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Abstract: Deep neural networks are effectively utilized for the instance segmentation of muck
images from tunnel boring machines (TBMs), providing real-time insights into the surrounding
rock condition. However, the high cost of obtaining quality labeled data limits the widespread
application of this method. Addressing this challenge, this study presents a semi-symmetrical, fully
convolutional masked autoencoder designed for self-supervised pre-training on extensive unlabeled
muck image datasets. The model features a four-tier sparse encoder for down-sampling and a
two-tier sparse decoder for up-sampling, connected via a conventional convolutional neck, forming a
semi-symmetrical structure. This design enhances the model’s ability to capture essential low-level
features, including geometric shapes and object boundaries. Additionally, to circumvent the trivial
solutions in pixel regression that the original masked autoencoder faced, Histogram of Oriented
Gradients (HOG) descriptors and Laplacian features have been integrated as novel self-supervision
targets. Testing shows that the proposed model can effectively discern essential features of muck
images in self-supervised training. When applied to subsequent end-to-end training tasks, it enhances
the model’s performance, increasing the prediction accuracy of Intersection over Union (IoU) for
muck boundaries and regions by 5.9% and 2.4%, respectively, outperforming the enhancements made
by the original masked autoencoder.

Keywords: intelligent TBM tunneling; real-time muck analysis; self-supervised training; instance
segmentation; fully convolutional masked autoencoder; HOG descriptor

1. Introduction

Tunnel boring machines (TBMs) are essential in modern tunnel engineering, appreci-
ated for their seamless construction process, outstanding boring efficiency, and relatively
safe working conditions. Nonetheless, TBMs encounter several challenges in practical
applications. Firstly, the efficiency and stability of TBM operations can be greatly compro-
mised in the presence of complex and unpredictable surrounding rock. Secondly, the high
integration level of TBM processes necessitates advanced technical skills and experience
from operators, where improper handling could not only impair boring efficiency but also
risk mechanical failures or accidents. Consequently, many researchers are now turning
their attention to the development of automated and intelligent technologies for TBM
operations [1–5].

The core idea of TBM intelligent tunneling technology is to collect real-time, multi-
faceted information, such as the surrounding rock type, environmental conditions, and
mechanical states, during the TBM advancement process. Subsequently, an intelligent
decision-making model integrates this information to control the TBM, aiming to achieve
efficient, safe, and automated tunnel construction [1]. Among these, the real-time percep-
tion technology of the surrounding rock is crucial. Accurate perception of the surrounding
rock is a prerequisite for the intelligent decision-making model to produce reasonable
results. Due to the requirement for real-time performance, traditional drilling test methods
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cannot be applied to intelligent tunneling; instead, non-direct detection methods that utilize
mediums such as vibration [6], acoustics [7], and electromagnetism [8,9] have become a
research focus. In addition, the analysis of muck chip morphology and gradation on the
TBM conveyor belt through Computer Vision (CV) technology presents a viable technical
route for this real-time perception.

During the TBM excavation process, the cutters induce the fracturing of the rock mass
via wedging and squeezing, forming blocky or granular muck. The muck is subsequently
transported out of the tunnel using conveyor belts. The morphology of the muck is closely
related to the surrounding rock conditions [10–12]. Therefore, the characteristics of the
surrounding rock can be inferred by capturing images of the muck on the conveyor belts
and analyzing its shape, gradation, and other features. The method of analyzing the
morphology of geomaterials through image recognition has been widely studied in the
past few decades. Early studies typically employed Fourier transforms, Gabor filtering,
and wavelet transforms to extract the primary features from digital images of geotech-
nical materials [13,14]. These were followed by rough estimations of particle size using
classification algorithms like Support Vector Machine (SVM). An alternative approach
seeks to directly delineate the contours of geotechnical particles by employing traditional
image segmentation algorithms, including thresholding and watershed methods [15–17].
In recent years, the rapid advancement of deep learning technology has led to methods that
use convolutional neural networks (CNNs) or vision transformers (ViTs) for geotechnical
material image segmentation, which have achieved results that are far superior to tradi-
tional methods [18–22]. However, such neural network models usually require end-to-end
training. The major bottleneck is their reliance on a large quantity of high-quality annotated
data as training samples. Given the absence of large-scale public datasets, the cost of
manually annotating data is prohibitively high, significantly limiting the development of
this field.

To address the lack of annotated data, the adoption of self-supervised pre-training
coupled with end-to-end fine-tuning presents a viable solution. Self-supervised training
involves generating pseudo-labels directly from the input data to guide the learning pro-
cess, thus allowing the model to train on a substantial volume of unlabeled data. While
self-supervised training is well-established in Natural Language Processing (NLP), its
progress in CV has been comparatively slow. Initial self-supervised training in CV fo-
cused on tasks like denoising and image restoration, employing generative autoencoders
to reconstruct missing data from incomplete images and learn their latent features [23,24].
This approach, which involves artificially removing parts of the image information and
learning the image features through generative tasks, can be categorized as masked image
modeling (MIM) [25,26]. However, in the past decade, another CV self-supervised learning
framework—the joint-embedding method, which involves learning features by aligning the
embedded representations of augmented views of the same image through a discriminative
task—has replaced MIM as the research focus of that time [27–29]. Following the success of
masked self-supervised training in NLP [30], some studies [31,32] have attempted to adapt
this approach to CV tasks, yielding superior results to joint-embedding methods and reviv-
ing the prominence of MIM. With the introduction of the masked autoencoder (MAE) [33]
and SimMIM [34], the MIM paradigm has evolved and is now widely applied to various
downstream tasks [35–37], becoming a leading method in CV self-supervised training. This
study proposes a self-supervised training method for TBM muck chip segmentation tasks
based on the MAE paradigm, aiming to reduce reliance on annotated data, enhance the
accuracy of the segmentation model, and further the development of real-time perception
of surrounding rock conditions and intelligent excavation technology for TBMs.

1.1. Challenges in TBM Muck Segmentation Task

Muck segmentation presents a highly challenging task. As depicted in Figure 1a, an
image of muck chips is captured on the TBM conveyor belt. The rapid movement of muck
through the TBM’s conveyor system poses significant challenges for image acquisition.
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Moreover, the construction site conditions, often compromised by dust and mist, frequently
reduce the clarity of captured images. This results in unclear boundaries of the muck
chips, complicating their identification. Additionally, as illustrated in Figure 1b (which
corresponds to the green frame in Figure 1a), muck chips tend to accumulate naturally,
with independent chips often sitting tightly together or overlapping, creating complex
textures and structures in the image. These conditions make it difficult for traditional
image segmentation algorithms to yield satisfactory results. However, the bodies of muck
chips generally possess relatively simple geometric topologies and are limited in size
within images (as indicated by the dark yellow frame in Figure 1a), suggesting that muck
segmentation requires only low-order semantic features from specific local image areas,
without necessitating an overall understanding of the image or long-range dependencies.
Furthermore, Figure 1c displays local images within the purple and blue frames from
Figure 1a and their rotated counterparts. It can be observed that any local part of the
muck image exhibits self-similarity when translated or rotated, indicating that CNN can
effectively extract features from muck images.

Symmetry 2024, 16, x FOR PEER REVIEW 3 of 26 
 

 

1.1. Challenges in TBM Muck Segmentation Task 
Muck segmentation presents a highly challenging task. As depicted in Figure 1a, an 

image of muck chips is captured on the TBM conveyor belt. The rapid movement of muck 
through the TBM’s conveyor system poses significant challenges for image acquisition. 
Moreover, the construction site conditions, often compromised by dust and mist, 
frequently reduce the clarity of captured images. This results in unclear boundaries of the 
muck chips, complicating their identification. Additionally, as illustrated in Figure 1b 
(which corresponds to the green frame in Figure 1a), muck chips tend to accumulate 
naturally, with independent chips often sitting tightly together or overlapping, creating 
complex textures and structures in the image. These conditions make it difficult for 
traditional image segmentation algorithms to yield satisfactory results. However, the 
bodies of muck chips generally possess relatively simple geometric topologies and are 
limited in size within images (as indicated by the dark yellow frame in Figure 1a), 
suggesting that muck segmentation requires only low-order semantic features from 
specific local image areas, without necessitating an overall understanding of the image or 
long-range dependencies. Furthermore, Figure 1c displays local images within the purple 
and blue frames from Figure 1a and their rotated counterparts. It can be observed that any 
local part of the muck image exhibits self-similarity when translated or rotated, indicating 
that CNN can effectively extract features from muck images. 

 
Figure 1. Characteristics of TBM muck image. (a) A sample muck image collected during TBM 
advancing. (b) The muck chips may present unfavorable characteristics such as the following: ① 
Invisible boundary; ② Overlapping; ③ Confusing texture. (c) The local image indicated by the blue 
and violet boxes, with the dashed boxes showing the results after rotation. (d) Muck chip 
annotations in blue box. 

1.2. Innovation of Our Work 
In our current work, we have created a comprehensive dataset of TBM muck images 

and developed a segmentation algorithm called MuckSeg. This algorithm employs a fully 

Figure 1. Characteristics of TBM muck image. (a) A sample muck image collected during TBM
advancing. (b) The muck chips may present unfavorable characteristics such as the following: 1⃝
Invisible boundary; 2⃝ Overlapping; 3⃝ Confusing texture. (c) The local image indicated by the blue
and violet boxes, with the dashed boxes showing the results after rotation. (d) Muck chip annotations
in blue box.

1.2. Innovation of Our Work

In our current work, we have created a comprehensive dataset of TBM muck images
and developed a segmentation algorithm called MuckSeg. This algorithm employs a fully
convolutional neural network trained end-to-end, complemented by post-processing algo-
rithms. However, end-to-end training demands a vast quantity of high-quality, annotated
data. The segmentation targets in muck images are densely packed; for example, the area
depicted in Figure 1d contains 35 muck chips of various sizes and irregular shapes, requir-
ing annotations with more than 500 vertices to delineate their contours—this annotation
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process is highly labor-intensive. The steep cost of annotation substantially restricts the
amount of data available for end-to-end training. Conversely, acquiring unannotated raw
muck images is relatively straightforward. Hence, this study introduces a semi-symmetrical,
fully convolutional masked autoencoder, named MuckSeg-SS-FCMAE, aiming to improve
MuckSeg’s performance. The MuckSeg-SS-FCMAE features two key innovations:

1. The lightweight decoder of the original MAE [33] has been replaced by a multi-tier
sparse convolutional decoder. This modification permits the training errors brought
forward by the detailed spatial location of low-level features in images to be accurately
calculated and back-propagated through the decoder, thus improving the encoder’s
feature extraction capabilities.

2. Histogram of Oriented Gradients (HOG) descriptors [38] and labels generated through
Gauss–Laplace filtering of the original image—referred to as “Laplacian features”
henceforth—have been incorporated as additional self-supervision targets. These
enhancements furnish the model with extra training signals for contrast relationships
and boundary features, preventing convergence on trivial solutions.

The MuckSeg-SS-FCMAE has been trained on a dataset containing over 40,000 un-
labeled muck images. We conducted detailed experiments on its image reconstruction
capability, feature extraction ability, and the improvement in instance segmentation task
accuracy when transferred to downstream end-to-end training tasks. These experiments
demonstrated the effectiveness of the semi-symmetric decoder design and the introduction
of additional self-supervision targets for muck segmentation tasks.

1.3. Terms and Abbreviations

For better readability, a summary of the terms and abbreviations used in this article is
compiled in Table 1, and they will not be reiterated in the following text.

Table 1. List of terms and abbreviations.

Abbreviation Full Phrase Description

BCE Binary Cross-Entropy A loss function for binary classification problems

BERT Bidirectional Encoder Representations
from Transformers

A self-supervised training framework for natural
language processing

BEiT Bidirectional Encoder representation from
Image Transformers

A BERT-like self-supervised training framework for
image processing

CNN Convolutional Neural Network A class of neural networks centered around
convolutional operations

ConvNeXt – A modern CNN design concept, which also refers to a specific
convolutional module structure

CV Computer Vision A field of study that enables computers to understand visual
information from the world

dVAE Discrete Variational Autoencoder A type of generative model that learns to encode data into a
discrete latent space

FCMAE Fully Convolutional Masked
Autoencoder

An alternative version of MAE which uses CNN instead of
transformer as the encoder

HOG Histogram of Oriented Gradients A classical image feature descriptor

IoU Intersection over Union A metric used to evaluate the conformity of two sets of
spatial positions

MAE Masked Autoencoder A self-supervised training framework for image processing
which directly regresses the masked pixels

MIM Masked Image Modeling A category of algorithms that learn image features by artificially
removing parts of the information in images
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Table 1. Cont.

Abbreviation Full Phrase Description

MLP Multi-Layer Perceptron A basic neural network structure

MSE Mean Squared Error A loss function for regression problems

NLP Natural Language Processing A branch of artificial intelligence that focuses on the interaction
between computers and humans through natural language

ROI Region Of Interest A selected subset of samples within an image dataset

SimMIM – Another masked image modeling method that is very similar to
the MAE

TBM Tunnel Boring Machine A piece of highly integrated heavy machinery equipment used
for tunnel construction

UCS Uniaxial Compressive Strength
A measure of the maximum stress that a rock specimen can

withstand under uniaxial loading conditions before
failure occurs

ViT Vision Transformer A transformer-based neural network architecture for
image processing

2. Materials and Methods
2.1. Fundamentals of Fully Convolutional Masked Autoencoders

Masked autoencoders, a variant of masked image modeling methods, exhibit two
main characteristics:

1. MAEs obscure a substantial portion (typically over 60%) of the input image on a
patch-by-patch basis. A patch is a small, contiguous area within the image, typically
measuring 16 × 16 pixels in size. This is the most salient feature distinguishing MAEs
from denoising autoencoders. Such masking strategy prevents the model from merely
replicating adjacent pixels in the masked areas to reconstruct the image, thereby
compelling the model to capture more abstract image features.

2. MAEs generate training signals by comparing the pixel value differences between the
model’s output and the original input image. In contrast, BeiT [31] initially pre-trains a
dVAE [39] to map image patches to visual tokens and to build a codebook. This process
turns the reconstruction of masked areas into a classification task over the codebook.
However, experiments using MAEs have demonstrated that the tokenization step is
not essential for pre-training in Computer Vision [33].

The original MAE structure [33], as depicted in Figure 2, comprises a ViT encoder and
a standard transformer decoder. The input image is partitioned into uniform patches of
16 × 16 pixels, and only 25% of these patches are provided to the encoder to derive the
masked feature map. A trainable vector, referred to as the ‘mask token’, substitutes the
feature maps at the masked locations. Once combined with positional embeddings, these
encoder-derived feature maps, along with the mask tokens, are reorganized by position to
form a complete feature map that matches the input image’s dimensions. This full feature
map is then decoded and reconstructed into an output image that retains the original size
and channel count via a linear head.

In the original MAE, only the unmasked portions of the input image are fed into the
encoder. However, in downstream tasks, the encoder is presented with the entire image.
The inherent advantage of the transformer architecture [40]—its ability to process variable-
length sequence inputs—makes the implementation of MAE particularly straightforward.
However, CNNs must maintain the image’s two-dimensional structure during convolution
operations. Masking the input image disrupts this structure, posing challenges to the
implementation of a similar process in CNNs. As illustrated in Figure 3a, convolution
operations perform weighted summations across all data within the sliding window,
traversing every possible spatial position of the input data. This approach is problematic
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when applied to masked images for two reasons: firstly, the masked sections still contribute
to the computational cost despite their calculations being redundant. Secondly, these
masked parts, initially zero values, may become non-zero following convolution operations,
thus disrupting the masking structure. Repeatedly zeroing out the masked areas after each
convolution can mitigate this issue, but it adds computational burden and fails to address
the initial shortcoming.
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To address this issue, the literature [41] has introduced a fully convolutional version of
the MAE that utilizes sparse convolutions [42]. As depicted in Figure 3b, sparse convolution
overlooks zero-value pixels at the operator level when an image is represented in a sparse
format. As a result, the computation excludes the masked regions of the image, ensuring
that the integrity of the masking structure is maintained after the operation. By incorporat-
ing sparse convolutions and substituting the transformer block with a ConvNeXt block [41],
FCMAE replicates the effects of the original MAE using an entirely CNN-based architecture.

2.2. Design of Semi-Symmetrical, Fully Convolutional Masked Autoencoders
2.2.1. Challenges Associated with the Original MAE in Muck Segmentation Tasks

The original MAE and the SimMIM both utilize an asymmetric architecture, featuring
a powerful encoder paired with a lightweight decoder. This configuration emphasizes
learning within the encoder during training and ensures the model’s extensive adaptability
to diverse downstream tasks, while also curtailing the total parameter count and enhancing
training efficiency. Nonetheless, for TBM muck chip image segmentation a lightweight
decoder might not be ideal. Muck chip images are predominantly single-channel grayscale,
containing sparse high-level semantic content. Instead, crucial information resides in
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the medium and low-level geometric features, such as the muck chips’ shape, size, and
edges. The lightweight decoder attempts to reconstruct the image straight from the high-
dimensional feature vectors of individual patches but without the progressive up-sampling
present in standard image segmentation decoders, thus it may fail to preserve the essential
spatial relationships between pixels in each patch—relationships that are vital for accurate
muck segmentation.

On the other hand, the MAE generates a training signal by calculating the pixel-
level MSE loss between the reconstructed and original images within the masked region.
However, for grayscale images, the pixel-level MSE loss can inadvertently steer the model
towards trivial solutions. For instance, Figure 4 displays three 5 × 5 grayscale images, where
each grid represents a pixel, with the numbers signifying the pixel values corresponding
to their shades of gray. Although Figure 4b seems visually closer to Figure 4a its MSE is
surprisingly higher than the MSE between Figure 4b and a uniform gray image (Figure 4c).
More problematic is that each of these trivial solutions, like the one shown in Figure 4c,
represents a local minima. This issue could lead the model to merely reconstruct basic
monochromatic images or textures with clear repetitive patterns, failing to capture finer
local nuances.
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2.2.2. Self-Supervision Target

To address the aforementioned issue of trivial solution, MuckSeg-SS-FCMAE employs
self-supervision objectives that differ from those of the original MAE, which include the
following:

1. The input image after 4 × down-sampling.
2. The HOG feature map of the input image. The HOG descriptor, a feature descriptor

widely employed in Computer Vision tasks, encapsulates local shape and texture
information by calculating the distribution of gradient orientations within localized
sections of an image. As depicted in Figure 5, the MuckSeg-SS-FCMAE computes HOG
descriptors using 4 × 4 pixel cells across 8 directions. Block normalization is executed
over an 8 × 8 pixel block using a 4 × 4 pixel stride, with the L2-Hys normalization
method set to a threshold of 0.4. The block-level HOG descriptors are then reorganized
into a cell-wise format, as illustrated in Figure 5b. Owing to the potential quadruple
utilization of each cell’s HOG descriptor during normalization, this process yields
4 distinct sets of HOG feature vectors with dimensions (W/4) × (H/4) × 8, where
W and H represent the width and height of the input image in pixels, respectively.
These sets are subsequently concatenated to form a comprehensive HOG feature map
with dimensions (W/4) × (H/4) × 32, which serves as the supervision target, as
demonstrated in Figure 5c. It is important to note that the HOG feature vectors at the
image’s periphery—specifically at the corners and edges—are only employed once or
twice in block normalization and are, therefore, replicated to complete the feature map.

3. Boundary features extracted via Gauss–Laplace filtering. The Laplacian filter, a second-
order derivative filter, is employed to enhance the edge features in images. Due to
its sensitivity to noise, it is typically combined with Gaussian filtering to form Gauss–
Laplace filtering. As depicted in Figure 6, the process begins with the input image
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being blurred with a Gaussian filter with a kernel size of 13. This step is followed
by the application of a Laplacian filter with a kernel size of 5, after which the image
is normalized. The filtered image is then binarized using a threshold of 0.8, and
morphological opening operations are conducted to eliminate noise spots. Finally, the
image is down-sampled by a factor of 4 to produce a binary image with dimensions
(W/4) × (H/4) × 1, which is used for supervision.
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2.2.3. Network Structure

The overall structure of MuckSeg-SS-FCMAE is depicted in Figure 7, comprising a
stem block, a sparse encoder, a dense neck, and a sparse decoder. The stem block maps
pixel location information from the input image into high-dimensional feature vectors, as
detailed in Figure 8. Initially, the image is mapped to a W × H × 32 feature map via a
point-wise convolution layer. To reduce feature dimension similarity, the 32-dimensional
features are divided into 9 uneven groups, processed by network units (Table 2), and
reassembled into a W × H × 32 feature map. These features undergo normalization via
LayerNorm and are outputted through an MLP.

Table 2. Components of stem block in MuckSeg-SS-FCMAE.

Network Units Kernel Size Padding Number of Feature
Dimensions

Identity – – 1
Maximum pooling 3 × 3 1 × 1 2
Average pooling 3 × 3 1 × 1 1

Depth-wise convolution 3 × 3 1 × 1 8
Depth-wise convolution 5 × 5 2 × 2 4
Depth-wise convolution 7 × 7 3 × 3 4
Depth-wise convolution 9 × 9 4 × 4 4

Depth-wise convolution × 2 3 × 3 1 × 1 4
Depth-wise convolution × 2 5 × 5 2 × 2 4
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Following this, the feature map is segmented into 32 × 32 pixel patches, with roughly
60% randomly masked, converted to a sparse format and input into the encoder. The
encoder utilizes a conventional 4-tier pyramidal structure, where each tier comprises
several stacked ConvNeXt blocks, a LayerNorm layer, and a convolutional layer with a
2 × 2 kernel size and stride for down-sampling while doubling the feature dimension.
The encoder is configured using 3, 9, and 3 ConvNeXt blocks stacked for the 1st, 2nd,
and 3rd/4th tiers, respectively. Experimentation revealed that this configuration more
effectively extracts features critical for the muck segmentation task. The encoder outputs a
512-dimensional sparse feature map that only contains the unmasked regions, which has
been down-sampled by a factor of 16.

Subsequently, the sparse feature map is transformed into a dense representation and
compressed into a feature map with the same dimensions as the mask token, which, in our
model, is precisely 512. Then, the masked regions within the feature map are substituted
with a 512-dimensional mask token. With the encoder’s 16-fold down-sampling, each
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pixel in this feature map represents a 16 × 16 pixel patch of the original image, with
the mask token embodying the semantics of a masked patch. The feature map, now
integrated with mask tokens, passes through ConvNeXt blocks in the neck, enabling
standard convolution operations and producing a (W/16) × (H/16) × 512 feature map.
This process allows masked regions to gain information from unmasked areas. Within the
entire MuckSeg-SS-FCMAE framework, the neck serves as the sole gateway for information
exchange between masked and unmasked regions, assuming the role of the decoder in the
original MAE. To maintain conceptual consistency with the general notion of an encoder–
decoder structure, and to differentiate from the encoder and decoder that utilize sparse
convolutional operators, this section is referred to as the “dense neck”.

Following the interaction, the feature map is then fed into the decoder. The MuckSeg-
SS-FCMAE decoder employs an inverted pyramid design for semantic segmentation,
aiming to gradually restore image details by enhancing feature map resolution. However,
the decoder features only 2 tiers, with an up-sampling rate of 4, hence this model is termed
“semi-symmetrical”. Each tier involves a bilinear up-sampling operation by a factor of 2,
two ConvNeXt blocks for feature computation, and a point-wise convolution to reduce
feature dimensions. This structure enables the decoder to build a (W/4) × (H/4) × 128
reconstructed feature map from the neck’s (W/16) × (H/16) × 512 output.

To maximize the encoder’s learning, it is crucial to prevent information leakage from
unmasked to masked regions in the decoder. As Figure 9 illustrates, using the same convo-
lution kernel for both masked and unmasked regions would cause the information from
the unmasked areas (represented in cyan in Figure 9) to gradually spread across the feature
map, allowing the decoder to infer masked area information. To avoid this, the decoder
employs two independent pipelines. Before each up-sampling operation, the feature map’s
masked and unmasked parts are merged in a dense format for up-sampling, and then
separated and sparsified again after up-sampling to preventing information leakage.
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Lastly, the decoder’s reconstructed feature maps are processed by three parallel con-
volutional heads, generating predictions for pixel values, HOG descriptors, and Laplacian
features. These predictions are compared with self-supervision targets to compute the loss,
establishing a complete self-supervised training loop.

2.2.4. Decoder Used for Downstream End-to-End Finetuning

Following MAE training, the stem block and encoder parameters are transferred into
the primary MuckSeg network and fine-tuned using labeled data. As depicted in Figure 10,
the stem block and encoder of the MuckSeg network are completely identical to those
of MuckSeg-SS-FCMAE, but the sparse network layers within the encoder have all been
replaced with regular network layers. Following a neck composed of 3 cascaded ConvNeXt
blocks is a bifurcated 4-tier decoder that outputs muck boundary and region labels for
post-processing.
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2.2.5. Loss Function

The training loss for MuckSeg-SS-FCMAE comprises three parts: the difference in
pixel values between the network-reconstructed image and the down-sampled input image;
the discrepancy between the HOG features predicted by the network and those directly
computed from the input image; and the accuracy of the network-predicted Laplacian
features. Both image reconstruction and HOG feature prediction are regression problems
within the [0, 1] interval; hence, MSE loss is used:

MSE(p, y) =
1
n

n

∑
i=1

(pi, yi)
2 (1)

where p represents the model’s predictions and y is the ground truth, that is, the self-
supervision target.

On the other hand, the prediction of Laplacian features is a pixel-level binary classifi-
cation problem, for which BCE loss is utilized:

BCE(p, y) = − 1
n

n

∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi)] (2)

The final training loss is a weighted combination of these three losses:

L = 0.5MSE
(

pI , yI
)
+ 0.3MSE

(
pH , yH

)
+ 0.2BCE

(
pL, yL

)
(3)

where superscripts I, H, and L, respectively, denote the reconstructed image, HOG de-
scriptor, and Laplacian feature. It should be noted that the loss is only computed over the
masked regions.

2.3. Data Preparation

The muck images that had been used for training the MuckSeg-SS-FCMAE had been
captured using a photography system depicted in Figure 11a. This system was primarily
composed of a photo module, a control box, a tachometer, and a server. The linear array
camera within the photo module could capture high-resolution, clear images of the high-
speed moving muck chip on the conveyor belt, aided by a laser light source. The control
box would adjust the camera’s line frequency in real-time, based on the conveyor belt’s
speed as measured using the tachometer, to prevent size distortion. The muck images’
resolution along the camera’s scanning line direction was 2048 pixels, capturing and saving
an 8-bit grayscale image every 4096 pixels. To enhance the generalization capability of the
model, the muck images in the dataset were collected from two different projects, with



Symmetry 2024, 16, 222 12 of 23

specific details provided in Table 3, and examples of the collected muck images can be
seen in Figure 12. In total, over 40,000 full-size muck images were used to establish the
training dataset.
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Table 3. Information on the source of the muck image data.

# Project Name Primary Rock Types Estimate Range of UCS/MPa Total Image Count

1 Xi-Er tunnel of project [43] granite, gneiss, and quartzite 30~150 over 32,000
2 Tianshan Shengli tunnel granite, gneiss, diorite, and sandstone 50~120 over 8000
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As shown in Figure 11b,c, once training commenced, the ROI in the middle of the
full-size muck image, measuring 1536 × 4096 pixels, was divided into 24 crop boxes of
512 × 512. A single crop box was selected at random for extracting the training sample from
the ROI. Given the already substantial volume of data, no additional data augmentation
techniques were employed beyond random rotation and flipping.
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3. Experiments and Results
3.1. Experiment Environment
3.1.1. Hardware Specifications

• CPU: AMD Ryzen 9 5950X 16-core processor.
• GPU: Nvidia GeForce RTX 4090.
• RAM: 64GB DDR4 at 3200 MHz.

3.1.2. Software Environment

• Operating system: Ubuntu 22.04.
• Programming language: Python 3.9.13.
• Deep Learning Framework: PyTorch 2.0.1 with Lightning 2.0.1.
• Sparse convolution operator library: MinkowskiEngine 0.5.4.

3.2. Evaluation Criteria

In this section, we will thoroughly evaluate the MuckSeg-SS-FCMAE model’s effec-
tiveness in three key areas:

1. Image reconstruction capability. The autoencoder’s ability to reconstruct images is a
vital metric for determining if the learned representations hold enough information to
replicate the original input. This reflects not only the model’s grasp of the input data’s
structure but also its ability to identify essential features.

2. Feature extraction capability of the MAE encoder. The MAE is designed to empower the
encoder to identify fundamental image features autonomously. This positions the model
at a more advantageous starting point in the parameter space for downstream tasks,
increasing the likelihood of optimal parameter convergence and reducing the risk of
entrapment in local minima. Furthermore, exposing the encoder to a broader dataset en-
hances the model’s generalization and robustness. Thus, the MAE encoder’s proficiency
in discerning target feature semantics is crucial for gauging MAE’s effectiveness.

3. Performance improvement when transferring to downstream tasks. The MAE’s impact
on muck segmentation tasks is most directly observed by comparing the improvements
in the IoU of boundary and region labels predicted by the pre-trained network against
those trained from scratch. The IoU is calculated as follows:

IoU =
TP

FP + TP + FN
(4)

where TP denotes the total number of true positive samples, FP the false positives,
and FN the false negatives.

3.3. Training Procedure

Before training commenced, all the weights in the model were initialized using a
standard normal distribution with a standard deviation of 0.02, and the sampled values
were constrained within the [−2, 2] interval. All biases were set to zero. To achieve better
optimization effects, the model employed the AdamW optimizer [44]. Additionally, to
maintain a balance between exploration and optimization in the parameter space through-
out the training, a cyclic learning rate schedule [45] is employed. As illustrated in Figure 13,
this scheduler modulates the learning rate between a lower limit LB and a gradually damp-
ened upper limit LU. Starting from LB, the rate linearly increases to current LU’ = ζnLU
over SU mini-batches, where ζ denotes the damping coefficient and n is the current step
count, then decreases back to LB across SD batches, completing one cycle. This process
is repeated, facilitating the network’s ability to escape local minima and explore various
parameter spaces, ultimately improving the chances of reaching a superior solution and
enhancing performance.
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All training hyperparameters can be found in Table 4.

Table 4. List of training hyperparameters.

Symbol Description Value

B Batch size 2
ntotal Total training steps 300,000

β1 1st rank momentum coefficient of AdamW 0.9
β2 2nd rank momentum coefficient of AdamW 0.99
λ Weight decay coefficient of AdamW 0.01
LB Base learning rate 10−5

LU Learning rate limit 10−4

ζ Damping coefficient 1−10−5

SU Learning rate increase period 2000
SD Learning rate decrease period 2000

The loss curves during the training process are shown in Figure 14. To monitor
whether the model was overfitting, the average loss was evaluated using a validation set
comprising 100 muck images independent of the training dataset every 3000 steps during
training, which is represented by a thick orange line in the figure. It can be observed
from the graph that the learning speed of SS-FCMAE is relatively low, and there are large
fluctuations in the loss. The downward trend of the loss curve becomes less apparent after
approximately 100,000 steps, but experiments have shown that there is still considerable
room for improvement in model performance at this point, which can also be confirmed by
the slow downward trend of the training curve in the later stages. It is not difficult to notice
that, even after more than 200,000 steps, the loss curves for the training and validation
sets still highly overlap, indicating that SS-FCMAE is unlikely to overfit when applied to
muck images. Conversely, underfitting is a more pressing issue that needs attention, and
appropriately extending the training time is beneficial for model performance.
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Figure 14. Loss curve during training process.
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3.4. Image Reconstruction Capability

This section analyzes the image reconstruction capabilities of both the original FCMAE
and the MuckSeg-SS-FCMAE, in addition to training an SS-FCMAE without the use of
HOG descriptors and Laplacian feature supervision for further comparison.

Figure 15 presents a comparative analysis of image reconstruction capabilities across
the three models. It is evident that all three FCMAE schemes effectively restore the global
contrast and the approximate contours of the main muck chip bodies, demonstrating
FCMAE’s strong global comprehension of muck images and its ability to capture the
images’ macroscopic characteristics. When examining the details within the masked areas,
the SS-FCMAE notably excels in reconstructing muck boundaries that are partially obscured
or nearly invisible, a critical aspect for subsequent muck segmentation tasks. The transitions
between reconstructed masked areas and the original unmasked areas appear seamless
with the SS-FCMAE, showcasing its superior capability in learning local texture features.
In contrast, the original FCMAE tends to smooth over local pixel values in masked areas,
leading to a vague, uniform texture in the reconstructions, which aligns with the trivial
solutions mentioned in Section 3.4 and may account for the original FCMAE’s limited
training performance.
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The SS-FCMAE’s image reconstruction did not exhibit notable differences in the
absence of HOG descriptors and Laplacian features, suggesting that the model’s convolu-
tional structure alone might have sufficed for the general reconstruction of muck images.
Nevertheless, it is important to recognize that both the original FCMAE and SS-FCMAE
have their limitations in reconstructing large continuous masked areas and pixel-level
details. Although increasing the network’s depth and width could potentially address
this, the balance between model performance and computational cost must be considered.
Despite these challenges, the image reconstruction capabilities of MuckSeg-SS-FCMAE are
deemed satisfactory.
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3.5. Feature Extraction Capability

To assess the feature extraction capability of the FCMAE encoders, this section directly
inputs an unmasked image into the FCMAEs and extracts the feature maps from the last
ConvNeXt block of each of the four encoder tiers under each scheme. The visualization
results are presented in Figures 16 and 17. It is evident from these figures that the first
encoder tier of all schemes has somewhat learned to differentiate between muck chip
regions and the background, with the SS-FCMAE producing clearer feature maps than
other schemes, thus capturing the image’s primary information more effectively. However,
from the second tier onwards, the feature maps under the three schemes begin to diverge
significantly. Figure 16 shows that the neurons in the second to fourth encoder tiers of the SS-
FCMAE are effectively activated, demonstrating clear channel differentiation in the feature
maps. This indicates that the encoder’s learning capabilities are maximized, facilitating the
extraction of a richer and more varied feature set for describing the muck images.
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Conversely, the SS-FCMAE encoder, which does not employ HOG descriptors and
Laplacian features, exhibits noticeable noise in the outputs of the intermediate tiers, poten-
tially disrupting subsequent muck segmentation tasks. Moreover, approximately 70% of
the feature dimensions were highly similar, suggesting that many neurons have learned
identical weights. Such redundancy not only demonstrates the model’s failure to capture
sufficiently valuable information but also undermines its learning capacity. Noticeable
saturation of neurons is observed in the third and fourth encoder tiers, adversely affecting
network performance. The original MAE displays even more pronounced issues, with
outputs on nearly 90% of the channels in the feature maps being almost entirely iden-
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tical; even on the few valuable channels, the feature maps show noticeable noise and
unidirectional textures.

In conclusion, the SS-FCMAE shows a greater aptitude for learning valuable informa-
tion from muck images via self-supervised training compared to the original FCMAE. The
addition of HOG descriptors and Laplacian features as training targets notably enhances
the learning capability of the deeper encoder tiers and reduces feature channel redundancy.

3.6. Improvement on Segmentation Results

In this section, the pre-trained weights from the three previously mentioned schemes
were transferred to the MuckSeg main network and fine-tuned using a dataset created
from 70 finely annotated full-size muck images, using a base learning rate of 2 × 10−4 for
60 epochs. Additionally, another MuckSeg model was trained from scratch as a baseline
to assess the performance improvements of various types of masked autoencoders on the
downstream muck segmentation task. Moreover, the current state-of-the-art (SOTA) muck
segmentation model—MSD-UNet [22]—was also replicated and trained on our dataset
according to the original research methods for comparison with the approach presented in
this paper. The average IoU was then calculated for these models using the test dataset.

Table 5 presents the average IoU of each model on the test dataset. The table indicates
that, when using only the pixel values of input images for self-supervision, the SS-FCMAE’s
predicted IoU for muck boundaries and regions increased by approximately 4.6% and 1.8%,
respectively, compared to the baseline. Incorporating HOG descriptors and Laplacian
features as additional supervision targets further enhanced the model’s performance,
yielding improvements of 5.9% and 2.4% over the baseline. In contrast, the original FCMAE
showed more modest gains of 1.9% and 1.2%. Furthermore, without the use of MAE pre-
training, our model’s performance on the test set was only marginally better than that of
MSD-UNet. However, after incorporating SS-FCMAE, MuckSeg achieved an improvement
of 8.3% and 4.7% over MSD-UNet, which is crucial for enhancing the accuracy of muck
gradation calculations.

Table 5. Performance metric comparison on test dataset for different schemes.

Metric MSD-UNet Scratch Orig. FCMAE SS-FCMAE w/o HOG & Lap. SS-FCMAE

IoU (Boundary) 0.725 0.741 0.755 0.775 0.785
IoU (Region) 0.878 0.897 0.908 0.913 0.919

Figure 18 illustrates the error maps of prediction results from the various models
discussed in this section. It was observed that our model, when trained from scratch,
performs similarly to MSD-UNet on relatively simple samples, such as image #2. However,
for image #1, MSD-UNet experiences significant deficiencies in predicting muck regions
and struggles to identify the complete boundaries of large muck chips, whereas our model
shows relatively better performance. The addition of MAE pre-training further enhances
the integrity of the model’s predictions for muck chip regions and boundaries to various
extents. Specifically, the SS-FCMAE, which included HOG descriptors and Laplacian
features, achieved very satisfactory results. However, some noise was noted in the SS-
FCMAE’s output, suggesting that the model might have overfitted to the texture features of
the muck to some extent. Despite this overfitting being undesirable, it also indirectly shows
that SS-FCMAE pre-training has bolstered the model’s ability to discern smaller-scale
features, without affecting the final segmentation results.
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3.7. Hyperparameter Optimization

In the context of real-time surrounding rock perception technology, our model must
address computational constraints and ensure processing efficiency within the TBM con-
struction environment. This section will, therefore, examine how hyperparameter variations
influence model performance and computational costs. Beyond hyperparameters pertain-
ing to the loss function and training regimen, our model’s adjustable hyperparameters are
broadly categorized as follows:

1. Non-independent hyperparameters include the following:

• The dimension of the feature map produced by the stem block, denoted as D.
• The count of ConvNeXt blocks in each encoder tier, denoted as Nei for i = 1, 2, 3,

and 4.

Given that the stem block and encoder in MuckSeg-SS-FCMAE must align with
the MuckSeg main network, alterations to these hyperparameters affect not only MAE
performance but also the downstream end-to-end fine-tuning outcomes. Consequently, we
use the IoU of the final end-to-end model on the test dataset as the metric for evaluating
these hyperparameters. It is important to note that due to the time-intensive nature of
MAE training, we base our evaluation and adjustment of these hyperparameters on models
trained from scratch.

2. Independent hyperparameters include the following:

• The feature dimension of the mask token, denoted as Dm.
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• The count of ConvNeXt blocks in each MAE decoder tier, denoted as Ndi for i = 1
and 2.

• The count of ConvNeXt blocks in the MAE neck, denoted as Nn.

These hyperparameters solely impact MAE performance. Therefore, we assess them
using the IoU improvement on the test dataset when MAE pre-training is applied, as
opposed to training from scratch.

On the other hand, computational costs are assessed from two perspectives:

• The number of model parameters, measured in millions of parameters (MParams).
• The computational cost of processing a single sample, measured in billions of floating-

point operations (GFLOPs).

The analyzes in this section utilize the default configuration (D = 32, Nei = {3, 9, 3, 3},
Dm = 512, and Ndi = {2, 2}, Nn = 8) as a baseline. Figure 19 presents the performance and
computational costs of MuckSeg-SS-FCMAE with various non-independent hyperparam-
eters. It is evident that D significantly influences the computational cost of the model.
Correspondingly, increasing D also notably improves the model’s performance, especially
in the prediction accuracy of muck chip boundaries. When D exceeds 32, the computational
cost rises steeply, while the enhancement in model performance becomes relatively mod-
est. Conversely, variations in Nei do not generally affect model performance significantly,
except for a marked improvement when Ne2 increases from 3 to 9. This suggests that
features at this scale are crucial in muck segmentation tasks. The performance gains from
increasing Nei at other tiers are not cost-effective. Thus, the final configuration selected for
the proposed model is D = 32 and Nei = {3, 9, 3, 3}.
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Figure 19. Model performance and computational cost curves across non-independent hyperparameters.

Figure 20 illustrates the changes in model performance and computational cost with
different independent hyperparameters. It is apparent that incorporating only one Con-
vNeXt block in each tier of the SS-FCMAE decoder leads to a decline in its performance,
and adding more than two layers does not significantly enhance performance, even causing
degradation when increased to four layers. This suggests that an overly powerful decoder
in the SS-FCMAE can actually impair the encoder’s learning ability. In contrast, the design
of the neck in the SS-FCMAE is quite critical. Specifically, the number of ConvNeXt blocks
in the neck, Nn, should be more than eight to ensure adequate feature interaction between
masked and unmasked regions. The dimension of the mask token, Dm, should align with
the feature map dimension, which is 512 in the default configuration, produced by the
encoder. Reducing the feature dimension of the encoder’s output can lead to a decline in
MAE performance and may even negatively impact downstream tasks, while the additional
computational cost of expanding the feature dimension is almost negligible. In conclusion,
the final configuration selected for the proposed model is Dm = 512, Nn = 8, and Ndi = {2, 2}.
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4. Discussion

This study has highlighted the significant role of MAE self-supervised pre-training
in muck segmentation tasks, as well as the notable performance gains achieved by the
SS-FCMAE designed for this task. However, due to the limited sources of muck images, it
is currently uncertain whether the model presented in this paper has general applicability
to different types of rocks, different TBMs, and different photography equipment. It is
hoped that in the future, more researchers will devote themselves to research in this field
and achieve widespread data sharing to establish a more substantial and diverse muck
image dataset. Furthermore, while self-supervised pre-training has somewhat mitigated the
challenge of limited labeled data, the SS-FCMAE still relies on comprehensive end-to-end
fine-tuning to function effectively. Consequently, the burdensome costs of annotation and
the scarcity of labeled data in muck segmentation tasks remain pressing issues.

Recent developments underscore the importance of self-supervised learning tech-
niques across various domains for the advancement and deployment of deep learning
models. In the field of NLP, self-supervised learning has become foundational, enabling
the construction of large models with robust generalization abilities. However, in the
field of CV, despite the introduction of MAE and joint embedding methods enhancing the
practicality of self-supervised training, these frameworks have yet to achieve the same level
of autonomy as in NLP. Considering the distinct differences between image and natural
language data, and the fact that current CV self-supervised training approaches have been
largely inspired by NLP, there is a compelling need to develop self-supervised methods
that are intrinsically suited to the unique demands of CV tasks.

Moreover, our research suggests that combining traditional image processing tech-
niques with modern deep learning can lead to remarkably effective outcomes, especially in
self-supervised learning contexts. Techniques such as HOG descriptors, previously central
to feature engineering, can still offer valuable insights. Future research should continue
to investigate how these once-prevalent methods can be reinvigorated within the deep
learning paradigm.

Furthermore, the advent of multi-modal and large-scale CV models, such as Segment
Anything [46], promises significant advancements in domain-specific tasks like muck
segmentation through the use of these foundational models. The prospective fusion of CV
tasks with such models could transcend conventional approaches, including knowledge
distillation, representing a research avenue of substantial potential.

5. Conclusions

In this study, we introduce the MuckSeg-SS-FCMAE, a semi-symmetric, fully con-
volutional masked autoencoder tailored for TBM muck segmentation tasks. The model
employs a multi-layer parallel sparse decoder to up-sample and decode masked feature
maps, which enables it to capture the relative positional relationships between pixels,
enhancing its extraction of low-level geometric features such as muck chip geometry and
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boundaries. By integrating HOG descriptors and Laplacian features—rapidly obtainable
prior features through classical algorithms—as additional self-supervision targets, our
approach effectively circumvents the trivial solution problem inherent in relying solely
on pixel value MSE loss and diminishes network neuron redundancy. Our experiments
demonstrate that the MuckSeg-SS-FCMAE outperforms the original MAE in learning from
muck images and that the inclusion of HOG descriptors and Laplacian features bolsters
self-supervised training, maximizing the encoder’s learning potential. Moreover, pre-
training with MuckSeg-SS-FCMAE significantly enhances the accuracy, generalization, and
robustness of the subsequently trained muck segmentation network compared to training
from scratch.
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