reaching the maximum number of iterations. This updated
best position represents the best solution.

The main two phases of the SCA algorithm are (1) exploration (diversification), consid-
ered a global lookup search, and (2) exploitation (intensification), considered a local lookup
search. The position of the solution population is initialized randomly within the search
space for the first iteration using Equation (13) as well as the random parameters r1, r2, r3,
and r4 of this algorithm, which are incorporated to strike a balance between exploration
and exploitation capabilities and thus to avoid settling for local optimums. The parameter
r1 helps in determining whether an updated solution position or the movement direction
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of the next position is towards the best solution in the search space (r1 < 1) or outwards
from it (r1 > 1). The r1 parameter falls linearly from a constant (a) to 0, as seen in the
Equaiton (26) below.

r1 = a − t ∗
(

a
Tmax

)
(26)

The parameter r2 is set within the interval, which helps in determining how large the
extended movement of the solution towards or away from the intended target will be. It is
found by Equaiton (27) below.

r2 = 2 × π × rand(1, t), t : Dimension (27)

The r3 parameter is a random weight score to emphasize (r3 > 1) or underemphasize
(r3 < 1) the significant effect of the intended target on distance calculation. It can be found
by Equaiton (28) below.

r3 = 2 × rand(1, t) (28)

The final random parameter r4, which is a random value defined in [0, 1], can be
considered a switch to choose between the trigonometric functions of sine and cosine
elements. It can be found by Equaiton (29) below.

r4 = rand(1, t) (29)

The fitness value of each solution is evaluated by the objective function in this study.
Each fitness value refers to the position of each solution. The best (highest) value in
the population is found and saved. The main parameters, which are r1, r2, r3, and
r4, are updated randomly, while the positions of all solutions are updated by utilizing
Equaiton (30) below.

Xi+1
i =

{
Xt

i + r1 × sin(r2)×
∣∣r3Pt

i − Xt
i

∣∣, r4 < 0.5
Xt

i + r1 × cos(r2)×
∣∣r3Pt

i − Xt
i

∣∣, r4 ≥ 0.5
(30)

where Xt
i denotes the position of the current solution in the ith dimension at the tth iteration

and Pt
i denotes the position of the target destination point in the dimension. The solution

values are called the SCA parameter estimates. The SCA algorithm steps are given in
Algorithm 5.

Algorithm 5. SCA Algorithm

Input:
Population Size (n), Maximum Number of Iteration (Tmax), Search Space.

Output:
best solution, P

Begin
Generate initial population of n solutions Xi (i = 1, 2, . . . , n)
Set iteration counter t = 0
while (t < Tmax) do

for each solution do
Calculate the fitness value of each Xi
Update best solution found thus far P
Calculate r1, r2, r3, and r4 by Equaiton (26), Equaiton (27), Equaiton
(28) and Equaiton (29), respectively.
Update position of each solution using Equaiton (30)

end for
Increment the current iteration t by 1

end while
return best solution, P

end
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3. Simulation Results and Discussion

In this section, an extensive Monte Carlo (MC) simulation study is carried out to
compare the efficiencies of ML estimators of the model parameters for varying sample
sizes, utilizing meta-heuristic algorithms including GA, PSO, GWO, WOA, and SCA. All
computations for the simulation study are made by Matlab R2021a software. The main
parameters for GA are considered to be EN = 5, CP = 0.8, MP = 0.01, while for PSO, c1 = c2
= 1.49 and ω = max {0.1, 1.1}, in accordance with other studies in the literature. The GWO,
WOA, and SCA are coded in accordance with Section 2. Each Monte Carlo simulation run
is replicated 1000 times. The location α and scale β parameters are considered to be (α = 0,
1, 2, 3) and (β = 1, 2), respectively, for different values of sample size (n), which is taken as
n = 30, 50, 100, 150, and 200. Initialized population size (N) = 100. The search space (SS) for
both α and β parameters is selected to be [−20, 20]. Thus, 8 × 5 × 1000 = 40,000 different
samples are generated. The resulting estimates for location and scale parameters in the
simulations are denoted by α̂ and β̂, respectively. To analyze and evaluate the estimators’
performance, the simulated mean, bias, variance, mean square error (MSE), deficiency
(Def), and average computation time (CT) values given by the Equations (31)–(36) below
are used.

Mean
(
θ̂
)
=

∑n
i θ̂i

s
(31)

Bias
(
θ̂
)
= E

(
θ̂
)
− θ (32)

Var
(
θ̂
)
=

1
s − 1

n

∑
i=1

(
θ̂i − Mean θ̂

)2 (33)

MSE
(
θ̂
)
= Var

(
θ̂
)
+

(
Bias

(
θ̂
))2 (34)

Def
(
α̂, β̂

)
= MSE(α̂) + MSE

(
β̂
)

(35)

CT
(
θ̂
)
=

∑n
i CT

(
θ̂
)

i
s

(36)

where θ = (α, β) ∈ R × R+ and s is the total number of MC simulation runs. The resulting
simulated values of mean, bias, MSE, Def, and CT for α̂ and β̂ are given in Tables 2–9.

Table 2. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators α̂ and β̂ when
α = 0, β = 1.

α̂ β̂

n Algorithm
α=0, β=1 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

30 GA 0.0153 0.1463 0.0153 0.1465 0.9909 0.0219 0.1685 0.022 0.1685 0.0522
PSO −0.0541 0.2880 −0.0541 0.2909 1.0376 0.0820 0.3743 0.0834 0.3743 0.3771

GWO 0.0153 0.1463 0.0153 0.1465 0.9909 0.0219 0.1685 0.022 0.1685 0.1307
WOA 0.0155 0.1463 0.0155 0.1465 0.9908 0.0219 0.1685 0.022 0.1685 0.1302
SCA 0.9941 18.7710 0.9941 19.7592 0.9435 0.0633 19.8257 0.0665 19.8257 0.1312

50 GA 0.0198 0.0832 0.0198 0.0836 0.9817 0.0127 0.0966 0.0130 0.0966 0.0581
PSO −0.0639 0.2861 −0.0639 0.2902 1.0287 0.0762 0.3672 0.0770 0.3672 0.3757

GWO 0.0198 0.0832 0.0198 0.0836 0.9817 0.0127 0.0966 0.0130 0.0966 0.1691
WOA 0.0393 0.4822 0.0393 0.4837 0.9811 0.0133 0.4974 0.0137 0.4974 0.1711
SCA 0.7148 13.6000 0.7148 14.1109 0.9482 0.0433 14.1569 0.0460 14.1569 0.1710

100 GA 0.0061 0.0409 0.0061 0.0409 0.9907 0.0068 0.0478 0.0069 0.0478 0.0708
PSO −0.0695 0.1923 −0.0695 0.1971 1.0330 0.0615 0.2597 0.0626 0.2597 0.4127

GWO 0.0061 0.0409 0.0061 0.0409 0.9907 0.0068 0.0478 0.0069 0.0478 0.2691
WOA 0.0061 0.0409 0.0061 0.0409 0.9907 0.0068 0.0478 0.0069 0.0478 0.2702
SCA 0.8865 16.8700 0.8865 17.6559 0.9494 0.0445 17.7029 0.0471 17.7029 0.2711
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Table 2. Cont.

α̂ β̂

n Algorithm
α=0, β=1 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

150 GA 0.0069 0.0278 0.0069 0.0278 0.9965 0.0044 0.0323 0.0044 0.0323 0.0896
PSO −0.0784 0.2568 −0.0784 0.2629 1.0491 0.0815 0.3469 0.0839 0.3469 0.4952

GWO 0.0069 0.0278 0.0069 0.0278 0.9965 0.0044 0.0323 0.0044 0.0323 0.3805
WOA 0.0266 0.4275 0.0266 0.4282 0.9955 0.0054 0.4336 0.0054 0.4336 0.3834
SCA 0.7053 13.5430 0.7053 14.0404 0.9640 0.0350 14.0768 0.0363 14.0768 0.3829

200 GA 0.0078 0.0211 0.0078 0.0212 0.9947 0.0035 0.0247 0.0035 0.0247 0.1125
PSO −0.0618 0.1450 −0.0618 0.1488 1.0446 0.0656 0.2164 0.0676 0.2164 0.5934

GWO 0.0078 0.0211 0.0078 0.0212 0.9947 0.0035 0.0247 0.0035 0.0247 0.5244
WOA 0.0277 0.4208 0.0277 0.4216 0.9938 0.0043 0.4259 0.0043 0.4259 0.5267
SCA 0.7057 13.5360 0.7057 14.0340 0.9611 0.0341 14.0696 0.0356 14.0696 0.5266

Table 3. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators α̂ and β̂ when
α = 0, β = 2.

α̂ β̂

n Algorithm
α=0, β=2 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

30 GA 0.0358 0.5668 0.0358 0.5681 1.955 0.0867 −0.045 0.0887 0.6568 0.0482
PSO 0.0281 0.6443 0.0281 0.6451 1.9737 0.1036 −0.0263 0.1043 0.7494 0.6155

GWO 0.0358 0.5668 0.0358 0.5681 1.955 0.0867 −0.045 0.0887 0.6568 0.1168
WOA 0.0359 0.5670 0.0359 0.5683 1.955 0.0867 −0.045 0.0887 0.6570 0.1181
SCA 0.6339 12.1620 0.6339 12.5638 1.9009 0.1909 −0.0991 0.2007 12.7646 0.1184

50 GA 0.0150 0.3327 0.0150 0.3329 1.9736 0.0533 −0.0264 0.0540 0.3869 0.0531
PSO −0.0120 0.3795 −0.0120 0.3796 1.9891 0.0623 −0.0109 0.0624 0.4421 0.5314

GWO 0.0150 0.3327 0.0150 0.3329 1.9736 0.0533 −0.0264 0.0540 0.3869 0.1590
WOA 0.0150 0.3327 0.0150 0.3329 1.9736 0.0533 −0.0264 0.0540 0.3869 0.1601
SCA 0.4812 9.7752 0.4812 10.0068 1.9277 0.1431 −0.0723 0.1483 10.1551 0.1606

100 GA 0.0028 0.1794 0.0028 0.1794 1.9870 0.0266 −0.0130 0.0268 0.2062 0.0714
PSO −0.0201 0.2167 −0.0201 0.2171 1.9981 0.0343 −0.0019 0.0343 0.2514 0.5279

GWO 0.0028 0.1794 0.0028 0.1794 1.9870 0.0266 −0.0130 0.0268 0.2062 0.2728
WOA 0.0029 0.1795 0.0029 0.1795 1.9870 0.0266 −0.0130 0.0268 0.2063 0.2738
SCA 0.3899 8.1199 0.3899 8.2719 1.9473 0.1040 −0.0527 0.1068 8.3787 0.2751

150 GA −0.0013 0.1119 −0.0013 0.1119 1.9871 0.0164 −0.0129 0.0166 0.1285 0.0869
PSO −0.0194 0.1379 −0.0194 0.1383 2.0054 0.0344 0.0054 0.0344 0.1727 0.56322

GWO −0.0013 0.1119 −0.0013 0.1119 1.9871 0.0164 −0.0129 0.0166 0.1285 0.3769
WOA −0.0011 0.1120 −0.0011 0.1120 1.9871 0.0164 −0.0129 0.0166 0.1286 0.37859
SCA 0.2604 5.2478 0.2604 5.3156 1.9615 0.0645 −0.0385 0.0660 5.3816 0.38043

200 GA 0.0088 0.0848 0.0088 0.0849 1.9855 0.0136 −0.0145 0.0138 0.0987 0.1052
PSO −0.0024 0.0988 −0.0024 0.0988 1.9959 0.0238 −0.0041 0.0238 0.1226 0.61728

GWO 0.0088 0.0848 0.0088 0.0849 1.9855 0.0136 −0.0145 0.0138 0.0987 0.49681
WOA 0.0089 0.0848 0.0089 0.0849 1.9855 0.0136 −0.0145 0.0138 0.0987 0.4991
SCA 0.1885 3.6525 0.1885 3.6880 1.9687 0.0470 −0.0313 0.0480 3.7360 0.50185

Table 4. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators α̂ and β̂ when
α = 1, β = 1.

α̂ β̂

n Algorithm
α=1, β=1 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

30 GA 1.0289 0.1366 0.0289 0.1374 0.9768 0.0218 −0.0232 0.0223 0.1598 0.0622
PSO 0.9325 0.3457 −0.0675 0.3503 1.0387 0.1069 0.0387 0.1084 0.4587 0.4518

GWO 1.0289 0.1366 0.0289 0.1374 0.9768 0.0218 −0.0232 0.0223 0.1598 0.1497
WOA 1.0477 0.4966 0.0477 0.4989 0.9760 0.0226 −0.0240 0.0232 0.5221 0.1475
SCA 2.0237 17.8320 1.0237 18.8800 0.9270 0.0652 −0.0730 0.0705 18.9505 0.1506

50 GA 1.0100 0.0913 0.0100 0.0914 1.0002 0.0132 0.0002 0.0132 0.1046 0.0548
PSO 0.9635 0.1723 −0.0365 0.1736 1.0285 0.0419 0.0285 0.0427 0.2163 0.3729

GWO 1.0100 0.0913 0.0100 0.0914 1.0002 0.0132 0.0002 0.0132 0.1046 0.1651
WOA 1.0680 1.1704 0.0680 1.1750 0.9976 0.0158 −0.0024 0.0158 1.1908 0.1644
SCA 2.2017 21.4220 1.2017 22.8661 0.9408 0.0688 −0.0592 0.0723 22.9384 0.1661
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Table 4. Cont.

α̂ β̂

n Algorithm
α=1, β=1 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

100 GA 1.0103 0.0401 0.0103 0.0402 0.9926 0.0070 −0.0074 0.0071 0.0473 0.0786
PSO 0.9286 0.2145 −0.0714 0.2196 1.0408 0.0784 0.0408 0.0801 0.2997 0.4563

GWO 1.0103 0.0401 0.0103 0.0402 0.9926 0.0070 −0.0074 0.0071 0.0473 0.2968
WOA 1.0292 0.4007 0.0292 0.4016 0.9915 0.0079 −0.0085 0.0080 0.4095 0.2937
SCA 2.0745 19.1190 1.0745 20.2736 0.9394 0.0546 −0.0606 0.0583 20.3318 0.2987

150 GA 1.0035 0.0277 0.0035 0.0277 0.9988 0.0040 −0.0012 0.0040 0.0317 0.0929
PSO 0.9331 0.2009 −0.0669 0.2054 1.0434 0.0665 0.0434 0.0684 0.2738 0.5273

GWO 1.0035 0.0277 0.0035 0.0277 0.9988 0.0040 −0.0012 0.0040 0.0317 0.4014
WOA 1.0037 0.0277 0.0037 0.0277 0.9987 0.0040 −0.0013 0.0040 0.0317 0.3990
SCA 1.7817 14.2310 0.7818 14.8422 0.9598 0.0400 −0.0402 0.0416 14.8838 0.4052

200 GA 1.0038 0.0222 0.0038 0.0222 0.9971 0.0033 −0.0029 0.0033 0.0255 0.1256
PSO 0.9356 0.1518 −0.0644 0.1559 1.0407 0.0550 0.0407 0.0567 0.2126 0.6650

GWO 1.0038 0.0222 0.0038 0.0222 0.9971 0.0033 −0.0029 0.0033 0.0255 0.5799
WOA 1.0226 0.3830 0.0226 0.3835 0.9966 0.0037 −0.0034 0.0037 0.3872 0.5768
SCA 1.8953 16.2030 0.8953 17.0046 0.9519 0.0445 −0.0481 0.0468 17.0514 0.5838

Table 5. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators α̂ and β̂ when
α = 1, β = 2.

α̂ β̂

n Algorithm
α=1, β=2 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

30 GA 1.0427 0.5660 0.0427 0.5678 1.9587 0.0905 −0.0413 0.0922 0.6600 0.0554
PSO 1.0185 0.6051 0.0185 0.6054 1.9751 0.1007 −0.0249 0.1013 0.7068 0.7952

GWO 1.0427 0.5660 0.0427 0.5678 1.9587 0.0905 −0.0413 0.0922 0.6600 0.1353
WOA 1.0611 0.9251 0.0611 0.9288 1.9566 0.0938 −0.0434 0.0957 1.0245 0.1352
SCA 1.7568 13.7140 0.7569 14.2869 1.8889 0.2220 −0.1111 0.2343 14.5212 0.1381

50 GA 1.0120 0.3241 0.0120 0.3242 1.9685 0.0504 −0.0315 0.0514 0.3756 0.0520
PSO 0.9932 0.3727 −0.0068 0.3727 1.9882 0.0671 −0.0118 0.0672 0.4400 0.5752

GWO 1.0120 0.3241 0.0120 0.3242 1.9685 0.0504 −0.0315 0.0514 0.3756 0.1575
WOA 1.0121 0.3242 0.0121 0.3243 1.9685 0.0504 −0.0315 0.0514 0.3757 0.1572
SCA 1.4822 9.1786 0.4822 9.4111 1.9197 0.1437 −0.0803 0.1501 9.5613 0.1592

100 GA 0.9993 0.1657 −0.0007 0.1657 1.9815 0.0271 −0.0185 0.0274 0.1931 0.0905
PSO 0.9628 0.2391 −0.0372 0.2405 2.0028 0.0449 0.0028 0.0449 0.2854 0.6579

GWO 0.9993 0.1657 −0.0007 0.1657 1.9815 0.0271 −0.0185 0.0274 0.1931 0.3577
WOA 0.9989 0.1658 −0.0011 0.1658 1.9815 0.0271 −0.0185 0.0274 0.1932 0.3564
SCA 1.3018 5.8544 0.3018 5.9455 1.9517 0.0862 −0.0483 0.0885 6.0340 0.3631

150 GA 1.0100 0.1128 0.0100 0.1129 1.9831 0.0173 −0.0169 0.0176 0.1305 0.1236
PSO 0.9913 0.1655 −0.0087 0.1656 2.0034 0.0369 0.0034 0.0369 0.2025 0.8276

GWO 1.0100 0.1128 0.0100 0.1129 1.9831 0.0173 −0.0169 0.0176 0.1305 0.5436
WOA 1.0291 0.4732 0.0291 0.4740 1.9812 0.0210 −0.0188 0.0214 0.4954 0.5463
SCA 1.1800 3.3322 0.1800 3.3646 1.9667 0.0506 −0.0333 0.0517 3.4163 0.5512

200 GA 1.0204 0.0907 0.0204 0.0911 1.9788 0.0120 −0.0212 0.0124 0.1036 0.1326
PSO 0.9955 0.1422 −0.0045 0.1422 1.9972 0.0294 −0.0028 0.0294 0.1716 0.8674

GWO 1.0204 0.0907 0.0204 0.0911 1.9788 0.0120 −0.0212 0.0124 0.1036 0.6412
WOA 1.0200 0.0909 0.0200 0.0913 1.9788 0.0120 −0.0212 0.0124 0.1037 0.6443
SCA 1.2482 4.3658 0.2483 4.4275 1.9562 0.0565 −0.0438 0.0584 4.4859 0.6538

Table 6. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators α̂ and β̂ when
α = 2, β = 1.

α̂ β̂

n Algorithm
α=2, β=1 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

30 GA 2.0404 0.1378 0.0404 0.1394 0.9720 0.0211 −0.0280 0.0219 0.1613 0.0531
PSO 1.9795 0.2660 −0.0205 0.2664 1.0245 0.1029 0.0245 0.1035 0.3699 0.3777

GWO 2.0404 0.1378 0.0404 0.1394 0.9720 0.0211 −0.0280 0.0219 0.1613 0.1322
WOA 2.0409 0.1378 0.0409 0.1395 0.9719 0.0211 −0.0281 0.0219 0.1614 0.1318
SCA 3.3470 21.9970 1.3470 23.8114 0.9044 0.0802 −0.0956 0.0893 23.9007 0.1337
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Table 6. Cont.

α̂ β̂

n Algorithm
α=2, β=1 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

50 GA 2.0138 0.0865 0.0138 0.0867 0.9834 0.0127 −0.0166 0.0130 0.0997 0.0576
PSO 1.9425 0.2365 −0.0575 0.2398 1.0414 0.1003 0.0414 0.1020 0.3418 0.3659

GWO 2.0138 0.0865 0.0138 0.0867 0.9834 0.0127 −0.0166 0.0130 0.0997 0.1700
WOA 2.0311 0.4098 0.0311 0.4108 0.9830 0.0134 −0.0171 0.0137 0.4245 0.1690
SCA 3.3727 22.9320 1.3727 24.8163 0.9096 0.0756 −0.0904 0.0838 24.9001 0.1721

100 GA 2.0158 0.0455 0.0158 0.0457 0.9961 0.0069 −0.0039 0.0069 0.0527 0.1000
PSO 1.9336 0.2321 −0.0664 0.2365 1.0511 0.0886 0.0511 0.0912 0.3277 0.6127

GWO 2.0158 0.0455 0.0158 0.0457 0.9961 0.0069 −0.0039 0.0069 0.0527 0.3760
WOA 2.0161 0.0455 0.0161 0.0458 0.9960 0.0069 −0.0040 0.0069 0.0527 0.3776
SCA 3.1106 18.5920 1.1106 19.8254 0.9389 0.0594 −0.0611 0.0631 19.8886 0.3831

150 GA 1.9984 0.0264 −0.0016 0.0264 0.9940 0.0043 −0.0060 0.0043 0.0307 0.1196
PSO 1.9311 0.1683 −0.0689 0.1730 1.0391 0.0699 0.0391 0.0714 0.2445 0.6363

GWO 1.9984 0.0264 −0.0016 0.0264 0.9940 0.0043 −0.0060 0.0043 0.0307 0.5154
WOA 1.9982 0.0264 −0.0018 0.0264 0.9939 0.0043 −0.0061 0.0043 0.0307 0.5155
SCA 2.8450 14.5540 0.8450 15.2680 0.9485 0.0451 −0.0515 0.0478 15.3158 0.5180

200 GA 2.0016 0.0207 0.0016 0.0207 1.0001 0.0033 0.0001 0.0033 0.0240 0.1107
PSO 1.9299 0.2492 −0.0701 0.2541 1.0501 0.0766 0.0501 0.0791 0.3332 0.5733

GWO 2.0016 0.0207 0.0016 0.0207 1.0001 0.0033 0.0001 0.0033 0.0240 0.5225
WOA 2.0019 0.0207 0.0019 0.0207 1.0002 0.0033 0.0002 0.0033 0.0240 0.5193
SCA 2.7336 12.8290 0.7336 13.3672 0.9601 0.0408 −0.0399 0.0424 13.4096 0.5225

Table 7. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators α̂ and β̂ when
α = 2, β = 2.

α̂ β̂

n Algorithm
α=2, β=2 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

30 GA 2.0178 0.5961 0.0178 0.5964 1.9516 0.0887 −0.0484 0.0910 0.6875 0.0533
PSO 1.9918 0.6671 −0.0082 0.6672 1.9734 0.1048 −0.0266 0.1055 0.7727 0.9082

GWO 2.0178 0.5961 0.0178 0.5964 1.9516 0.0887 −0.0484 0.0910 0.6875 0.1354
WOA 2.0175 0.5962 0.0175 0.5965 1.9516 0.0887 −0.0484 0.0910 0.6875 0.1356
SCA 2.6082 10.9120 0.6082 11.2819 1.8901 0.2033 −0.1100 0.2154 11.4973 0.1375

50 GA 1.9974 0.3451 −0.0026 0.3451 1.9631 0.0523 −0.0369 0.0537 0.3988 0.0554
PSO 1.9639 0.4095 −0.0361 0.4108 1.9886 0.0764 −0.0114 0.0765 0.4873 0.5359

GWO 1.9974 0.3451 −0.0026 0.3451 1.9631 0.0523 −0.0369 0.0537 0.3988 0.1724
WOA 1.9971 0.3451 −0.0029 0.3451 1.9630 0.0523 −0.0370 0.0537 0.3988 0.1723
SCA 2.5401 9.7643 0.5401 10.0560 1.9078 0.1589 −0.0922 0.1674 10.2234 0.1749

100 GA 2.0392 0.1603 0.0392 0.1618 1.9707 0.0239 −0.0293 0.0248 0.1866 0.0912
PSO 2.0046 0.2233 0.0046 0.2233 1.9917 0.0425 −0.0083 0.0426 0.2659 0.6931

GWO 2.0392 0.1603 0.0392 0.1618 1.9707 0.0239 −0.0293 0.0248 0.1866 0.3520
WOA 2.0395 0.1603 0.0395 0.1619 1.9707 0.0239 −0.0293 0.0248 0.1866 0.3533
SCA 2.1851 2.7227 0.1851 2.7570 1.9555 0.0534 −0.0445 0.0554 2.8123 0.3633

150 GA 1.9935 0.1175 −0.0065 0.1175 1.9745 0.0178 −0.0255 0.0185 0.1360 0.1943
PSO 1.9712 0.1582 −0.0288 0.1590 1.9931 0.0329 −0.0069 0.0329 0.1920 1.2466

GWO 1.9935 0.1175 −0.0065 0.1175 1.9745 0.0178 −0.0255 0.0185 0.1360 0.8421
WOA 1.9938 0.1176 −0.0062 0.1176 1.9744 0.0178 −0.0256 0.0185 0.1361 0.8386
SCA 2.0829 1.7308 0.0829 1.7377 1.9658 0.0364 −0.0342 0.0376 1.7752 0.8539

200 GA 1.9927 0.0850 −0.0073 0.0851 1.9859 0.0130 −0.0141 0.0132 0.0983 0.1060
PSO 1.9731 0.1099 −0.0269 0.1106 1.9989 0.0230 −0.0011 0.0230 0.1336 0.6544

GWO 1.9927 0.0850 −0.0073 0.0851 1.9859 0.0130 −0.0141 0.0132 0.0983 0.5218
WOA 2.0103 0.4093 0.0103 0.4094 1.9841 0.0168 −0.0159 0.0171 0.4265 0.5206
SCA 2.1341 2.6630 0.1341 2.6810 1.9716 0.0429 −0.0284 0.0437 2.7247 0.5306
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Table 8. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators α̂ and β̂ when
α = 3, β = 1.

α̂ β̂

n Algorithm
α=3, β=1 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

30 GA 3.0124 0.1393 0.0124 0.1395 0.9817 0.0219 −0.0183 0.0222 0.1617 0.0767
PSO 2.9348 0.2984 −0.0652 0.3027 1.0295 0.0889 0.0295 0.0898 0.3924 0.5446

GWO 3.0124 0.1393 0.0124 0.1395 0.9817 0.0219 −0.0183 0.0222 0.1617 0.1825
WOA 3.0286 0.4277 0.0286 0.4285 0.9812 0.0227 −0.0188 0.0231 0.4516 0.1855
SCA 4.4228 22.4900 1.4228 24.5144 0.9025 0.0906 −0.0976 0.1001 24.6145 0.1889

50 GA 3.0151 0.0839 0.0151 0.0841 0.9933 0.0135 −0.0067 0.0135 0.0977 0.0662
PSO 2.9608 0.2002 −0.0392 0.2017 1.0302 0.0621 0.0302 0.0630 0.2647 0.4253

GWO 3.0151 0.0839 0.0151 0.0841 0.9933 0.0135 −0.0067 0.0135 0.0977 0.1948
WOA 3.0146 0.0839 0.0146 0.0841 0.9931 0.0135 −0.0069 0.0135 0.0977 0.1934
SCA 4.3549 21.0940 1.3549 22.9298 0.9192 0.0805 −0.0808 0.0870 23.0168 0.1958

100 GA 3.0014 0.0441 0.0014 0.0441 0.9943 0.0064 −0.0057 0.0064 0.0505 0.0951
PSO 2.9291 0.1967 −0.0709 0.2017 1.0422 0.0639 0.0422 0.0657 0.2674 0.5439

GWO 3.0014 0.0441 0.0014 0.0441 0.9943 0.0064 −0.0057 0.0064 0.0505 0.3592
WOA 3.0349 0.6214 0.0349 0.6226 0.9926 0.0082 −0.0074 0.0083 0.6309 0.3592
SCA 4.2779 20.1040 1.2779 21.7370 0.9234 0.0699 −0.0767 0.0758 21.8128 0.3625

150 GA 3.0066 0.0299 0.0066 0.0299 0.9987 0.0043 −0.0013 0.0043 0.0342 0.1358
PSO 2.9208 0.2204 −0.0792 0.2267 1.0512 0.0725 0.0512 0.0751 0.3018 0.7339

GWO 3.0066 0.0299 0.0066 0.0299 0.9987 0.0043 −0.0013 0.0043 0.0342 0.5695
WOA 3.0234 0.3187 0.0234 0.3192 0.9978 0.0052 −0.0022 0.0052 0.3245 0.5686
SCA 4.1678 18.3840 1.1678 19.7478 0.9332 0.0639 −0.0668 0.0684 19.8161 0.5708

200 GA 3.0032 0.0221 0.0032 0.0221 0.9958 0.0034 −0.0042 0.0034 0.0255 0.1161
PSO 2.9389 0.1504 −0.0611 0.1541 1.0511 0.0865 0.0511 0.0891 0.2432 0.6130

GWO 3.0032 0.0221 0.0032 0.0221 0.9958 0.0034 −0.0042 0.0034 0.0255 0.5469
WOA 3.0362 0.5993 0.0362 0.6006 0.9941 0.0051 −0.0059 0.0051 0.6057 0.5417
SCA 3.7839 12.7150 0.7839 13.3295 0.9521 0.0441 −0.0479 0.0464 13.3759 0.5441

Table 9. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators α̂ and β̂ when
α = 3, β = 2.

α̂ β̂

n Algorithm
α=3, β=2 Mean Variance Bias MSE Mean Variance Bias MSE Def CT

30 GA 3.0225 0.6012 0.0225 0.6017 1.9468 0.0841 −0.0532 0.0869 0.6886 0.0576
PSO 2.9904 0.6933 −0.0096 0.6934 1.9725 0.1022 −0.0275 0.1030 0.7963 0.9065

GWO 3.0225 0.6012 0.0225 0.6017 1.9468 0.0841 −0.0532 0.0869 0.6886 0.1570
WOA 3.0224 0.6012 0.0224 0.6017 1.9468 0.0842 −0.0532 0.0870 0.6887 0.1464
SCA 3.6743 11.9780 0.6743 12.4327 1.8690 0.2285 −0.1310 0.2457 12.6783 0.1486

50 GA 3.0107 0.3429 0.0107 0.3430 1.9676 0.0537 −0.0324 0.0547 0.3978 0.0718
PSO 2.9927 0.3700 −0.0073 0.3701 1.9843 0.0655 −0.0157 0.0657 0.4358 0.5668

GWO 3.0107 0.3429 0.0107 0.3430 1.9676 0.0537 −0.0324 0.0547 0.3978 0.1890
WOA 3.0110 0.3430 0.0110 0.3431 1.9675 0.0537 −0.0325 0.0548 0.3979 0.1890
SCA 3.2505 4.3296 0.2505 4.3924 1.9430 0.1048 −0.0570 0.1080 4.5004 0.1919

100 GA 2.9949 0.1723 −0.0051 0.1723 1.9730 0.0268 −0.0270 0.0275 0.1999 0.1183
PSO 2.9636 0.2362 −0.0364 0.2375 1.9934 0.0475 −0.0066 0.0475 0.2851 0.9177

GWO 2.9949 0.1723 −0.0051 0.1723 1.9730 0.0268 −0.0270 0.0275 0.1999 0.4767
WOA 2.9952 0.1726 −0.0048 0.1726 1.9728 0.0268 −0.0272 0.0275 0.2002 0.4748
SCA 3.2988 5.2872 0.2988 5.3765 1.9401 0.0927 −0.0599 0.0963 5.4728 0.4843

150 GA 2.9939 0.1153 −0.0061 0.1153 1.9735 0.0167 −0.0265 0.0174 0.1327 0.0886
PSO 2.9686 0.1893 −0.0314 0.1903 1.9977 0.0426 −0.0023 0.0426 0.2329 0.6120

GWO 2.9939 0.1153 −0.0061 0.1153 1.9735 0.0167 −0.0265 0.0174 0.1327 0.4065
WOA 2.9941 0.1153 −0.0059 0.1153 1.9734 0.0167 −0.0266 0.0174 0.1327 0.4053
SCA 3.2557 4.8181 0.2557 4.8835 1.9407 0.0793 −0.0593 0.0828 4.9663 0.4130

200 GA 3.0112 0.0830 0.0112 0.0831 1.9764 0.0141 −0.0236 0.0147 0.0978 0.1310
PSO 2.9890 0.1246 −0.0110 0.1247 1.9888 0.0276 −0.0112 0.0277 0.1524 0.8417

GWO 3.0112 0.0830 0.0112 0.0831 1.9764 0.0141 −0.0236 0.0147 0.0978 0.6391
WOA 3.0112 0.0830 0.0112 0.0831 1.9764 0.0141 −0.0236 0.0147 0.0978 0.6333
SCA 3.2250 3.8130 0.2250 3.8636 1.9489 0.0657 −0.0511 0.0683 3.9319 0.6508

The simulated values show that the GA and GWO provide the best results in compari-
son with the other algorithms. Based on the simulated bias results, it has been seen that
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the GA and GWO algorithms’ estimator values for both parameters α and β provide the
smallest bias values for almost all sample sizes when the true value of β = 1. Otherwise,
when β = 2, the smallest bias values in most cases belong to the PSO algorithm. Concerning
WOA, it shows the lowest bias values (which are the same as GA and GWO values) in
some cases and higher values in others, which indicates that it is not a stable algorithm for
the EMLOG model. Anyway, in all cases, SCA demonstrates the worst performance with
the largest bias values.

Concerning MSE values, it is very clear that MSE values for GA and GWO estimators
outperform other algorithms for all n values. Also, it can be noticed from Tables 2–9 that
the MSE values of α and β for WOA estimators give almost the same values as GA and
GWO estimators in particular cases, but they do not show the best performance for all n
values. Specifically, these cases are classified into two categories: Firstly, when β = 1, as
the following: for (1) α = 0, and n = 30, 100 (2) α = 1, and n = 150. (3) α = 2, n = 30, 100,
150, 200. (4) α = 3 and n = 50. Secondly, when β = 2, as follows: (1) for α = 1, and n = 50,
100, 200. (2) α = 2 with n = 30, 50, 100, and 150. (3) For all n values, α must be 0 or 3. In
these two categories, the WOA is considered a highly efficient algorithm, the same as the
GA and GWO, for computing and estimating both the location α and scale β parameters
with respect to MSE values. Except for these two categories, the PSO is considered the
second-best method after the GA and GWO with respect to MSE values for estimating
only the location parameter α. Also, it is clear that for all n values, SCA gives the lowest
performance with the largest MSE values for both α and β parameters.

In terms of the Def criterion, the strongest performance with the lowest deficiency
for all n values is demonstrated by GA and GWO. Regarding the CT criterion, which is
the average time needed in seconds to complete the required iteration for estimating the
parameters in one MC run, it is seen that GA is the fastest algorithm for estimating α
and β parameters for all n values. In other words, the time needed for GA to estimate
parameters is lower than that of other algorithms, at least by two times. For example, the
CT needed for executing a 1000 MC run in the case of n = 50 in Table 1 for GA is estimated as
1000 × 0.0581∼= 58.1 s, while the CT of the same case needed for PSO, GWO, WOA, and
SCA is 375.7, 169.1, 171.1, and 171 s, respectively. Also, it can be noticed that GWO, WOA,
and SCA have almost the same CT, with a slight preference for WOA in nearly all cases,
while PSO is the slowest among all the used algorithms.

It can be concluded that the ML estimator values of GA outperform GWO, with better
performance if the CT criterion is considered. However, concerning only deficiency values,
it can be said that the ML estimator values of α and β parameters using GA and GWO give
the most efficient values among the others but when the two categories mentioned before
are considered, we see that the WOA is as efficient as the GA and GWO. Otherwise, out of
these two categories, the PSO will be the second-best algorithm after the GA and GWO for
estimating both α and β parameters. The weakest performance with the highest deficiency
values is provided by SCA in all cases.

Based on these findings, we can conclude that GA and GWO are highly recommended
and preferred over any other meta-heuristic algorithm utilized in this study for calculating
ML estimators for unknown EMLOG distribution parameters (α, β). However, GA performs
better and is more powerful, desirable, and preferred to be employed if a rapid estimating
process is required. The simulation results also indicate that the SCA algorithm is unsuitable
for estimating the location and scale parameters of this distribution due to the high values
of its deficiency criterion.

The Def and TC criteria for Table 2 are plotted with n values in Figures 5 and 6,
respectively, to show the performance of each algorithm.

From Figure 5, it is illustrated that the GA and GWO algorithms have the best perfor-
mance with the lowest Def values, and SCA has the worst performance, while Figure 6
shows that the GA algorithm has the best pest performance according to CT values among
the other algorithms.
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Figure 6. Performance of GA, PSO, GWO, WOA, and SCA according to the CT values in Table 2.

4. Applications

Six real datasets are modeled using the EMLOG distribution in this section to demon-
strate the utility of this model in practice for the applications. In the first two datasets,
which are used in various engineering areas, the modeling performance of the EMLOG
distribution is compared with the other asymmetrical well-known and commonly used
distributions in the statistical literature, such as Gamma, log-normal, log-logistic, and
others. In the middle two datasets, which are used in medical and banking fields, the
EMLOG distribution’s performance is compared to the normal and logistic distributions,
which are symmetrical and belong to the location-scale family, to examine the flexibility
and better goodness of fit of the EMLOG distribution among them. In the last two datasets,
which are further used in medical and engineering fields, the modeling performance of the
EMLOG distribution is compared with symmetrical and asymmetrical distributions such
as normal and/or logistic, Weibull, gamma, and others.

The modeling performance of the EMLOG distribution has been compared using
well-known different criteria, including log-likelihood values, the Akaike Information
Criterion (AIC), the corrected AIC (AICc), the consistent AIC (CAIC), the Bayesian Infor-
mation Criterion (BIC), and the Hannan-Quinn Information Criterion (HQIC). For extra
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information on these criteria and their implementation, see [40–42]. The mathematical
expression of these criteria is given by

AIC = 2P − 2 ln L (37)

AICc = AIC +
2P(P + 1)
n − P − 1

(38)

CAIC = P [ln(n) + 1]− 2 ln L (39)

BIC = P ln(n)− 2 ln L (40)

HQIC = 2 P ln [ln(n)]− 2 ln L (41)

where ln L is the maximized likelihood function, the number of observations is n, and p
is just the total number of model parameters. The model of probability is considered the
best-fit model when it has lower values for these mentioned criteria in comparison with
other probability distributions.

4.1. Dataset 1: Tensile Strength of 69 Carbon Fibers

This dataset contains the tensile strength (in GPa) of 69 carbon fibers evaluated under
stress at 20 mm gauge lengths. This dataset was originally used for the first time in 1982
by Bader and Priest [43]. The data are given as: 1.312, 1.314, 1.479, 1.552, 1.700, 1.803,
1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,
2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435,
2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684,
2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084,
3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.858. Descriptive statistics, including the values of
sample size (n), minimum (min), first quartile (1st Qu.), mean, mode, median, third quartile
(3rd Qu.), maximum (max), variance (S2), skewness (γ1), and kurtosis (γ2) coefficients,
respectively, are given by Table 10.

Table 10. The descriptive statistics for the tensile strength data.

n Min 1st Qu. Mean Mode Median 3rd Qu. Max S2 γ1 γ2

69 1.3120 2.0892 2.4553 2.3010 2.4780 2.7797 3.8580 0.2554 0.1021 3.2253

Various well-known distributions such as Gamma, log-normal, Log-Logistic, Rayleigh,
Weibull, and exponential are used for modeling this data. A comparison between EM-
LOG distribution modeling performance and the mentioned commonly used distributions
according to the lnL, AIC, AICc, CAIC, BIC, and HQIC criteria is given in Table 11.

Table 11. Parameter estimates, ln L, AIC, AICc, CAIC, BIC, and HQIC values for tensile strength dataset.

λ̂ α̂ β̂ -ln L AIC AICC CAIC BIC HQIC

EMLOG - 2.2141 0.2472 50.4143 104.8286 105.0104 111.2968 109.2968 106.6013
Gamma 22.8047 - 0.1077 50.9856 105.9712 106.1530 112.4394 110.4394 107.7439

Lognormal - 0.8762 0.2161 52.1663 108.3326 108.5144 114.8008 112.8008 110.1053
Log-logistic - 0.8883 0.1187 51.4346 106.8692 107.0510 113.3374 111.3374 108.6419

Weibull 2.6585 - 5.2702 51.7165 107.4330 107.6148 113.9012 111.9012 109.2057
Rayleigh - - 1.7720 87.4975 176.9950 177.0547 180.2291 179.2291 177.8813

Exponential - 2.4553 - 130.979 263.9580 264.0177 267.1921 266.1921 264.8443

The results in Table 11 show that the EMLOG distribution performance gives a better
fit than its rivals in terms of the considered criteria.

4.2. Dataset 2: Strengths of Glass Fibers

The Strength of Glass Fibers dataset was introduced for the first time by Smith and
Naylor [44]. It is made up of 63 observations about the strengths of glass fibers (1.5cm) and
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is widely used in the statistical literature. The data are as follows: 0.55, 0.93, 1.25, 1.36, 1.49,
1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68,
1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13,
1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63,
1.67, 1.7, 1.78, 1.89. The descriptive statistics for this dataset are given in Table 12.

Table 12. The descriptive statistics for the Strengths of glass fibers data.

n Min 1st Qu. Mean Mode Median 3rd Qu. Max S2 γ1 γ2

63 0.55 1.3675 1.5068 1.61 1.59 1.6875 2.24 0.1051 -0.8999 3.9238

The resulting values of fitting this data to the EMLOG distribution model in compari-
son with Gamma, lognormal, log-logistic, Rayleigh, and Exponential distributions in terms
of the criteria that were chosen are obtained in Table 13.

Table 13. Parameter estimates, ln L, AIC, AICc, CAIC, BIC, and HQIC values for Strengths of glass
fibers dataset.

λ̂ α̂ β̂ -ln L AIC AICC CAIC BIC HQIC

EMLOG - 1.3923 0.1550 18.1280 40.2560 40.4560 46.5423 44.5423 41.9418
Gamma 17.4396 - 0.0864 23.9515 51.9030 52.1030 58.1893 56.1893 53.5888

Lognormal - 0.3811 0.2599 28.0089 60.0178 60.2178 66.3041 64.3041 61.7036
Log-logistic - 0.4228 0.1262 22.7900 49.5800 49.7800 55.8663 53.8663 51.2658

Rayleigh - - 1.0895 49.7909 101.5818 101.6474 104.7249 103.7249 102.4247
Exponential - 1.5068 - 88.8303 179.6606 179.7262 182.8037 181.8037 180.5035

The results show that the EMLOG model outperforms any competitor distribution in
terms of modeling performance.

4.3. Dataset 3: Bladder Cancer Patients

This dataset is a biologically uncensored univariate dataset that reflects the remission
periods (in months) of 128 bladder cancer patients who were randomly selected by Lee
and Wang in 2003 [45]. The data are given as: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63,
0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46,
3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82,
5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34,
7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41,
7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50,
6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07,
3.36, 6.93, 8.65, 12.63, 22.69. The descriptive statistics values of this dataset are given in
Table 14 below.

Table 14. The descriptive statistics for the bladder cancer patient’s data.

n Min 1st Qu. Mean Mode Median 3rd Qu. Max S2 γ1 γ2

128 0.08 3.3350 9.2094 2.02 6.28 11.7150 79.05 108.2132 3.3987 19.3942

The EMLOG distribution’s modeling performance is compared to that of the normal
and logistic distributions. The results given in Table 15 show that the EMLOG distribution
has a better fit in comparison with the normal and logistic distributions in terms of the
considered criteria.
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Table 15. Parameter estimates, ln L, AIC, AICc, CAIC, BIC, and HQIC values for the bladder cancer
patient’s dataset.

α̂ β̂ -ln L AIC AICC CAIC BIC HQIC

EMLOG 4.1273 3.7637 450.4944 904.9888 905.0848 912.6929 910.6929 907.3064
Normal 9.2094 10.4026 480.9070 965.8140 965.9100 973.5181 971.5181 968.1316
Logistic 7.4546 4.3693 453.7950 911.5900 911.6860 919.2941 917.2941 913.9076

4.4. Dataset 4: Waiting Times (in Minutes) of 100 Bank Customers

This dataset contains 100 observations that indicate the waiting periods (in minutes)
before service for 100 bank customers, as examined and described by Ghitany et al. [46].
The data are given as: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0,
4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3,
6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8,
10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9,
14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6,
33.1, 38.5. Descriptive statistics for this dataset are given in Table 16.

Table 16. The descriptive statistics for the waiting times’ data.

n Min 1st Qu. Mean Mode Median 3rd Qu. Max S2 γ1 γ2

100 0.80 4.65 9.8770 7.10 8.10 13.05 38.50 52.3741 1.4728 5.5403

From Table 17, we can see that the EMLOG distribution seems to provide a better fit
than normal and logistic distributions according to the considered criteria.

Table 17. Parameter estimates, ln L, AIC, AICc, CAIC, BIC, and HQIC values for the waiting times’ dataset.

α̂ β̂ -ln L AIC AICC CAIC BIC HQIC

EMLOG 5.9090 3.2337 331.9065 667.8130 667.9367 675.0233 673.0233 669.9217
Normal 9.8770 7.2370 339.3140 682.6280 682.7517 689.8383 687.8383 684.7367
Logistic 8.9296 3.7895 334.6980 673.3960 673.5197 680.6063 678.6063 675.5047

4.5. Dataset 5: Patients Relief Times Dataset

This dataset relates to the observations of relief times (in minutes) for 20 patients
receiving an analgesic. It was first used by [47]. The data are given as: 1.1, 1.4, 1.3, 1.7,
1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2. Descriptive statistics for this
dataset are given in Table 18.

Table 18. The descriptive statistics for the patient’s relief times data.

n Min 1st Qu. Mean Mode Median 3rd Qu. Max S2 γ1 γ2

20 1.100 1.4500 1.9000 1.7000 1.7000 2.1000 4.100 0.4958 1.7197 5.9241

The modeling performance of the EMLOG distribution is compared with symmetrical
distributions such as Normal and Logistic as well as asymmetrical distributions such as
Weibull, Nakagami, and others. The EMLOG distribution was found to have the best fit
based on the criteria considered, as shown below in Table 19.
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Table 19. Parameter estimates, ln L, AIC, AICc, CAIC, BIC, and HQIC values for the patient’s relief
time’s data.

µ̂ σ̂ α̂ -ln L AIC AICC CAIC BIC HQIC

EMLOG 1.5292 0.2907 - 18.6385 41.2770 41.9829 45.2685 43.2685 41.6658
Nakagami - 4.0810 2.3478 19.1701 42.3402 43.0461 46.3317 44.3317 42.7290

Logistic 1.7905 0.3390 - 19.2433 42.4866 43.1925 46.4781 44.4781 42.8754
Weibull - 2.1300 2.7870 20.5864 45.1728 45.8787 49.1643 47.1643 45.5616
Normal 1.9000 0.7041 - 20.8627 45.7254 46.4313 49.7169 47.7169 46.1142
Rayleigh - 1.4285 - 22.4788 46.9576 47.1798 48.9533 47.9533 47.1520

Extreme Value 2.2913 0.9163 - 26.7927 57.5854 58.2913 61.5769 59.5769 57.9742

4.6. Dataset 6: Windshield Failure Time Dataset

This dataset contains observations of the failure time (the unit for measurement is
1000 h) of 84 windshields for a given aircraft model [48]. The data are given as: 0.040, 1.866,
2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578,
0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010,
2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167,
1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190,
3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485,
1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663. Descriptive
statistics for this dataset are given in Table 20.

Table 20. The descriptive statistics for the windshield failure data.

n Min 1st Qu. Mean Mode Median 3rd Qu. Max S2 γ1 γ2

84 0.040 1.8115 2.5575 1.2810 2.3545 3.4095 4.6630 1.2518 0.0995 2.3477

When the modeling performance of the EMLOG distribution is compared to a sym-
metrical distribution like logistic and asymmetrical distributions like gamma, log-logistic,
and others, as shown in Table 21 below, the EMLOG distribution showed the best data fit
with regard to the concerned criteria.

Table 21. Parameter estimates, ln L, AIC, AICc, CAIC, BIC, and HQIC values for the Windshield
failure data.

µ̂ σ̂ α̂ -ln L AIC AICC CAIC BIC HQIC

EMLOG 1.9877 0.5581 - 130.5797 265.1594 265.3075 272.0210 270.0210 267.8467
Logistic 2.5344 0.6485 - 131.359 266.7180 266.8661 273.5796 271.5796 268.6723

Extreme Value 3.1180 1.0633 - 133.498 270.9960 271.1441 277.8576 275.8576 272.9503
Gamma - 0.7323 3.4922 136.937 277.8740 278.0221 284.7356 282.7356 279.8283

Log-Logistic 0.8718 0.31019 - 139.581 283.1620 283.3101 290.0236 288.0236 285.1163
Lognormal 0.7891 0.691 - 153.923 309.8460 309.8948 313.2768 312.2768 310.8232

Inverse Gaussian - 2.5575 2.3595 182.557 369.1140 369.2621 375.9756 373.9756 371.0683

It can be noticed that in the first and second datasets, the EMLOG distribution out-
performs asymmetrical distributions such as Weibull, Gamma, and others. Also, in the
third and fourth datasets, the EMLOG distribution provides a better fit than symmetrical
distributions such as the normal and logistic distributions. However, in the fifth and sixth
datasets, the EMLOG distribution outperforms symmetrical and asymmetrical distributions
with better modeling performance. All this can lead us to say that the EMLOG distribution
can provide a better fit than many popular distributions, which shows the distinction of
this distribution and its suitability for many practical cases and applications.

5. Conclusions

The EMLOG distribution is obtained by combining a logistic distribution with an
exponential distribution. This distribution can be used as an alternative to symmetrical and
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asymmetrical distributions with a better fit in many applications. EMLOG distribution is
found more flexible than other alternative distributions, so this is why it has been applied
in various fields, including technology, energy, marketing, biology, psychology, and so
on. As a result, parameter estimation is essential for this distribution. In this study, ML
estimates of the EMLOG distribution’s location α and scale β parameters are investigated,
which cannot be obtained explicitly because of the complication of finding a solution
for their nonlinear likelihood equations. In such cases, iterative techniques are needed.
The ML estimation method based on meta-heuristic algorithms such as GA, PSO, GWO,
WOA, and SCA is considered a wise alternative and more convenient than any other
traditional statistical methods. A Monte Carlo simulation study was conducted to compare
the performance of meta-heuristic algorithms used in this study with respect to bias, MSE,
Def, and CT criteria. According to the simulation results, the ML estimates of GA and
GWO show the best performance in comparison with the PSO, WOA, and SCA algorithms.
However, GA is the fastest for the estimation process; therefore, GA is considered the best
algorithm that shows the best performance if the computation time is considered. GWO
has the advantage of high performance with fewer parameters, simple principles, and easy
implementation. On the other hand, GWO converges more slowly, and it is possible to
fall into the local optimum. While the genetic algorithm has two major operators that are
robust in generating efficient solutions with achieved diversity to help solutions not be
trapped in local optimum solutions, at the same time it can process large amounts of data
with fast convergence speed, which helps to save time. However, genetic algorithms rely
on fixed parameters such as mutation probability (MP) and crossover probability (CP), so
defining these parameters improperly can lead to lower performance.
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