
Citation: Cho, J.-R. Large Deflection

Geometrically Nonlinear Bending of

Porous Nanocomposite Cylindrical

Panels on Elastic Foundation.

Symmetry 2024, 16, 224. https://

doi.org/10.3390/sym16020224

Academic Editors: Michel Planat and

Gennadiy Kolesnikov

Received: 15 January 2024

Revised: 7 February 2024

Accepted: 9 February 2024

Published: 13 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Large Deflection Geometrically Nonlinear Bending of Porous
Nanocomposite Cylindrical Panels on Elastic Foundation
Jin-Rae Cho

Department of Naval Architecture and Ocean Engineering, Hongik University, Jochiwon,
Sejong 30016, Republic of Korea; jrcho@hongik.ac.kr; Tel.: +82-44-860-2546; Fax: +82-41-862-0940

Abstract: Large deflection nonlinear bending of functionally graded (FG) porous cylindrical panels
reinforced with graphene platelets (GPLs) on a Pasternak-type elastic foundation is examined by
developing a reliable and effective 2D meshfree-based nonlinear numerical method. The large
displacement field is express by the first-order shear deformation theory (FSDT) and the von Kármán
nonlinearity, and approximated by 2D natural element method (NEM) in conjunction with the
stabilized MITC3+ shell concept and the shell surface–rectangular grid geometry transformation. The
nonlinear simultaneous equations are solved by a load incremental Newton–Raphson scheme. The
developed nonlinear numerical method is justified from by comparing with the reference solutions,
and the load–deflection and bending moment of FG-GPLRC porous cylindrical panels on elastic
foundation are scrutinizingly examined. Four different symmetric GPL distribution patters (except
for FG-Λ) and three different symmetric porosity distributions are considered and their combined
effects on the nonlinear bending behavior are investigated, as well as the effects of foundation
stiffness and GPL amount. Also, the results are compared with those of FG CNT-reinforced porous
cylindrical panels.

Keywords: nonlinear bending; functionally graded; GPL-reinforced cylindrical panel; elastic foundation;
symmetric GPL and porosity distributions; load–deflection and bending moment

1. Introduction

Composite structures have been widely adopted in various science and engineering
fields over several decades because they could maximize the desired performance and
reduce the undesired function at the same time. A representative one would be a fiber-
inserted composite, which has been successfully used in the transportation industry to
enhance structural strength while reducing weight. Furthermore, lately, these composite
materials have greatly evolved according to the advances in materials science engineering,
such as nanocomposite materials reinforced by graphene platelets or carbon nanotubes.
Both GPLs and CNTs have attained a great spotlight as greatly promising nanofillers
because of their excellent physical properties [1,2]. These nanofillers are very strong, so
the effective stiffness of the reinforced composite materials with these nanofillers can be
surprisingly increased, even when a tiny number of nanofillers are added [3]. However,
owing to the cost problem, a limited number of nanofillers are not uniformly distributed in
the matrix through the thickness with the specific functional gradient [4,5]. Reinforced com-
posites (RC) with a functionally graded distribution of nanofillers are called FG-GPLRCs or
FG-CNTRCs [5–7].

When compared with GPLs, CNTs are in the form of cylinders, so the manufactur-
ing cost is relatively higher, and their mechanical properties are anisotropic, which is
dependent on the alignment [8–11]. Furthermore, it has been reported that GPLs exhibit
higher elastic modulus, tensile strength and fracture toughness than CNTs, besides the
cost-effectiveness [12]. For this reason, the mechanical behaviors of FG-GPLRCs have been
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intensively investigated for developing advanced next-generation functional nanocom-
posites. Meanwhile, GPL-reinforced composites are characterized by a closed-cell porous
form exhibiting low density, high porosity and large specific surface, which provides the
possibility for combining the superior properties of GPLs and porous forms [13]. Early
studies concentrated on the linear responses of FG-GPLRC porous structures in order to
investigate the basic responses like static bending, free vibration and buckling. For example,
Li et al. [14] numerically investigated these three basic behaviors of FG-GPLRC porous
plates by employing an isogeometric analysis. Yang et al. [15] examined the buckling and
postbuckling behaviors of FG-GPLRC multilayer beams using the FSDT. Arefi et al. [16]
solved the free vibration of FG-GPLRC nanoplates using a two-variable sinusoidal shear
deformation theory (SSDT). Jafari and Kiani [17] analyzed the free vibration of FG-GPLRC
plates using a quasi-3D shear and normal deformable model. Cho [18] numerically inves-
tigated the free vibration of FG-GPLRC porous cylindrical panels by 2D NEM. A more
detailed extended survey of the early studies on FG-GPLRC structures may be referred to
in review paper [19].

Regarding the large deflection bending of FG GPL-reinforced composites, Shen et al. [20]
examined the temperature-dependent nonlinear bending of FG-GPLRC laminated plates
on elastic foundations by applying a two-step perturbation scheme to a higher-order shear
deformation theory (HSDT) with the von Kármán nonlinearity. Gholami and Ansari [21]
analytically investigated a large deflection geometrically nonlinear bending of FG-GPLRC
plates by applying the virtual work principle to the SSDT. Sahmani et al. [22] analytically
solved the size-dependent nonlinear bending of FG-GPLRC porous micro/nano beams by
the Galerkin method together with an improved perturbation scheme. Shen et al. [23] ana-
lytically examined the temperature-dependent nonlinear bending behavior of FG-GPLRC
cylindrical panels on elastic foundations by using the HSDT. Wang. et al. [24] investigated
the nonlinear bending behavior of FG-GPLRC microbeams in thermal environments by
applying the Newton–Raphson method to Timoshenko beam theory with the modified
couple stress theory. Liu et al. [25] presented an analytical method for solving the nonlinear
static bending of FG-GPLRC porous arches by using the virtual work principle based on
the Euler–Bernoulli theory. Tam et al. [26] numerically investigated the influence of an
open crack on the nonlinear bending of multilayer FG-GPLRC beams elastically restrained
at both ends. Wang et al. [27] analytically investigated the nonlinear static response of FG
polymer-based circular microarches reinforced by graphenes by developing a modified
couple stress-based model based on the exponential FSDT. Anirudh et al. [28] numerically
examined the nonlinear bending of porous FG-GRC curved beams using a three-noded
curved beam finite element based on a FSDT. Nguyen et al. [29] proposed a numerical model
for investigating size-dependent geometrically nonlinear static and dynamic responses of
FG microplates reinforced by graphene nanofillers by using four-variable refined plate the-
ory within the framework of isogeometric analysis. Songsuwan and Wattanasakulpong [30]
analytically examined the linear and nonlinear bending of FG-GPLRC beams by applying
the Gram–Schmidy–Ritz method to the Reddy’s HSDT [31] in conjunction of a von Kármán
nonlinearity.

The literature survey on the nonlinear deflection FG-GPLRC structures reveals that the
studies were mostly focused on beams and plates using analytical methods. In particular,
the numerical studies using the meshfree method were rarely reported, and the effects
of associated parameters on the nonlinear bending behaviors, for example, the combined
effects of GPL and porosity distributions by including the elastic foundation, were not
sufficiently investigated. In this context, this study aims at the scrutinizing investigation
of the nonlinear bending responses of FG-GPLRC porous cylindrical panels resting on
an elastic foundation by developing a reliable and effective meshfree-based 2D nonlinear
numerical method. The large deflection of cylindrical panel is expressed by the FSDT
together with the von Kármán geometry nonlinearity, but the approximated stresses are
enhanced by applying the strain recovery [32] and the Reddy’s TSDT. The equivalent elastic
properties of FG-GPLRC cylindrical panels are determined by applying the Halpin–Tsai
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homogenization model, and those are modified by introducing three different porosity
distributions.

The nonlinear numerical method is developed in the framework of 2D NEM by intro-
ducing a geometry transformation from the shell mid-surface to a 2D planar NEM grid to
relax the complex mathematical derivation on the curved shell surface. The 2D NEM is
a last introduced meshfree method for the effective analysis of 3D elastic structures and
shows a relatively higher accuracy even at coarse grids [18]. The concept of the MITC3+
shell element is employed to suppress the troublesome shear membrane locking [33,34],
and is further stabilized by introducing two stabilization parameters associated with the
porosity and nonlinear iteration number. The constructed nonlinear matrix equations are
solved by introducing a load incremental Newton–Raphson iteration scheme, by including
the stiffness matrix increments. The benchmark experiment is performed to justify the
introduced nonlinear numerical method. And the parametric experiments are performed to
profoundly investigate the large deflection bending behaviors of FG-GPLRC porous cylin-
drical panels on elastic foundation with respect to the associated parameters, particularly to
the symmetric GPL and porosity distributions (except for FG-Λ). The comparison with the
FG-CNTRC cylindrical panels for the same volume fractions of nanofillers is also presented.

2. FG-GPLRC Porous Cylindrical Panel Resting on Elastic Foundation

A cylindrical panel reinforced with graphene platelets (GPLs) is shown in Figure 1a,
where a coordinate system (x, y, z) is introduced on the panel mid-surface ϖ with the
relation of x = Rθ. The geometry of the cylindrical panel is governed by radius R, sub-
tended angle θ0, length L, and uniform thickness h. The panel is rested on elastic foundation
which is assumed to be firmly attached to the panel bottom without causing debonding,
and its pressure–deflection relationship p − w is assumed to be

p = Kww − Ks∇2
ϖw (1)

where Kw is the Winkler stiffness, Ks is the shearing layer stiffness and ∇2
ϖ is the Lapla-

cian operator defined on the panel mid-surface ϖ, respectively. Graphene platelets are
distributed through the thickness in a specific functionally graded pattern. Figure 1b shows
four primitive GPL distribution patterns taken for this study, where GPLs are uniformly
distributed in FG-U while those are biased to the mid-surface in FG-O, to the upper surface
in FG-X, and to the lower surface in FG-Λ, respectively. These four patterns sufficiently
represent all the possible GPL distribution patterns, and three patterns, FG-U, FG-O and
FG-X, are symmetric with respect to the panel mid-surface.
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Letting Vm(z) and VGPL(z) be the matrix and GPL volume fractions of GPLs in function
of thickness co-ordinate z, both must obey the physical relation given by

Vm(z) + VGPL(z) = 1 (2)

Here, the GPL volume fraction VGPL(z) has one of following thickness functions
given by

VGPL(z) =


V∗

GPL, FG − U
2(1 − 2|z|/h)V∗

GPL, FG − O
2(2|z|/h)V∗

GPL, FG − X
(1 − 2z/h)V∗

GPL, FG − Λ

(3)

depending on the above GPL distribution pattern, in which the total GPL volume fraction
V∗

GPL is determined by

V∗
GPL =

gGPL
gGPL + ρGPL(1 − gGPL)/ρm

(4)

in terms of the GPL mass fraction gGPL and the matrix and GPL densities ρm and ρGPL.
This study assumes that GPLs are uniformly distributed within the matrix and behave

as an equivalent rectangular solid fiber with the width wGPL, length lGPL, and thickness
tGPL, and the graphene-reinforced composites are assumed to be isotropic. And the effec-
tive elastic modulus Ee f f of GPLRC is calculated using the Halphin–Tsai approach [35],
which gives

Ee f f =
3
8
· 1 + ξLηLVGPL

1 − ηLVGPL
Em +

5
8
· 1 + ξTηTVGPL

1 − ηTVGPL
Em (5)

with
ηL =

EGPL − Em

EGPL + ξLEm
, ηT =

EGPL − Em

EGPL + ξTEm
(6)

in which Em and EGPL are the elastic moduli of matrix and GPLs, and the geometric
parameters ξL and ξT are determined by

ξL =
2lGPL
tGPL

, ξT =
2wGPL
tGPL

(7)

Meanwhile, the effective Poisson’s ratio νe f f and density ρe f f of GPLRC are calcu-
lated as

νe f f = VGPLνGPL + Vmνm (8)

ρe f f = VGPLρGPL + Vmρm (9)

using the linear rule of mixture.
Referring to Figure 2, this study considers three symmetric porosity distributions:

center-biased (PD1), outer-biased (PD2) and uniform (PD3), which are defined by

PD1 : ψ(z) = e0 · cos
(πz

h

)
(10)

PD2 : ψ(z) = e0 ·
[
1 − cos

(πz
h

)]
(11)

PD3 : ψ(z) = e0 (12)

with the porosity parameter e0(0 ≤ e0 ≤ 1). Both the magnitude and distribution of
porosity affect the magnitudes of the effective elastic modulus Ee f f and shear modu-
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lus Ge f f = Ee f f /2
(

1 + νe f f

)
of GPLRC structures. Letting ℘(z) be the effective elastic

properties of porous GPLRC structures, they are determined by

℘(z) = ℘e f f (z) · [1 − ψ(z)] (13)
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But, for the effective density ρe f f , the porosity parameter e0 in Equations (10)–(12)
should be modified using the relationship of

E(z)
Ee f f (z)

=

[
ρ(z)

ρe f f (z)

]2

(14)

between the elastic modulus and the density [36]. Letting e be the porosity parameter for
the porous CNTRC structures, it is determined by

1 − e · cos
(πz

h

)
=
√

1 − e0 · cos(πz/h) (15)

for PD1, for example.
The displacement field u =

{
ux, uy, uz

}T in the first-order shear deformation shell
theory is expressed as 

u
v
w


(x,y,z)

=


u0
v0
w0


(x,y)

+ z ·


ϑx
ϑy
0


(x,y)

(16)

with the displacement component vector d =
(
u0, v0, w0, ϑx, ϑy

)T at the panel mid-surface.
Here, (u0, v0, w0) are translations while

(
ϑx, ϑy

)
are rotations of the mid-surface. The large

deflection bending of the GPLRC cylindrical panel is modeled by a von Kármán-type
geometric nonlinear model. Then, the nonlinear strain fields are expressed as


εxx
εyy

2εxy

 = ε =


∂u0
∂x + w0

r + 1
2 w∗

,x
∂w
∂x

∂v0
∂y + 1

2 w∗
,y

∂w
∂y

∂u0
∂y + ∂v0

∂x + 1
2

(
w∗

,x
∂w
∂y + w∗

,y
∂w
∂x

)
+ z ·


∂ϑx
∂x
∂ϑy
∂y

∂ϑx
∂y +

∂ϑy
∂x

 = (AL + ANL)d (17)

{
γyz
γzx

}
= γ =

{
ϑy +

∂w0
∂y

ϑx +
∂w0
∂x − u0

r

}
= Asd (18)

with r = R + z ≈ R, where the (3 × 5) and (2 × 5) partial derivative matrices AL, ANL and
As are defined by

AL =

Ax 0 1/r z · Ax 0
0 Ay 0 0 z · Ay

Ay Ax 0 z · Ay z · Ax

 (19)

ANL =

0 0 w∗
,x Ax/2 0 0

0 0 w∗
,y Ay/2 0 0

0 0
(

w∗
,x Ay + w∗

,y Ax

)
/2 0 0

 (20)
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As =

[
0 0 Ay 0 1

−1/r 0 Ax 1 0

]
(21)

with Ax = ∂/∂x and Ay = ∂/∂y. Here, w∗
,x = ∂w∗/∂x and w∗

,y = ∂w∗/∂y denote the
derivatives of panel deflection which are assumed to be determined previously, as will be
given later. Then, the constitutive relations between stresses and strains are expressed as

σxx
σθθ

σxθ

 = σ =
E

1 − ν2

1 ν 0
ν 1 0
0 0 (1 − ν)/2


εxx
εθθ

2εxθ

 = D(AL + ANL)d (22)

{
τyz
τzx

}
= τ =

[
G 0
0 G

]{
γyz
γzx

}
= DsAsd (23)

3. Natural Element Approximation of Large Deflection Bending

In order to compute the geometrically nonlinear deformation of an FG-GPLRC porous
cylindrical panel using 2D NEM, the panel mid-surface ϖ is divided into a number of
nodes and Delaunay triangles, as shown in Figure 3. And the displacement field u(x, y, z)
is approximated as

uh

vh

wh


(x,y,z)

=
N

∑
I=1


u0
v0
w0


I

ψI(x, y) +
N

∑
I=1

z ·


ϑx
ϑy
0


I

ψI(x, y) (24)

using Laplace interpolation (L/I) functions ψI(x, y) [37,38] and the nodal displacement
vector dI =

(
u0, v0, w0, ϑx, ϑy

)T
I . Here, the subscripts I indicate the I-th node within the

NEM grid ℑC constructed with N nodes and M Delaunay triangles.
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The derivation of the L/I function and its calculation on the curved surface are difficult
and painstaking. This problem could be effectively relaxed by introducing a geometry
transformation TC from the physical NEM grid ℑC = [0, Rθ0]× [0, ↕] on the panel mid-
surface to a computational NEM grid ℑR = [0, θ0]× [0, ↕] on the rectangular plane the local
co-ordinates ζ1 and ζ2 such that

TC : (ζ1, ζ2) ∈ ℑR → (x, y) ∈ ℑC (25)
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Then, L/I functions ψI(x, s) are transformed to φI(ζ1, ζ2) on the rectangular NEM
grid, and the relations of x = R · ζ1 and y = ζ2 introduce the inverse Jacobi matrix J−1,
defined by

J−1 =

[
∂ζ1/∂x ∂ζ1/∂y
∂ζ2/∂x ∂ζ2/∂y

]
=

[
1/R 0

0 1

]
(26)

Furthermore, the partial derivatives Ax and Ay in Equations (13) and (14) on the panel
mid-surface are switched to

∂

∂x
= Ax =

1
R

∂

∂ζ1
=

1
R

A1,
∂

∂y
= Ay =

∂

∂ζ2
= A2 (27)

On the 2D planar NEM grid, according to the chain rule.
Introducing Equation (27) into Equations (19)–(21) leads to ÂL, ÂNL and Âs in which

Ax and Ay are replaced with A1 and A2:

T−1
C : AL, ANL, As → ÂL, ÂNL, Âs (28)

Then, the natural element approximation of the in-plane strains ε in Equation (11) and
the transverse shear (T/S) strains γ in Equation (18) arrives at

εh =
N

∑
I=1

(
AL + ÂNL

)
φIdI =

N

∑
I=1

(
BI

L + BI
NL

)
dI (29)

γh =
N

∑
I=1

Âs φIdI =
N

∑
I=1

BI
sdI (30)

However, the standard NE approximation (30) of the T/S strain γh using C0—L/I
functions φI may frequently suffer from shear-membrane locking [22,23]. One way to
overcome this problem is to indirectly interpolate the T/S strains by employing the notion
of the MITC3+ shell element [39], as described in the previous work [40]. According to this
concept, the NE approximation uh is re-interpolated using three-node bilinear triangular
basis functions [41], from which the element-wise locking-free T/S strains γh

e are evaluated
at six tying points [39] within each triangular element. And the resulting re-interpolated
T/S strains γh

e are expressed as
γh

e = B̂ebe (31)

with the (2 × 15) element-wise matrices B̂e(ξ, η, z, R) and the (15 × 1) element-wise nodal
vectors be = {be

1, be
2, be

3}.
Meanwhile, the Galerkin variational form for the geometrically nonlinear bending

analysis of FG-GPLRC porous cylindrical panels on resting on elastic foundation is derived
from the energy principle [42], given by

∫ h/2

−h/2

∫
ϖ

[
(δε)TDε + (δγ)TDsγ + δw

(
Kww − Ks∇2

ϖw
)]

dϖdz =
∫

ϖ
(δ d)Tq dϖ (32)

Introducing Equations (29) and (31) into Equation (29), together with the stress–strain
relations (22) and (23), one can obtain the nonlinear simultaneous equations given by[(

KL,σ +
M

∑
e=1

Ke
L,s + KL,ef

)
+ KNL

]
¯
d = F (33)

to solve the nonlinear nodal displacement
{¯

d I

}N

I=1
. The linear and nonlinear stiffness

matrices KL and KNL and the load vector F in Equation (33) are defined in Appendix A. Here,
Ke

L,s is the linear stiffness matrix derived using the notion of MITC3+ shell element [39].
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To solve the nonlinear matrix Equation (33), the incremental loading scheme and the
Newton–Raphson method are combined. In the uniform incremental loading, the load
vector F at load step k is calculated by

F = kF0, k = 1, 2, 3, · · · (34)

with F0 being a unit-step load vector. By simplifying KL + KL,e f + KNL as K, a nonlinear
functional ℵ(u) is defined by ℵ(u) = F − Ku. Then, the linearization of Taylor series
expansion of ℵ(u) becomes

ℵ(u + ∆u) ∼= ℵ(u) + ∂ℵ(u)
∂u ∆u

= F − Ku −
(

K + ∂KNL
∂u u

)
∆u

(35)

Here, the gradient ∂KNL/∂u of the nonlinear stiffness matrix KNL is obtained as
follows:

∂KNL
∂u

u =
∂KNL
∂w∗

,α

∂w∗
,α

∂w0
u, α = x, y (36)

By enforcing that ℵ(u + ∆u) in Equation (35) be zero, it is not hard to obtain the
following iterative matrix equations:(

K +
∂KNL

∂u

)n+1
∆un+1 = F − Knun, n = 0, 1, 2, · · · (37)

for step n + 1. The Newton–Raphson iteration (37) terminates when the following stop
criterion is satisfied: ∥∥∥un+1 − un

∥∥∥/
∥∥∥un+1

∥∥∥ ≤ εT (38)

which is defined in the Euclidean norm. And the solution un+1 at the iteration stage n is
updated as un+1 = un + ∆un+1.

4. Numerical Experiments
4.1. Benchmark Test

The developed nonlinear numerical method is verified with the simply supported
isotropic and FGM cylindrical panels under the uniform distributed load q0. Referring to
Figure 3, the simply-supported condition (SSSS) in FSDT is enforced as w0 = v0 = ϑy = 0
for sides 2⃝ and 4⃝ at θ = 0 and θ0 and w0 = u0 = ϑx = 0 for sides 1⃝ and 3⃝ at x = 0 and
L, respectively. The panel mid-surface is uniformly divided into an 11 × 11 NEM grid, and
the stiffness matrices and load vector in Equations (A5)–(A9) are numerically integrated
using seven Gauss points. The load q0 is uniformly divided into 400 increments and the
convergence tolerance εT in Equation (38) is set by 1.0 × 10−2, unless otherwise stated.

The first example is an isotropic cylindrical panel with the elastic modulus Em of
70.0 GPa and the Poisson’s ratio ν of 0.3. The geometry dimensions are R = 1.0 m,
b = L = 0.2 m and h = 0.01 m, and the porosity and the elastic foundation are not
considered. The central deflection wc and the uniform load q0 are calibrated as wc = wc/h
and q0 = q0b4/

(
Emh4), respectively. The convergence test was performed to the density of

NEM grid, as given in Table 1. The uniform 15 × 15 NEM grid shows a relative difference
wre f

c /h less than 5.0%, so this grid density is chosen for all of the numerical experiments in
this paper.
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Table 1. Convergence of the calibrated central deflection of isotropic cylindrical panel without elastic
foundation at the final step q0 = 45 (R = 1.0 m, b = L = 0.2 m, h = 0.01 m, SSSS).

Items 7 × 7 9 × 9 11 × 11 15 × 15 17 × 17

wc/h 1.2272 1.3238 1.4184 1.5027 1.5624
wre f

c /h(%) 21.454 15.271 9.217 3.821 -

The load–deflection plots are comparatively represented in Figure 4a with Shen
et al. [23], Maleki and Tahani [43] and Thang et al. [44]. An excellent agreement be-
tween the present method and three reference solutions is shown up to the nondimensional
load q0 = 45. A second example is a ZrO2/Al FGM cylindrical panel, and the zirconia
volume fraction fc(z) is governed by (0.5 − z/h)N . The geometry dimensions and the
properties of Al are same with the previous isotropic cylindrical panel, but the material
of ZrO2 is Ec = 151.0 GPa and ν = 0.3. The effective elastic properties of ZrO2/Al FGM
cylindrical panel are estimated using the Mori–Tanaka approach given in Appendix B. The
load–deflection curves for two different ceramic power-law indices N = 0.2 and 2.0 are
comparatively represented in Figure 4b with Shen and Wang [45] and Zhao and Liew [46].
One can clearly see that the present method fairly agrees with two reference solutions up
to q0 = 70 for N = 2.0. 70 for N = 0.2.
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Third example is a Si3N4/SUS304 FGM cylindrical panel on elastic foundation with
the ceramic power-law index of N = 5.0. The load–deflection and bending moment plots
in Figure 5 are computed for three different foundation stiffnesses:

(
Kw, Ks

)
= (0, 0),(

102, 0
)

and
(
102, 10

)
. The geometry dimensions are R = 0.2 m, b = L = 0.04 m and

h = 0.002 m, and the porosity is not considered. The properties of base materials are as
follows: Ec = 322.27 GPa and νc = 0.24 for Si3N4 and Em = 207.79 GPa and νm = 0.318
for SUS304, and the effective elastic properties are also determined according to the Mori–
Tanaka approach. The bending moment is defined by Mx =

∫ h/2
−h/2 zσxxdz and extracted at

the center of the panel, while two foundation stiffnesses are calibrated as Kw = Kwb4/Dm
and Ks = Ksb2/Dm with Dm = Emh3. A good agreement with Shen and Wang [45] is seen
for the load–central deflection plots, but the present method produces the load–bending
moment curves lower than those of Shen and Wang [45].



Symmetry 2024, 16, 224 10 of 20

Symmetry 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

  
(a) (b) 

Figure 4. Comparison of the load–deflection plots of cylindrical panels without elastic foundation 
(Ref_1: [23], Ref_2: [43], Ref_3: [44], Ref_4: [45], Ref_5: [46]): (a) isotropic; (b) zirconia/Al FGM. 

Third example is a Si3N4/SUS304 FGM cylindrical panel on elastic foundation with 
the ceramic power-law index of 05.N = . The load–deflection and bending moment plots 
in Figure 5 are computed for three different foundation stiffnesses: ( ) ( )00 ,K,K sw =  , 

( )0102 ,   and ( )10102,  . The geometry dimensions are m.Lb,m.R 04020 ===   and 
m.h 0020= , and the porosity is not considered. The properties of base materials are as 

follows: GPa.E c 27322=   and 240 .c =ν   for Si3N4 and GPa.E m 79207=   and 
3180 .m =ν  for SUS304, and the effective elastic properties are also determined according 

to the Mori–Tanaka approach. The bending moment is defined by dzzM
/h

/h xxx −=
2

2
σ  

and extracted at the center of the panel, while two foundation stiffnesses are calibrated as 

mww D/bKK 4=   and mss D/bKK 2=   with 
3hED mm =  . A good agreement with 

Shen and Wang [45] is seen for the load–central deflection plots, but the present method 
produces the load–bending moment curves lower than those of Shen and Wang [45].  

  
(a) (b) 

Figure 5. Functionally graded Si3N4/SUS304 cylindrical panels on elastic foundation (Ref. [45]): (a) 
load–deflection; (b) load–bending moment. Figure 5. Functionally graded Si3N4/SUS304 cylindrical panels on elastic foundation (Ref. [45]):
(a) load–deflection; (b) load–bending moment.

To obtain better numerical results, the iteration compensation parameter
β(n) =

√
1 + 4n/400 was introduced to the shear elastic modulus Ge f f in Equation (23) (see

also Equation (A10) in Appendix A) and the strains and stresses are enhanced by applying
the strain recovery scheme [32] and Reddy and Liu’s HSDT, given in Appendix A. The
introduction of β(n) was motivated that the variation in stiffness matrix KNL in Equation
(A8) along the nonlinear iteration requires the adaption of Ke

L,s in Equation (A6), which was
derived according to the MITC3+ shell element concept. The improvement results are given
in Figure 6a, where the combined use of β(n) and the higher-order shell theory provides
the load–bending moment curve, which is closer to the reference solution. Furthermore,
from Figure 6b, it is seen that the introduction of β(n) slightly reduces the magnitude of
nondimensional central deflection such that the curve moves towards the reference solution.
So, all of the load–deflection and load–bending moment plots in this paper are obtained by
applying the above-mentioned combined use.
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4.2. Nonlinear Behavior

Next, the large deflection bending of FG-GPLRC porous cylindrical panels on elastic
foundation is scrutinizingly examined by changing the associated parameters. The simply
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supported cylindrical panels subject to uniform pressure q0 is taken, and its geometric
dimensions are R = 10.0 m, b = L = 0.2 m and h = 0.01 m. The matrix is epoxy with
the elastic properties of Em = 3.0 GPa and vm = 0.34, and the effects of temperature and
humidity are not considered. According to Yasmin and Daniel [47] and Rafiee et al. [12],
the geometry dimensions of GPLs are lGPL = 2.5 µm, tGPL = 1.5 nm and wGPL = 1.5 µm
and the elastic properties are EGPL = 1.01 TPa and vGPL = 0.186, respectively.

Figure 7a,b represent the load–central deflection and bending moment plots of a
nonporous FG-U GPLRC cylindrical panel with the GPL mass fraction gGPL of 0.4% for three
different values of elastic foundation. Both the magnitude and nonlinearity of the central
deflection and bending moment uniformly decrease proportionally to the foundation
stiffness. The reason is because the deflection is suppressed when the panel is rested on the
elastic foundation and the suppression intensity becomes larger as the foundation stiffness
increases.
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Figure 8a,b comparatively represent the load–central deflection and load–bending
moment plots for four different GPL distribution patterns when the foundation stiffness is(
Kw, Ks

)
=
(
102, 0

)
. In the load–deflection curves, FG-O produces the highest level while

FG-X exhibits the lowest one, because GPLs are concentrated at the mid-surface in FG-O,
while they are at the top and bottom surfaces in FG-X. The panel stiffness becomes larger as
GPLs are biased far from the mid-surface. Meanwhile, the order in the magnitude of bend-
ing moment is almost reversed, because the bending moment magnitude is proportional to
the panel stiffness, contrary to the central deflection.

The influence of GPL total mass on FG-GPLRC cylindrical panel on elastic foundation
was analyzed and the plots are comparatively represented in Figure 9a,b. The central
deflection and its nonlinearity decrease in proportion to gGPL, because the panel stiffness
becomes larger as the GPL amount increases. On the hand, the bending moment uniformly
increases with the increase in the GPL amount, since the elastic modulus increase of the
panel is superior to the central deflection decrease according to the increase in GPL amount.
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Next, the nonlinear bending behaviors of FG-GPLRC cylindrical panels resting on
elastic foundation are analyzed. Figure 10a represents the effect of porosity distribution
on the load–deflection curve of FG-Λ GPLRC cylindrical panel. Referring to the previous
work [18], the porosity stabilization parameter α in Equation (A9) is used as α = 1 for PD1,
α = 1/

(
1 + 10e2

0
)2 for PD2 and α = 1/

(
1 − e2

0
)2 for PD3, respectively. The occurrence of

porosity increases the central deflection, and porosity distribution 3 (i.e., uniform distri-
bution) produces larger central deflection than the center- (PD1) and outer-biased (PD2)
porosity distributions. This is because the porosity decreases the panel stiffness and the
total amounts of pores in PD1 and PD2 are less than that of PD3 by 2/π times (by vertical
integration of Equations (10)–(12)). On the other hand, this trend is completely reversed for
the load–bending moment curves, as shown in Figure 10b. The reason is the same with the
previous Figure 9b for the influence of the GPL total mass.
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The influence of porosity parameter e0 (i.e., the porosity intensity) is also analyzed,
and the results are given in Figure 11a,b for four different porosity parameters. As is
expected, the central deflection uniformly increases proportionally to the value of e0, while
the bending moment monotonically decreases proportional to e0. It is, of course, the
panel stiffness is reversely proportion to the porosity intensity. The axial stress σxx is
extracted from the center of the panel at the final load step q0 = 800 and calibrated as
σxx = σxxh2/

(
q0b2). Figure 12a shows the thicknesswise axial stress distributions for four

different GPL distributions when the PD3 with e0 = 0.6 is used. The linear variation is
seen for FG-U because GPLs are uniformly distributed, while FG-O and FG-X show almost
antisymmetric stress distributions to each other because GPLs are center- and outer-biased
in FG-O and FG-X. Meanwhile, FG-Λ leads to a quadratic variation with the peak at the
bottom because GPLs in FG-Λ have a linear variation through the thickness with the peak
at the bottom. The combination of a linear variation in axial strain and a linear variation
in elastic modulus leads to a quadratic variation in σxx. Figure 12b shows the influence of
porosity distribution on the axial stress distribution, where PD1 and PD2 show an almost
antisymmetric distribution because pores are center- and outer-biased in PD1 and PD2,
respectively, differing from the uniform distribution in PD3. The combination of a linear
variation in axial strain and center- and outer-biased porosity distributions leads to outer-
and center-biased thicknesswise stress distributions, respectively.

Next, the nonlinear bending of FG-GPLRC porous cylindrical panels on elastic foun-
dation is analyzed when GPLs are replaced with CNTs by keeping the matrix and the
simulation parameters unchanged. The CNTs are (10,10) single-walled [48] and their or-
thotropic properties are given in Table 2. Using the modified rule of mixtures, the effective
elastic properties FG-CNTRC cylindrical panels are estimated as (1, 2, 3 = x, y, z)

E1 = η1ECNT
1 VCNT + VmEm,

η2

E2
=

VCNT

ECNT
2

+
Vm

Em
(39)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm
, ν12 = VCNTνCNT

12 + Vmνm (40)

with the CNT volume fraction VCNT (= 1 − Vm) and the CNT efficiency parameters [49]
for reflecting the macro–micro interaction effect between the matrix and CNTs.
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Table 2. Material properties of (10,10) single-walled CNT.

Young’s Moduli (GPa) Poisson’s Ratio Shear Moduli (GPa)

Ecnt
1 Ecnt

2 Ecnt
3 νcntT

12 νcnt
23 νcnt

31 Gcnt
12 Gcnt

23 Gcnt
31

5646.6 7080.0 - 0.175 - - 1944.5 - -

Figure 13a,b compare the load–central deflection and load–bending moment plots
between GPL and CNT for the same volume fractions 0.12 and 0.28, respectively. The axis
of CNTs is aligned in the x-direction. The foundation stiffness is set by

(
102, 0

)
and the

GPL and porosity distributions are FG-O and PD1 with e0 of 0.3. The central deflection and
bending moment of GPLs are seen to be smaller than CNTs by at least 3.5 and 2.1 times,
respectively. Thus, it is found that GPLs are more effective than CNTs in aspects of both the
deflection and bending moment.
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Figure 13. Comparison between GPLRC and CNTRC porous FG-O cylindrical panels: (a) load–
deflection; (b) load–bending moment.

Figure 14a compares the thicknesswise axial stress distributions between GPL and CNT
at the half-iteration stage of q0 = 400 (i.e., iteration number n is 200) where the sine-like
stress distributions are produced by the combination of the center-biased GPL and porosity
distributions in FG-O and PD1. It is clearly seen that the stress level of GPL is significantly
lower than that of GPL because the strength per unit volume of GPL is higher than that of
CNT. Meanwhile, Figure 14b compares the iteration histories of axial stress distributions
between GPL and CNT. It is clearly seen that the axial stress of CNT is increased larger than
GPL along the nonlinear iteration. Figure 15a,b show the dependence of the load–bending
moment plot and the axial stress distribution on the CNT alignment, respectively. The
bending moment Mx and the axial stress σxx become significantly smaller when the CNT
axis is changed from 00 to 900 (i.e., from the circumferential–direction alignment to the
shell–axis alignment). However, it was seen that the variation in central deflection to the
change in CNT axis alignment is not remarkable, even though not represented. Meanwhile,
in the shell–axis alignment, the bending moment My and the axial stress σyy show almost
the same levels with Mx and σxx in the circumferential–direction alignment.
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5. Conclusions

The geometrically nonlinear bending of FG-GPLRC porous cylindrical panels resting
on an elastic foundation was scrutinizingly investigated by developing a reliable and
effective nonlinear numerical method. The numerical method was based on 2D NEM and a
geometry transformation between the panel mid-surface, and a 2D regular planar NEM grid
and a stabilized locking-free scheme were introduced. The nonlinear displacement field was
expressed by a FSDT with the von Kármán nonlinearity. The nonlinear numerical results
were enhanced by combining the stabilization parameter and the HSDT. The proposed
numerical method was justified from the benchmark experiments. The nonlinear bending
behaviors of FG-GPLRC cylindrical panels were parametrically investigated in terms of the
load–deflection and bending moment plots and the thicknesswise axial stress distributions.
The numerical results provide the following major findings:

• The reliability of the developed nonlinear numerical method was justified through
isotropic and two metal–ceramic FGM cylindrical panels such that both the load–
deflection and bending moment plots agree well with the representative reference
solutions, even at coarse grids.

• The introduction of β(n) and the higher-order shell theory enhance the nonlinear
bending results such that both the load–central deflection and bending moment plots
become closer to the reference solutions.

• The large deflection of FG-GPLRC cylindrical panels on elastic foundation uniformly
decreases proportionally to both the foundation stiffness and the GPL amount. Mean-
while, the nonlinear bending moment does also decrease with the former, but increases
with the latter.

• In the load–deflection curve, FG-O and PD3 show the highest level, while FG-X and
PD1 display the lowest one. But this relative order is reversed in the load–bending
moment plot.

• Regarding the porosity, the large deflection uniformly increases but the resulting
bending moment monotonically decreases as the porosity parameter increases. And
the thicknesswise axial stress distribution is diversely affected by the combination of
GPL and porosity distributions.

• The nonlinear central deflection, axial stress and bending moment of FG-GPLRC
porous cylindrical panels on elastic foundation remarkably increase when GPLs are
replaced with CNTs, for the same volume fraction.

The current study was performed with the temperature-independent material prop-
erties and the spatially varying porosity distributions, but the temperature dependence
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and the porosity variation during operation would be worthwhile, and which represents a
subject that deserves future work.
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Appendix A. Higher-Order Theory and Linear and Nonlinear Matrices

According to Reddy and Liu’s higher-order shell theory [31], the displacement field is
expressed by

u
v
w


(x,y,z)

=


u0
v0
w0


(x,y)

+ z ·


ϑx
ϑy
0


(x,y)

+ { f (z)− z} ·


ϑx + ∂w0/∂x
ϑy + ∂w0/∂y

0

 (A1)

with f (z) − z = −4z3/3h2. Then, the in-plane strains εHT and the T/S strains γHT are
computed as

εHT = ε + { f (z)− z} ·


w0,xx + ϑx,x
w0,yy + ϑy,y

ϑx,y + ϑy,x + 2w0,xy

, γHT =
d f
dz

· γ (A2)

with ε in Equation (17) and γ in Equation (18). Laplace interpolation functions φI(ζ1, ζ2) in
Figure 3 are C0—continuous functions, so their second derivatives are not defined. Thus,
in this study, the derivative terms w0,xx, w0,xy, w0,yy, ϑx,x, ϑx,y and ϑy,y in Equation (A2) are
alternatively calculated using the strain recovered derivatives [32]. For example,

w0,xx = w̃0,x ·
N

∑
I=1

∂ψI(x, y)
∂x

(A3)

with w̃0,x being the strain recovered value.
The linear and nonlinear stiffness matrices KL and KNL the load vector F in Equation (33)

are defined by

KL,σ =
∫ h/2

−h/2

∫
ϖ

BT
LDBL dϖdz (A4)

Ke
L,s =

∫ h/2

−h/2

∫
ϖe

B̂T
e D̂sB̂e dϖdz (A5)

KL,ef =
∫

ϖ

[
K1ΦT

wΦw + K2(∇ϖΦ · ∇ϖΦ)
]

dϖ (A6)

KNL =
∫ h/2

−h/2

∫
ϖ

[
BT

LDBNL + BT
NLDBL + BT

NLDBNL

]
dϖdz (A7)

F =
∫

ϖ
ΦTq dϖ (A8)

with
¯
d = [d1, d2, · · · , dN ], B = [B1, B2, · · · , BN ], Φ = [Φ1, Φ2, · · · , ΦN ],

ΦJ = diag
[
φJ , φJ , φJ , φJ , φJ

]
, Φw = [Φw1, Φw2, · · · , ΦwN ] and ΦwJ = diag

[
0, 0, φJ , 0, 0

]
.

Here, D̂s is the modified shear modulus matrix defined by

D̂s =
α(e0) · β(n)
1 + (Le/h)2

[
Ge f f 0

0 Ge f f

]
(A9)
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with the largest side length Le of Delaunay triangles, a porosity stabilization parame-
ter α [49] and an iteration compensation parameter β(β ≥ 0). The values of these two
parameters are determined through the preliminary experiments.

Appendix B. Mori–Tanaka Approach

The Mori–Tanaka approach for estimating the effective elastic properties of metal–
ceramic functionally graded composites taken for the numerical experiments are summa-
rized. The effective bulk and shear moduli Ke f f and Ge f f are determined according to

Ke f f − Km

Kc − Km
=

Vc(z)
1 + [1 − Vc(z)] fK

, fK =
Kc − Km

Km + 4Gm/3
(A10)

Ge f f − Gm

Gc − Gm
=

Vc(z)
1 + [1 − Vc(z)] fG

, fG =
Gc − Gm

Gm + f1
(A11)

where the subscripts m and c indicate the metal and ceramic, respectively, and f1 is

f1 =
Gm[9Km + 8Gm]

6[Km + 2Gm]
(A12)

Then, the effective elastic modulus Ee f f and Poisson’s ratio νe f f are determined using

Ee f f =
9Ke f f Ge f f(

3Ke f f + Ge f f

) (A13)

νe f f =
3Ke f f − 2Ge f f

2
(

3Ke f f + Ge f f

) (A14)
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