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Abstract: We study the motion of a test particle in a conservative force-field. Our aim is to find three-
dimensional potentials with symmetrical properties, i.e., V(x, y, z) = P(x, y) + Q(z), or, V(x, y, z) =
P(x2 + y2) + Q(z) and V(x, y, z) = P(x, y)Q(z), where P and Q are arbitrary C2-functions, which
are characterized as semi-separable and they produce a pre-assigned two-parametric family of
orbits f (x, y, z) = c1, g(x, y, z) = c2 (c1, c2 = const) in 3D space. There exist two linear PDEs which
are the basic equations of the Inverse Problem of Newtonian Dynamics and are satisfied by these
potentials. Pertinent examples are presented for all the cases. Two-dimensional potentials are also
included into our study. Families of straight lines is a special category of curves in 3D space and are
examined separately.

Keywords: classical mechanics; inverse problem of Newtonian dynamics; families of orbits; separable
potentials; linear and non-linear partial differential equations

1. Introduction

A dynamical system is a system whose state evolves with time over a state space
according to a fixed rule. Examples of dynamical systems are the following ones: the
growth of a population, a swinging pendulum, the motions of celestial bodies and so on.
Mathematical methods for mechanical, electrical and biosystems were developed in [1].
Integrability [2], superintegrability [3], or, non-integrability [4] are some special properties
of dynamical systems.

The inverse problem of dynamics, as formulated by [5], consists in looking for all
potentials V = V(x, y) which can produce a monoparametric family of planar orbits
f (x, y) = c, traced in the (x, y)−Cartesian plane by a material point of unit mass with
a preassigned energy dependence E = E( f (x, y)) on the given family of orbits. The
author produced a first-order partial differential equation, linear in the unknown function
V = V(x, y) whose coefficients depend on the family of orbits. Szebehely’s equation was
later studied by many authors [6–8].

The three-dimensional inverse problem of dynamics, as described by [9], deals with
the potentials V = V(x, y, z) of C2-class which produce a pre-assigned family of reg-
ular orbits given f (x, y, z) = c1, g(x, y, z) = c2 with a preasgned energy dependence
E = E( f (x, y, z), g(x, y, z)) on the given families of orbits. Before many years, several
authors paid attention to this problem and studied different versions of it (see [10–12]). Es-
pecially, two-parametric families of straight lines (FSL) produced by three-dimensional po-
tentials were studied in detail by [13]. The two free of energy PDEs of the three-dimensional
inverse problem were found in [14,15]. Besides that, in [15], the authors constructed 3D
homogeneous potentials of degree m producing homogeneous two-parametric families
of orbits in 3D space and presented many examples. Other solvable cases of this problem
were examined in [16,17]. In [18], the authors stated and solved a generalization of Dainelli
and Joukovski problem and proposed a new method in order to solve the well-known
Suslov’s problem. Inverse problems exist in many areas of Physics. More precisely, inverse
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problems for Schrödinger equation were studied by many authors in the past (e.g., [19]).
An application of the inverse problem of dynamics in geometrical optics was given by [20].
Furthermore, ref. [21] approached the problem from the point of view of the general inverse
problem of the calculus of variation. In [22] the authors presnted a direct method for solving
inverse Sturm–Liouville problems Recently, integrable and superintegrable 3D Newtonian
potentials were studied in [23] by using quadratic first integrals.

In this work we shall examine three-dimensional potentials of the form V(x, y, z) =
P(x, y) + Q(z), V(x, y, z) = P(x2 + y2) + Q(z) and V(x, y, z) = P(x, y)Q(z) which are
related to a two-parametric family of orbits f (x, y, z) = c1, g(x, y, z) = c2 (c1, c2 = const).
These potentials are common solutions of two linear PDEs which govern the Inverse
Problem of dynamics; one of them is of first order and the second one is of second order.

The present paper has the following structure: In Section 2 we give the basic facts of
the 3D Inverse Problem of Dynamics and we present the basic equations of this problem.
Separable potentials have the general form V = P(x)+Q(y)+R(z), or, V = P(x)Q(y)R(z).
Since the number of equations of the Inverse problem is two, i.e., Equations (9) and (11) in
the text, and the functions P(x), Q(y), R(z) are three, we choose semi-separable potentials
of the form V(x, y, z) = P(x, y) + Q(z), V(x, y, z) = P(x2 + y2) + Q(z) and V(x, y, z) =
P(x, y)Q(z) in order to handle the two equations of the Inverse problem. Thus, we start our
survey with potentials V(x, y, z) = P(x, y) + Q(z) and we develop a new methodology for
this kind of potentials in Section 3. The second order PDE of the inverse problem becomes
a linear second order PDE in the unknown function P(x, y) and can be solved analytically
under ceratin conditions. In Section 4 we work with potentials V(x, y, z) = P(x2 + y2) +
Q(z). From the second order PDE we retrieve two linear O.D.Es in the unknown functions
P, Q respectively which are solvable. This technique help us to find the general solution
for the potential V. Our results are connected with integrability/superintegrability of
potentials which are under consideration.

In Section 5 we study the third class of potentials V = P(x, y)Q(z). This class is more
complicated than the previous ones. Now, the second order PDE becomes a non-linear
PDE in the unknown function P = P(x, y) and cannot be solved analytically by using the
classical methods of the theory of PDEs. Thus, we look only for special solutions. We
offer examples for all cases. The results are new and original. Special cases are studied
in Section 6. Another category of potentials is the two-dimensional ones (Section 7). Two-
parametric families of orbits produced by two-dimensional potentials were examined
in [24]. Furthermore, an interesting case of curves in 3D space is a family of straight lines.
As it was shown by [13], not any potentials, but only those satisfying two non-linear PDEs
can produce a family of straight lines as orbits. We find appropriate potentials which
correspond to the above cases in Section 8 and we are making some concluding comments
in Section 9.

2. The Formulation of the 3D Inverse Problem

We consider the two-parametric family of orbits given

f (x, y, z) = c1, g(x, y, z) = c2, c1, c2 = const. (1)

Generally speaking, the two–parametric families of orbits written in the form (1) are
studied in a three-dimensional frame. The most general question in Classical Mechanics
is to find a potential function V(x, y, z) such that the set of integral curves of the classical
mechanical system

ẍ = −∂V
∂x

, ÿ = −∂V
∂y

, z̈ = −∂V
∂z

, (2)

contains the given family (1). Following [14,15,24], we define the vector δ⃗ = ∇ f ×∇g which
is proportional to the velocity. Its components are

δ1 = fygz − fzgy, δ2 = fzgx − fxgz, δ3 = fxgy − fygx. (3)
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As it was shown by [14,15,24], the family of orbits (1) can be represented by two
“slope functions”

α = α(x, y, z) and β = β(x, y, z), (4)

given by the formulas

α :=
δ2

δ1
, β :=

δ3

δ1
. (5)

On the other hand, if the pair of slope functions (α, β) is given in advance, then we can
solve analytically the system of O.D.Es

dy
dx

= α(x, y, z, ),
dz
dx

= β(x, y, z) (6)

and find the two-parametric family of orbits in the form (1). The following notation is
also introduced

α0 = αx + ααy + βαz, β0 = βx + αβy + ββz, Θ = 1 + α2 + β2. (7)

and the subscripts denote partial derivatives w.r.t. the variables x, y, z. There are two basic
equations for our problem (see e.g., [15], p. 346). Taking into account that α0 ̸= 0, or, β0 ̸= 0,
these equations read

αVx − Vy =
2α0

Θ
(E − V),

βVx − Vz =
2β0

Θ
(E − V). (8)

The above Equation (8) include the energy-dependence E = E( f , g). Proceeding more,
ref. [15] eliminated the energy of the family of orbits from these two equations and obtained
two new equations which include only the derivatives of the potential V and the set of
slope functions (α, β). These equations are the following ones

j1Vx + j2Vy + j3Vz = 0, (9)

where
j1 = αβ0 − βα0, j2 = −β0, j3 = α0. (10)

and
l11Vxx + l12Vxy + l13Vxz + l22Vyy + l23Vyz + l01Vx + l02Vy + l03Vz = 0, (11)

where

l11 = αΘα0, l12 = (α2 − 1)Θα0, l13 = αβΘα0, l22 = −αΘα0, l23 = −βΘα0,
l01 = (Θ + 2)α2

0 + αK, l02 = 2αα2
0 − K, l03 = 2βα2

0,
K = 2(αα0 + ββ0)α0 − Θ(α0x + αα0y + βα0z).

(12)

It is remarkable to say that if α0 = 0, β0 ̸= 0, then we shall make use of another second-
order PDE given in the paper of ([17], p. 9226). This PDE reads

m11Vxx + m12Vxy + m13Vxz + m23Vyz + m33Vzz + m01Vx + m02Vy + m03Vz = 0, (13)

where

m11 = ñβ, m12 = ñαβ, m13 = ñ(β2 − 1), m23 = −ñα, m33 = −ñβ,

m01 = 2 + βñ0 + ñβ0, m02 = 2α, m03 = 2β − ñ0 (14)

and
ñ =

Θ
β0

, ñ0 = ñx + αñy + βñz (15)
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The energy of family of orbits (1) is found to be [15]:

E =
Θ

2α0
(αVx − Vy) + V, (16)

and the kinetic energy of the test particle is

T = E − V. (17)

Theorem 1. If for the given family of orbits (1) the condition α0 = β0 = 0 valids, the family of
orbits is a family of straight lines [13] and this case will be studied in Section 8.

3. The Methodology for Our Problem

In this section we are interested in potentials of the form

V = P(x, y) + Q(z), (18)

which are common solutions of the above two Equations (9) and (11) and P, Q are arbitrary
C2-functions of their arguments. First of all, we find the first order derivatives of the
potential function V with respect to x, y, z respectively, i.e., Vx = Px, Vy = Py, Vz = Q′(z),
where Q′(z) = dQ

dz . We insert them into (9) and get

j1Px + j2Py + j3Q′(z) = 0 (19)

Setting j3 ̸= 0, we find the expression for Q′(z). It is:

Q′(z) = κ1Px + κ2Py (20)

where κ1 = − j1
j3

, κ2 = − j2
j3

.
Now, we will work with the PDE (11). We obtain the derivatives of second order of the

potential function V with respect to x, y, z and we insert them into Equation (11). Thus,
we get the linear second-order PDE

l11Pxx + l12Pxy + l22Pyy + l01Px + l02Py + l03Q′(z) = 0. (21)

If we insert (20) into (21), then the PDE (21) reads

l11Pxx + l12Pxy + l22Pyy + µ01Px + µ02Py = 0, (22)

where µ01 = l01 + κ1l03 and µ02 = l02 + κ2l03. Since the unknown function P(x, y) in (22)
depends only on two variables x, y, the corresponding coefficients l11, l12, l22, µ01, µ02 must
have the same property. Now, we can formulate the next

Theorem 2. If the coefficients in (22) satisfy the differential conditions

∂l11

∂z
=

∂l12

∂z
=

∂l22

∂z
=

∂µ01

∂z
=

∂µ02

∂z
= 0, (23)

then we can find the general solution of (22), otherwise not.

Results

In this Section we present the first example.

Example 1. We study the two-parametric family of orbits (see Figure 1a)

f (x, y, z) = x2 + y2 = c1, g(x, y, z) =
z
x
= c2 (24)
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which is represented by the pair
α = − x

y
, β =

z
x

. (25)

After some simplifications, the coefficients in (22) take the form

l11 = 1, l12 = − x
y
+

y
x

, l22 = −1, µ01 =
3
x

, µ02 = −3
y

. (26)

According to the Theorem 2, the coefficients (26) satisfy the condition (23). Then, the PDE (22) reads

xyPxx + (y2 − x2)Pxy − xyPyy + 3yPx − 3xPy = 0, (27)

The discriminant of the characteristic equation of the PDE (27) is

∆ = (y2 − x2)2 + 4x2y2 = (x2 + y2) > 0. (28)

So, the PDE (27) is hyperbolic and the characteristic roots are

ρ1 =
x
y

, ρ2 = − y
x

. (29)

Proceeding more, we solve the system

dy
dx

+
x
y
= 0,

dy
dx

− y
x
= 0 (30)

and we find the characteristic curves

y2 + x2 = c̃1,
y
x
= c̃2, (31)

where c̃1, c̃2 = const. We make the transformation

ξ = y2 + x2, η =
y
x

, (32)

and we estimate the first and second-order derivatives of the function P with respect to the new
variables ξ, η. After some straightforward algebra, the PDE (27) reads

ξPξη + Pη = 0, (33)

or, equivalently,
∂

∂ξ

(
ξPη

)
= 0. (34)

The general solution of (34) is

P(ξ, η) =
1
ξ

∫
T(η)dη + Φ(ξ), (35)

where T, Φ are arbitrary functions of their unique arguments respectively. We turn back to the old
variables x, y and the general solution (35) is written as

P(x, y) =
1

x2 + y2 T
( y

x

)
+ Φ(x2 + y2). (36)

Finally, we have to determine the function Q = Q(z). We insert (36) into (20) and we check the
following conditions

∂Q′(z)
∂x

=
∂Q′(z)

∂y
= 0. (37)
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The conditions (37) are satisfied if and only if

T(
y
x
) = d0, d0 = const.,

dΦ(u)
du

= 1 +
d0

u2 , u = x2 + y2, (38)

or, equivalently,

Φ(u) = u − d0

u
, u = x2 + y2. (39)

By using the relations (36) and (39), we find

P(x, y) = x2 + y2. (40)

From (20), we have

Q′(z) =
dQ
dz

= 2z, (41)

and the result is
Q(z) = z2 + d1, d1 = const. (42)

With the aid of (40) and (42), we obtain the potential

V(x, y, z) = x2 + y2 + z2 + d1 (43)

which is integrable.

(a) (b)

Figure 1. (a) A member of the family of orbits (24) for c1 = 4, c2 = 0.5. (b) A member of the family of
orbits (55) for c1 = c2 = 1.5. The test particle moves on the blue coloured curve.

Remark 1. If the coefficients in (26) depend implicitly on the variables x, y, z, then we cannot find
the general solution of the PDE (27) because the unknown function P(x, y) depends only on two
variables x, y. In this case we can look only for special solutions.

4. Potentials of the Form V(x, y, z) = P(x2 + y2) + Q(z)

In this paragraph we shall deal with Equations (9) and (13) and study the second class
of potentials

V = P(x2 + y2) + Q(z), (44)

where P(u), u = x2 + y2 and Q(z) are arbitrary functions of their arguments u and z
respectively. At the first step, we find the derivatives: Vx = 2xP′(u)Q, Vy = 2yP′(u)Q,
Vz = Q′(z), where P′(u)= dP

du and Q′(z)= dQ
dz . We insert them into (9) and obtain

2(j1x + j2y)P′(u) + j3Q′(z) = 0. (45)
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If j3 ̸= 0, then we proceed as follows. From (45) we get

P′(u) = λQ′(z), λ = − j3
2(j1x + j2y)

. (46)

Since P = P(u), it must be λ = λ(z). Thus, we have

P′(u) = λ(z)Q′(z) = d0 = const. (47)

From (47) we find the functions P = P(u) and Q = Q(z). It is:

P(u) = d0u, Q(z) =
∫ d0

λ(z)
dz + d1, d1 = const. (48)

Next we proceed with the second order derivatives of the potential function (44) with respect
to u, z and we insert them into Equation (13). After that, we get the following expression

e1P′(u) + e2P′′(u) + e3Q′(z) + e4Q′′(z) = 0. (49)

where

e1 = 2m11 + 2xm01 + 2ym02, e2 = 4(x2m11 + xym12)

e3 = m03, e4 = m04 (50)

Theorem 3. If the coefficients in (50) satisfy the following conditions:

∂e1

∂z
=

∂e2

∂z
= 0,

∂e3

∂u
=

∂e4

∂u
= 0. (51)

then we can retrieve solutions from (49), otherwise not.

Consequently, the Equation (49) can be rewritten in a more concise form:

e1P′(u) + e2P′′(u) = −(e3Q′(z) + e4Q′′(z)) = b0 = const. (52)

Thus, we have to solve two independent O.D.E.s namely

e1P′(u) + e2P′′(u) = b0, (53)

and
e3Q′(z) + e4Q′′(z) = −b0. (54)

The additon of these two solutions provides us with the result V = P(u) + Q(z).

Remark 2. If j3 = 0, then we check the expression of j̃0 = 2(j1x + j2y). We distinguish two cases:

1. j̃0 = 0. Then, the relation (45) is satisfied identically.
2. j̃0 ̸= 0. Then we have P′(u) = 0. This result leads to P(u) = const. which is excluded from

our study.

Results for the Second Case

In this paragraph we shall preseng two examples for this case.

Example 2. We consider the family of orbits (see Figure 1b)

f (x, y, z) = x2 + y2 = c1, g(x, y, z) =
x2 − y2

z
= c2 (55)
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which is related to the pair

α = − x
y

, β =
4xz

x2 − y2 . (56)

We will find a potential of the form (44) which produces the above family of orbits. For the given
family of orbits (55), we have j3 ̸= 0 and

λ(z) =
1
8z

. (57)

From (48) we find the functions P = P(u) and Q = Q(z). It is:

P = d0u, Q(z) = 4z2. (58)

and we replace them into (49). The last equation is satisfied only for d0 = 1. Thus, we obtain

V(x, y, z) = P(x2 + y2) + Q(z) = x2 + y2 + 4z2. (59)

A 3D contour plot of the potential (59) is shown at Figure 2a.

(a) (b)

Figure 2. (a) A 3D contour plot for the potential in (59). (b) Another plot for the pontential in (67) for
d1 = 1, d3 = 2.

Example 3. The following family of orbits is considered (see Figure 3a)

f (x, y, z) =
y
x
= c1, g(x, y, z) = x2 + 2y2 + 3z2 = c2. (60)

The corresponding pair of slope functions (α, β) is

α =
y
x

, β = − x2 + 2y2

3xz
. (61)

In this case we have α0 = 0, β0 ̸= 0. But we can apply our theory because we deal with Equations (9)
and (13). We shall find a potential of the form (44) which creates the above family of orbits. For the
given family of orbits (55), we have

j3 = 0 and j̃0 = 0. (62)
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Thus, the relation (45) is satisfied identically. Now, we proceed with the Equations (53) and (54).
After some simplifications the coefficients in (52) take the form

e1 = 1, e2 =
1
2
(x2 + y2) =

1
2

u, e3 = − 3
8z

, e4 = −1
8

. (63)

and we solve analytically O.D.Es. (53) and (54). The solution of the O.D.E. (53) is

P(u) = b0u − d1

u
+ d2, d1, d2 = const. (64)

or, equivalently,

P(x2 + y2) = b0(x2 + y2)− d1

x2 + y2 + d2, d1, d2 = const. (65)

and the solution of O.D.E. (54) is

Q(z) = b0z2 − d3

2z2 + d4, d3, d4 = const. (66)

Thus, we obatin the result

V(x, y, z) = b0(x2 + y2 + z2)− d1

x2 + y2 − d3

2z2 , (67)

A 3D contour plot of the potential (67) is shown at Figure 2b. The energy of family of orbits (60) is
given by

E = −
d1(2 + c2

1)(1 + 2c2
1)

3(1 + c2
1)

2c2
+

9d3(2 + c2
1) + 2b0(4 + 5c2

1)c
2
2

6(1 + 2c2
1)c2

. (68)

The potential (67) is separable in cylindrical coordinates. Indeed, if we set ρ2 = x2 + y2, z = z,
then we get

V(ρ, z) = (b0ρ2 − d1

ρ2 ) + (b0z2 − d3

2z2 ). (69)

Without loss of generality, we can omit the other additive constants in (67), or, in (69). As it was
shown by ([3], p. 5669), the potential in (67) is minimally superintegrable because it admits four
globally defined and single-valued integrals of motion. Other families of orbits generated by this
potential are given at Table 1. Additional results are presented at Table 2.

(a) (b)

Figure 3. (a) A member of the family of orbits (60) for c1 = c2 = 1.5. (b) A member of the family of
orbits (75) for c1 = c2 = 2.
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Table 1. Families of orbits generated by the potential (67).

Families of Orbits Pair (α, β)

f (x, y, z) = y
x = c1, g(x, y, z) = x2 + y2 + 2z2 = c2 α =

y
x , β = − x2+y2

2xz
f (x, y, z) = y

x = c1, g(x, y, z) = x2 + 16y2 + 9z2 = c2 α =
y
x , β = − x2+16y2

9xz
f (x, y, z) = y

x = c1, g(x, y, z) = x2 − 16y2 + 9z2 = c2 α =
y
x , β = − x2−16y2

9xz
f (x, y, z) = y

x = c1, g(x, y, z) = x2 − 16y2 − 9z2 = c2 α =
y
x , β =

x2−16y2

9xz
f (x, y, z) = y

x = c1, g(x, y, z) = xy + z2 = c2 α =
y
x , β = − y

z

Table 2. Families of orbits compatible with 3D potentials.

Families of Orbits Potential V(x, y, z)

f (x, y, z) = y
x = c1, g(x, y, z) = xz = c2 V = k0(x2 + y2 + z2) + d1

2 (x2 + y2)2 + 1
4 z4

f (x, y, z) = y
x = c1, g(x, y, z) = z√

x = c2 V = k0(x2 + y2 + 1
4 z2) + 2d1

√
x2 + y2 − d1

2z2

5. The Third Case: V = P(x, y)Q(z)

In this paragraph we shall examine potentials of the form

V = P(x, y)Q(z), (70)

for the above two Equations (9) and (11), where P(x, y) and Q(z) are arbitrary functions
of their arguments. At the beginning, we determine the derivatives: Vx = PxQ, Vy = PyQ,
Vz = P(x, y)Q′(z), where Q′(z) = dQ

dz . We insert them into (9) and get

j1PxQ + j2PyQ + j3PQ′(z) = 0 (71)

Putting j3 ̸= 0, we find the expression for the ratio Q′(z)
Q . It is:

Q′(z)
Q

=
(κ1Px + κ2Py)

P
(72)

where κ1 = − j1
j3

, κ2 = − j2
j3

. Now, we concentrate on the second order PDE (11). We
obtain the second order derivatives of the potential function V and we insert them into
Equation (11). Then, we get the second-order PDE

(l11Pxx + l12Pxy + l22Pyy + l01Px + l02Py)Q + (l13Px + l23Py + l03P)Q′(z) = 0. (73)

If we replace (72) into (73), then the non-linear PDE (73) reads

(l11Pxx + l12Pxy + l22Pyy + l01Px + l02Py)P + (l13Px + l23Py + l03P)(κ1Px + κ2Py) = 0. (74)

Example 4. We take into account the family of orbits (circles, see Figure 3b)

f (x, y, z) = x2 + y2 + z2 = c1, g(x, y, z) =
z
x
= c2 (75)

and the pair is

α = − x2 + z2

xy
, β =

z
x

. (76)
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After some simplifications, the coefficients in (74) take the form

l11 = 1, l12 = − (x2 − xy + z2)(x2 + xy + z2)

xy(x2 + z2)
, l13 =

z
x

,

l22 = −1, l23 =
yz

x2 + z2 ,

l01 =
3x2 + z2

x(x2 + z2)
, ł02 = −3

y
, l23 =

2z
x2 + z2 .

Since the PDE (74) is nonlinear, we find special solutions of the form

P(x, y) = M(u), u = x2 + y2. (77)

We replace (77) into (74), we take

4z2(x2 + z2)2(x2 + y2 + z2)3

x5y6

[
(M′(u))2 − M(u)M′′(u)

]
= 0, (78)

where M′(u) = dM
du . The general solution of (78) is

M(u) = d1eu + d2, d1, d2 = const. (79)

or, equivalently,
M(x2 + y2) = d1ex2+y2

+ d2, d1, d2 = const. (80)

Finally, we have to determine the ratio R(z) = Q′(z)
Q(z) . We insert (80) into (72) and we check the

following conditions
∂R(z)

∂x
=

∂R(z)
∂y

= 0. (81)

The conditions (81) are satisfied if and only if

d2 = 0 (82)

Thus, we have
Q′(z)
Q(z)

= 2z, (83)

and the result is
Q(z) = d3ez2

, d3 = const. (84)

With the aid of (77), (80) and (84), we find the potential

V(x, y, z) = d3ex2+y2+z2
(85)

6. Special Cases

Up to now we considered that j3 ̸= 0 (j3 is defined in (10)). In this paragraph we
shall examine the case j3 = 0. This leads to the result α0 = 0. Thus, we have to use the
Equations (9) and (13). We choose potentials of the form

V = P(x, y)Q(z), (86)

and we calculate the derivatives Vx = PxQ, Vy = PyQ, Vz = P(x, y)Q′(z), where Q′(z)= dQ
dz .

Then the PDE (6) reads
j1Px + j2Py = 0 (87)
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Now, we shall make use of the second order PDE (13). Working in a similar way as
previously, we obtain the second order derivatives of the potential function V and we insert
them into Equation (13). Thus, we get the second-order PDE

(m11Pxx + m12Pxy + m01Px + m02Py)Q + (m13Px + m23Py + m03P)Q′(z) + m33Q′′(z) = 0, (88)

in which two independent functions, P(x, y) and Q(z), are involved. So, in this case, we
have to find special solutions for the functions P and Q.

Example 5. We study the two-parametric family of orbits (circles)

f (x, y, z) = x2 + y2 + z2 = c1, g(x, y, z) =
y
x
= c2 (89)

and the corresponding pair of slope functions is

α =
y
x

, β = − x2 + y2

xz
. (90)

For this set of orbits, we have α0 = 0 which leads to j3 = 0. After some simplifications, the
Equation (87) takes the form

yPx − xPy = 0 (91)

and has the general solution
P(x, y) = M(x2 + y2) (92)

where M is an arbitrary function of its argument u = x2 + y2. Then we determine the coefficients
in (88). They are

m11 =
x2 + y2

x
, m12 =

y(x2 + y2)

x2 m13 = − (x2 + y2 − xz)(x2 + y2 + xz)
x2z

,

m23 =
yz
x

, m33 = − x2 + y2

x
,

m01 =
3x2 + y2

x2 , m02 =
2y
x

, m03 = −3(x2 + y2)

xz
.

Among others, for the functions P and Q we select

P(x, y) = (x2 + y2)k, Q(z) = zs, k, s ∈ Z (93)

Under these circumstances, the relation (88) is satisfied if and only if

2 + 2k + s = 0. (94)

Thus, the potential function V = V(x, y, z) is found to be

V(x, y, z) = (x2 + y2)kzs, s = −2 − 2k, (95)

or, equivalently,

V(x, y, z) =
1
z2

( x2 + y2

z2

)k
. (96)

7. Two-Dimensional Potentials

Two-dimensional potentials is another category of potentials and we obtain them if we
set Q(z) = 0 in (18), or, if we set Q(z) = 1 in (33). In this case we have to face the problem
from the beginning. More precisely, for the given family of orbits (1), we solve analytically
the PDE (19) and we find the general solution P(x, y). Then we insert it in (21) and we
check if it is satisfied. We shall offer the following
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Example 6. We deal with the family of orbits (see Figure 4a)

f (x, y, z) = x2 + y2 = c1, g(x, y, z) =
z
x4 = c2, (97)

and
α = − x

y
, β =

4z
x

. (98)

The PDE (19) takes the form
x(x2 − 2y2)Px − 3y3Py = 0. (99)

The subsidiary system of (99) is

dx
x(x2 − 2y2)

=
dy

−3y3 =
dP
0

. (100)

The first independent integral of (100) is:

P(x, y) = c̃1 = const.

and the second one will be found if we solve the ODE

dy
dx

= − 3y3

x(x2 − 2y2)
. (101)

By making the trnasformation y = xω, the O.D.E. (101) reads

(2ω2 − 1
ω3 + ω

)
dω =

dx
x

(102)

and the general solution of (102) is

3
2

log
(1 + ω2

ω

)
= log x + log c̃2, (103)

or, equivalently,

c̃2 =
(x2 + y2)3

x6y2 . (104)

The general solution of (99) is F (c̃1, c̃2) = 0, from which we take

P(x, y) = M(u), u =
(x2 + y2)3

x6y2 . (105)

where M is an arbitrary function of its unique argument. Now, we insert (105) into (11) and we
ascertain that the Equation (11) is satisfied if and only if

d2M
du2 = 0, (106)

which leads to the conclusion that M(u) = d1u + d2, ( d1, d2 = const). Thus, the two-dimensional
potential V = P(x, y) is

V(x, y) =
d1(x2 + y2)3

x6y2 + d2. (107)

Remark 3. The potential found in (107) is two-dimensional and we can say that Vz = 0. Thus,
we have ż = const. Consequently, the orbits cannot be closed. Furthermore, the projection of this
orbit on the level xy is a regular curve and it is determined by the system (97). A member of this
family of orbits is shown at Figure 4a.
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(a) (b)

Figure 4. (a) One member of the family of orbits (97) for c1 = c2 = 1.5. (b) One member of the family
of orbits (110) for c1 = c2 = 2 and d3 = 1.

8. Families of Straight Lines

If α0 = 0 and β0 = 0, then we have a two-parameter family of straight lines (FSL) in 3-D
space under consideration. As it was shown by [13], not any potentials can produce two-
parametric families of straight lines in 3-D space, but only those satisfying the following
two necessary and sufficient differential conditions

Vxy(V2
x − V2

y ) − VxVy(Vxx − Vyy) + Vz(VxVyz − VyVxz) = 0,

Vxz(V2
x − V2

z ) − VxVz(Vxx − Vzz) + Vy(VxVyz − VzVxy) = 0. (108)

If we replace (18) into (108), then we ascertain that the first of Equation (108) is satisfied
when

I. ∂P
∂x = ∂P

∂y , ∂2P
∂x2 = ∂2P

∂y2 .

II. ∂P
∂x = − ∂P

∂y , ∂2P
∂x2 = ∂2P

∂y2 .

The Case I leads to the result that P = P(x + y). But the second of Equation (108) is satisfied
only if P(x + y) = x + y and Q(z) = d3z, where d3 = const. Thus, the potential is found to be
V(x, y, z) = x + y + d3z. Working in a similar way for the Case II, we obtain the following
result: V(x, y, z) = x − y + d3z. For the first result, the family of straight lines is

α =
Vy

Vx
= 1, β =

Vz

Vx
= d3, (109)

or, equivalently,

f (x, y, z) = y − x = c1, g(x, y, z) = z − d3x = c2. (110)

A member of the family of straight lines (110) is shown at Figure 4b. For the second result,
the family of straight lines is

α =
Vy

Vx
= −1, β =

Vz

Vx
= d3, (111)

or, equivalently,

f (x, y, z) = y + x = c1, g(x, y, z) = z − d3x = c2. (112)
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Another choice is P(x, y) = x2 + y2. The first of Equation (108) is satisfied identically but
the second one is verified when

Q′′(z) = 2 (113)

which means that Q(z) = z2 + d3z + d4, where d3, d4 = const. Thus, the total expression
for the potential is

V(x, y, z) = x2 + y2 + z2 + d3z + d4. (114)

Similar results were obtained by [13,21].

9. Concluding Comments

In the present paper we studied semi-separable potentials as solutions of the 3D
inverse problem of Newtonian dynamics. These potentials are: V(x, y, z) = P(x, y) + Q(z),
or, V(x, y, z) = P(x2 + y2) + Q(z) and V(x, y, z) = P(x, y)Q(z) and are very useful in
physical problems. Our aim was to find two-parametric families of spatial regular orbits
f (x, y, z) = c1, g(x, y, z) = c2, (c1, c2 = const), which are generated by these potentials.

It is known that the two basic PDEs (9) and (11) combine potentials and families of
orbits (Section 3) taking into account that at least one of {α0, β0} is different from zero.
In the first case the second order PDE (11) is transformed to a linear second order PDE
of a function P of two variables, i.e., x, y, and can be solved analytically by using the
classical methods of the theory of PDEs. For the second case, we found three-dimensional
integrable potentials. In the third case, the second order PDE (11) is transformed to a
non-linear second order PDE of a function P of two variables, i.e., x, y, and cannot be solved
analytically. Furthermore, special cases of the problem were also studied and useful results
were obtained. The problem is more complicated now than the previous ones because we
deal with two independent functions P(x, y) and Q(z) and we have to guess which the
appropriate solutions are. Thus, we search special solutions in order to get a potential
which generates the given family of orbits (1). Another category is the 2D potentials and
were examined separately. Many simplifications can be made in this case because the
function Q(z) has a constant value. Families of straight lines is an interesting case of curves
in 3D space and we studied potentials which produce them. Not any potentials but only
those which satisfy the differential relations (108) in the text can produce a two-parametric
family of straight lines.The examples are new and original and cover all the cases.
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