
Citation: Liu, C.-S.; Kuo, C.-L.; Chang,

C.-W. A Symmetry of Boundary

Functions Method for Solving the

Backward Time-Fractional Diffusion

Problems. Symmetry 2024, 16, 191.

https://doi.org/10.3390/

sym16020191

Academic Editors: Dongfang Li,

Hongyu Qin and Xiaoli Chen

Received: 9 January 2024

Revised: 26 January 2024

Accepted: 28 January 2024

Published: 6 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Symmetry of Boundary Functions Method for Solving the
Backward Time-Fractional Diffusion Problems
Chein-Shan Liu 1 , Chung-Lun Kuo 1 and Chih-Wen Chang 2,*

1 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan;
csliu@ntou.edu.tw (C.-S.L.); eji1215@gmail.com (C.-L.K.)

2 Department of Mechanical Engineering, National United University, Miaoli 360302, Taiwan
* Correspondence: cwchang@nuu.edu.tw

Abstract: In the paper, we develop three new methods for estimating unknown initial temperature in
a backward time-fractional diffusion problem, which is transformed to a space-dependent inverse
source problem for a new variable in the first method. Then, the initial temperature can be recovered
by solving a second-order boundary value problem. The boundary functions and a unique zero
element constitute a group symmetry. We derive energetic boundary functions in the symmetry
group as the bases to retrieve the source term as an unknown function of space and time. In the
second method, the solution bases are energetic boundary functions, and then by collocating the
governing equation we obtain the expansion coefficients for retrieving the entire solution and initial
temperature. For the first two methods, boundary fluxes are over-specified to retrieve the initial
condition. In the third method, we give two boundary conditions and a final time temperature to
construct the bases in another symmetry group; the governing equation is collocated to a linear
system to obtain the whole solution (initial temperature involved). These three methods are assessed
and compared by numerical experiments.

Keywords: time-fractional diffusion equation; inverse source problem; group symmetry method;
backward diffusion problem; boundary functions; energetic boundary functions

1. Introduction

The time-fractional diffusion equation has many practical applications in anomalous
sub-diffusion and random walk models [1–3], as well as some complicated dynamical
systems in fields such as semi-conductors, porous media, life science, and economy finance,
etc. [4–6]. We consider

Dα
t T(x, t) = Txx(x, t) + ρ(x, t), (x, t) ∈ (0, a)× (0, t f ], (1)

T(0, t) = T0(t), T(a, t) = Ta(t), Tx(0, t) = Q0(t), Tx(a, t) = Qa(t), (2)

and give the over-specified data:

ρ(0, t) = ρ0(t), ρ(a, t) = ρa(t), ρx(0, t) = ρx0(t), ρx(a, t) = ρxa(t), (3)

for recovering an unknown source ρ(x, t), which depends on space and time.
The Caputo’s time-fractional derivative Dα

t T(x, t) is [7–9]:

Dα
t T(x, t) =

1
Γ(1 − α)

∫ t

0

Ts(x, s)
(t − s)α

ds, 0 < α < 1. (4)

Many works on the above inverse source problem suppose that ρ(x, t) can be split into
a product G(x)F(t), and G(x) or F(t) is known in advance. In order to identify G(x) or F(t),
the final time data are required, and a regularization is developed to recover the unknown
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source function [10–17]. In this paper, we merely use the boundary measurements to
recover the source function of space and time.

The time-fractional derivative and its extension to variant order have many physical
applications [18]. Besides the time-fractional diffusion equation, lots of scholars have
developed many schemes to cope with the time fractional Burgers’ equation, like the oper-
ator splitting approach and artificial boundary method [19], the nonuniform Alikhanov
formula of the Caputo time fractional derivative and Fourier spectral approximation in
space [20], the L1 scheme and the local discontinuous Galerkin method [21], the Lucas poly-
nomials coupled with finite difference method [22], the fourth-order compact difference
scheme [23], the L1 implicit difference scheme based on non-uniform meshes [24], a second-
order energy stable and nonuniform time-stepping scheme [25], a collocation approach
with trigonometric tension B-splines [26], the cubic B-spline functions and θ-weighted
scheme [27], the local projection stabilization virtual element method [28], a compact
difference scheme [29], the Caputo–Katugampola fractional derivative by extending the
Laplace transform [30], and the tailored finite point method based on exponential ba-
sis [31]. For the time-fractional Schrödinger equations, lots of researchers have proposed
many algorithms, like the conformable natural transform and the homotopy perturbation
method [32], the conformable fractional derivatives modified Khater technique and the
Adomian decomposition method [33], the Laplace Adomian decomposition method and
the modified generalized Mittag–Leffler function method [34], a Caputo residual power
series scheme [35], and the extended Kudryashov method [36].

The solution to the backward time-fractional diffusion problem is to recover the initial
temperature. By

T(x, t) = u(x, t)− g(x),

where the initial temperature g(x) is an unknown function, we can transform Equation (1)
to an inverse source problem for u(x, t):

Dα
t u(x, t) = uxx(x, t)− g′′(x) + ρ(x, t).

By applying the inverse source technique we can recover g′′(x), and it becomes a second-
order boundary value problem for g(x). We are going to solve the backward time-fractional
diffusion problem by two novel methods, which merely require the boundary data.

Liu and Yamamoto [37] described this sort-backward problem for the porous media-
related diffusion process with continuous time random walks. Practically, it is of great
importance because the initial density of substance is not often known, but the density at a
positive moment can be measured to provide a final time condition. In general, for a better
solution of the backward problem, some regularization techniques were used [38–42].

For seeking an accurate solution of the fractional partial differential equation (PDE),
a key issue is the development of a very precise numerical method to compute the fractional
derivative term at discretized points. However, for the fractional PDE, only limited ap-
proaches of the Laplace transformation, the Fourier transformation and the iteration method
are available [43,44]. Currently, there are high-order finite difference method [45–47],
the Grünwald–Letnikov method [48], Diethelm’s method [49,50], and the combination of
Diethelm’s method and Hadamard’s finite-part integral [51]. In the paper, we will develop
particular bases in terms of space and time explicitly, such that by equipping with the Gaus-
sian quadrature, we can generate a linear equations system with very accurate coefficients
matrix and right-hand vector to solve the time-fractional partial differential equation with
high accuracy.

The rest of the paper’s contents proceed as follows. In Section 2, we develop a
symmetry of boundary functions method to solve the inverse source problem under over-
specified boundary data; a certain group symmetry is set up for the construction of bases,
and a set of energetic boundary functions is created. Section 3 derives the linear equations
system to recover the source term, which is a function of space and time. Numerical
experiments to solve the inverse source problems are given in Section 4. We solve the
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backward time-fractional diffusion problems in Section 5 with three novel methods being
developed. In Section 6, numerical experiments to solve the backward time-fractional
diffusion problems are given. Finally, we conclude the main achievements in Section 7.

2. A Method of Symmetry of Boundary Functions

To be used throughout the paper, we derive the following formula:

Γ(1 − α) =
∫ 1

0
(e−tt−α + e−1/ttα−2)dt. (5)

In the paper, we will apply the three-point Gaussian quadrature to compute the integral
terms in Equations (4) and (5).

Let ν = 1 − α. Starting from the definition of Gamma function:

Γ(ν) =
∫ ∞

0
e−ttν−1dt, (6)

we divide it into two sub-integrals:

Γ(ν) =
∫ ∞

1
e−ttν−1dt +

∫ 1

0
e−ttν−1dt. (7)

Take τ = 1/t in the first integral,

∫ ∞

1
e−ttν−1dt =

∫ 0

1
e−1/ττ1−ν −dτ

τ2 =
∫ 1

0
e−1/ττ−1−νdτ. (8)

Then, we can compute Γ(ν) by

Γ(ν) =
∫ 1

0
(e−ttν−1 + e−1/tt−ν−1)dt, (9)

which is a definite integral, and the three-point Gaussian quadrature is applicable. Taking
ν = 1 − α in Equation (9), we can derive Equation (5).

Equation (1) is multiplied by T(x, t):

T(x, t)Dα
t T(x, t) = Txx(x, t)T(x, t) + ρ(x, t)T(x, t).

By integration it follows that
∫ a

0
T(x, t)Dα

t T(x, t)dx +
∫ a

0
T2

x (x, t)dx −
∫ a

0
ρ(x, t)T(x, t)dx = F(t), (10)

where
F(t) := Qa(t)Ta(t)− Q0(t)T0(t) (11)

is obtained from Equation (2).
To set up a group symmetry, let

u(x, t) = T(x, t)− HT(x, t) (12)

be a new variable, where a homogeneous function for T(x, t):

HT(x, t) =
x3

a3 [2T0(t)− 2Ta(t) + aQ0(t) + aQa(t)]

− x2

a2 [3T0(t)− 3Ta(t) + 2aQ0(t) + aQa(t)] + xQ0(t) + T0(t) (13)

matches all boundary conditions in Equation (2):
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HT(0, t) = T0(t), HT(a, t) = Ta(t), HT
x (0, t) = Q0(t), HT

x (a, t) = Qa(t); (14)

hence, by Equations (12) and (14),

u(0, t) = 0, u(a, t) = 0, ux(0, t) = 0, ux(a, t) = 0. (15)

It follows from Equations (10) and (12) that
∫ a

0
[u(x, t) + HT(x, t)][Dα

t u(x, t) + Dα
t HT(x, t)]dx +

∫ a

0
[ux(x, t) + HT

x (x, t)]2dx

−
∫ a

0
[u(x, t) + HT(x, t)]ρ(x, t)dx = F(t). (16)

First, we introduce a family of homogenization functions:

Bj(x) = (x4 − 2ax3 + a2x2)xj−1, j ≥ 1, (17)

which satisfy
Bj(0) = 0, Bj(a) = 0, Bj

x(0) = 0, Bj
x(a) = 0. (18)

Recall that a group consists of a non-empty set G and a binary operation + on G,
satisfying the following conditions [52]:

(a) For any two g1, g2 ∈ G, g1 + g2 ∈ G (closure property).
(b) (g1 + g2) + g3 = g1 + (g2 + g3) for any g1, g2, g3 ∈ G (associativity).
(c) There is a unique zero element 0 ∈ G, such that 0 + g = g + 0 = g ∈ G (zero element).
(d) For every g ∈ G there is a unique element −g ∈ G, such that −g + g = g + (−g) =

0 ∈ G (inverse element).

An addition group denoted by G consists of a zero element and the set of all boundary
functions:

{Bj(x)}, j ≥ 1, (19)

subjecting to Equation (18).

Theorem 1. In Equation (1), ρ(x, t) can be approximately recovered by solving the following
functional equation:

∫ a

0
[HT(x, t) + Ej(x)]ρ(x, t)dx

=
∫ a

0
[HT(x, t) + Ej(x)]Dα

t HT(x, t)dx +
∫ a

0
[Ej

x(x) + HT
x (x, t)]2dx − F(t), (20)

where
Ej(x) = γjBj(x) + Bj+1(x), j ≥ 1, (21)

are elements in the symmetry group G. In Equation (21),

γj =
−e1 −

√
e2

1 − 4e0e2

2e2
, (22)

where

e2 =
∫ a

0
Bj

x(x)2dx,

e1 =
∫ a

0
{2[Bj+1

x (x) + HT
x (x, t)]Bj

x(x) + [Dα
t HT(x, t)− ρ(x, t)]Bj(x)}dx,

e0 =
∫ a

0
{[Bj+1

x (x) + HT
x (x, t)]2 + [Dα

t HT(x, t)− ρ(x, t)][Bj+1(x) + HT(x, t)]}dx − F(t). (23)
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Proof. It permits Ej(x) ∈ G in Equation (21) with the closure property of group:

Ej(0) = 0, Ej(a) = 0, Ej
x(0) = 0, Ej

x(a) = 0. (24)

The group reflects a certain symmetry of the set of all boundary functions. Next, we
determine γj for each Ej(x).

The symmetry G involves u(x, t) as a particular element, since u(x, t) satisfies the
boundary conditions in Equation (15). Because of Ej(x) ∈ G and u(x, t) ∈ G, in the
energetic identity (16), u(x, t) is approximately replaced by Ej(x); hence, the energetic
functional Equation (20) was derived, where Dα

t Ej(x) = 0 was taken into account.
By Equations (20) and (21), and

Ej
x(x) = γjB

j
x(x) + Bj+1

x (x), (25)

we can derive
e2γ2

j + e1γj + e0 = 0, (26)

where e2, e1, and e0 were given in Equation (23). The solution of Equation (26) for γj is
given by Equation (22). Moreover, Ej(x) ∈ G, Ej(x) also satisfying Equation (20) are called
the energetic boundary functions.

3. The Recovery of Source Term

Let

ρ(x, t) = Hρ(x, t) +
m

∑
i=1

ciEi(x), (27)

where

Hρ(x, t) =
x3

a3 [2ρ0(t)− 2ρa(t) + aρx0(t) + aρxa(t)]

− x2

a2 [3ρ0(t)− 3ρa(t) + 2aρx0(t) + aρxa(t)] + xρx0(t) + ρ0(t) (28)

satisfies all conditions in Equation (3). Since Ei(x) satisfies Equation (24), the advantage
for Equation (27) is that ρ(x, t) automatically satisfies all over-specified conditions in
Equation (3).

Inserting Equation (27) for ρ(x, t) into Equation (20) and taking j = 1, . . . , m, yields

m

∑
i=1

ci

∫ a

0
Ei(x)[HT(x, t) + Ej(x)]dx

=
∫ a

0
[HT(x, t) + Ej(x)][Dα

t HT(x, t)− Hρ(x, t)]dx

+
∫ a

0
[Ej

x(x) + HT
x (x, t)]2dx − F(t), j = 1, . . . , m, (29)

which are m linear equations to determine m coefficients ci.
The method of using the symmetry of boundary functions is depicted as follows.

(i) Give t ∈ (0, t f ], m, ε, γj = 0, Ej(x) = Bj+1(x), and c0 = (c0
1, . . . , c0

m)
T. (ii) Do k = 0, 1, . . .,

ρ(x, t) = Hρ(x, t) +
m

∑
j=1

ck
j Ej(x),

and calculate e2, e1 and e0 by Equation (23). (iii) Calculate γj by Equation (22). (iv) Insert

Ej(x) = γjBj(x) + Bj+1(x) and Ej
x(x) = γjB

j
x(x) + Bj+1

x (x) into
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m

∑
i=1

ci

∫ a

0
Ei(x)[HT(x, t) + Ej(x)]dx

=
∫ a

0
[HT(x, t) + Ej(x)][Dα

t HT(x, t)− Hρ(x, t)]dx +
∫ a

0
[Ej

x(x) + HT
x (x, t)]2dx − F(t),

and solve it to obtain ck+1, until
∥ck+1 − ck∥ ≤ ε;

otherwise, go to (ii).

4. Testing Inverse Source Problems

Let R(i) ∈ [−1, 1] be random errors in the noisy boundary measured data:

T̂(0, ti) = T0(ti)[1 + sR(i)], T̂(a, ti) = Ta(t)[1 + sR(i)], T̂x(0, ti) = Q0(ti)[1 + sR(i)],

T̂x(a, t) = Qa(ti)[1 + sR(i)],

ρ̂(0, ti) = ρ0(ti)[1 + sR(i)], ρ̂(a, ti) = ρa(ti)[1 + sR(i)], ρ̂x(0, ti) = ρx0(ti)[1 + sR(i)],

ρ̂x(a, ti) = ρxa(ti)[1 + sR(i)]. (30)

Example 1. Consider

T(x, t) = e−t sin x, ρ(x, t) = [Dα
t (e

−t) + e−t] sin x. (31)

Take α = 0.2 and s = 2%. Good result is obtained as shown in Figure 1 to show the
maximal absolute errors vs. t for the recovery of ρ(x, t). The maximum error (ME) over the plane
[0, 1]× (0, 1] is 9.57 × 10−3, and the root-mean-square-error (RMSE) is 1.04 × 10−5. Without the
aid of the data of ρx(0, t) = ρx0(t) and ρx(a, t) = ρxa(t), ME raises to 7.18 × 10−2.
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Example 1. Consider
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t (e

−t) + e−t] sin x. (31)

Take α = 0.2 and s = 2%. Good result is obtained as shown in Fig. 1 to show the maximal abso-
lute errors vs. t for the recovery of ρ(x, t). The maximum error (ME) over the plane [0, 1]× (0, 1]
is 9.57 × 10−3, and the root-mean-square-error (RMSE) is 1.04 × 10−5. Without the aid of the
data of ρx(0, t) = ρx0(t) and ρx(a, t) = ρxa(t), ME raises to 7.18× 10−2.

Example 2. We recover a more complex ρ(x, t) from

T (x, t) = t+ x2 + x3 + exp(xt2). (32)

Take α = 0.5 and s = 1%. ME is 6.78 × 10−2 as shown in Fig. 2, and RMSE=6.8 × 10−4 is
obtained. Notice that max(|ρ(x, t)|)=7.83, which reveals that the accuracy of the recovered func-
tion ρ(x, t) with ME=6.78 × 10−2 is very accurate. When ρx(0, t) = ρx0(t) and ρx(a, t) = ρxa(t)
are not given, ME raises to 0.284.

Example 3. We further consider

T (x, t) = ex+t cos(xt). (33)

With α = 0.8, s = 2%, m = 2 and ε = 10−1, we obtain ME=0.197 in Fig. 3, and RMSE=2.05×
10−3. The value of max(|ρ(x, t)|)=11.8 is noticed, which reveals that the accuracy of the recov-
ered function ρ(x, t) with ME=0.197 is very accurate. Without taking ρx(0, t) = ρx0(t) and
ρx(a, t) = ρxa(t) into account, ME raises to 0.291.

Example 4. We consider [17]:

T (x, t) = t2 sin(πx), ρ(x, t) =

[
Γ(3)

Γ(3− α)
t2−α + π2t2

]
sin(πx). (34)

Table 1 lists ME, RMSE and the maximum value of ρ(x, t). We fix s = 2%, α = 0.7, a = 0.5, and
vary tf . Good results are obtained.
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Example 2. We recover a more complex ρ(x, t) from

T(x, t) = t + x2 + x3 + exp(xt2). (32)

Take α = 0.5 and s = 1%. ME is 6.78× 10−2 as shown in Figure 2, and RMSE = 6.8 × 10−4

is obtained. Notice that max(|ρ(x, t)|) = 7.83, which reveals that the recovered function ρ(x, t)
with ME = 6.78 × 10−2 is very accurate. When ρx(0, t) = ρx0(t) and ρx(a, t) = ρxa(t) are not
given, ME raises to 0.284.
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With α = 0.8, s = 2%, m = 2 and ε = 10−1, we obtain ME = 0.197 in Figure 3, and
RMSE = 2.05 × 10−3. The value of max(|ρ(x, t)|) = 11.8 is noticed, which reveals that the recov-
ered function ρ(x, t) with ME = 0.197 is very accurate. Without taking ρx(0, t) = ρx0(t) and
ρx(a, t) = ρxa(t) into account, ME raises to 0.291.
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Example 4. We consider [17]:

T(x, t) = t2 sin(πx), ρ(x, t) =
[

Γ(3)
Γ(3 − α)

t2−α + π2t2
]

sin(πx). (34)

Table 1 lists ME, RMSE and the maximum value of ρ(x, t). We fix s = 2%, α = 0.7,
a = 0.5, and vary t f . Good results are obtained.

Table 1. For Example 4, solved by the proposed method, listing some results.

t f 0.4 0.6 0.7 0.8 0.9 1

ME 1.36× 10−2 2.87× 10−2 3.82× 10−2 4.91× 10−2 6.13× 10−2 7.47× 10−2

RMSE 1.04× 10−2 1.75× 10−2 2.26× 10−2 2.86× 10−2 3.54× 10−2 4.32× 10−2

Max|ρ| 2.13 4.49 5.98 7.67 9.57 11.68
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5. Backward Time-Fractional Diffusion Problems

From now on we discuss the backward time-fractional diffusion problem of

Dα
t v(x, t) = vxx(x, t) + S(x, t), (x, t) ∈ (0, a)× (0, t f ], (35)

v(0, t) = v0(t), v(a, t) = va(t), vx(0, t) = q0(t), vx(a, t) = qa(t), (36)

where S(x, t) is given, and v0(t), va(t), q0(t), and qa(t) are given functions of time. The un-
known initial condition

v(x, 0) = g(x) (37)

is to be recovered.

5.1. First Method

Let
T(x, t) = v(x, t)− g(x) (38)

be a new variable, where g(x) satisfies the compatibility conditions:

g(0) = v0(0), g(a) = va(0), g′(0) = q0(0), g′(a) = qa(0). (39)

Equation (1) is derived again by inserting Equation (38) for v(x, t) into Equation (35),
of which

ρ(x, t) = S(x, t) + g′′(x). (40)

Now, g′′(x) is an unknown function of x; however, S(x, t) to be a given function is known.
We can apply the inverse source technique developed in Section 3 to recover g′′(x) in

ρ(x, t). Equations (2) and (3) are changed to

T(0, t) = T0(t) = v0(t)− v0(0), T(a, t) = Ta(t) = va(t)− va(0),

Tx(0, t) = Q0(t) = q0(t)− q0(0), Tx(a, t) = Qa(t) = qa(t)− qa(0), (41)

ρ(0, t) = ρ0(t) = S(0, t) + g′′(0), ρ(a, t) = ρa(t) = S(a, t) + g′′(a),

ρx(0, t) = ρx0(t) = Sx(0, t) + g′′′(0), ρx(a, t) = ρxa(t) = Sx(a, t) + g′′′(a). (42)

When ρ(x, t) is obtained from Equation (27),

g′′(x) = Hρ(x, t) +
m

∑
i=1

ciEi(x)− S(x, t) (43)

can be obtained from Equation (40).
Equation (43) under the given boundary conditions g(0) = v0(0) and g(a) = va(0) is

a second-order boundary value problem. We take

g(x) = g(0) +
x
a
[g(a)− g(0)] +

m

∑
j=1

aj sin
jπx

a
. (44)

Differentiating twice,

g′′(x) =
m

∑
j=1

aj
j2π2

a2 sin
jπx

a
. (45)

Collocating N1 points xk = ka/(N1 + 1), k = 1, . . . , N1 inside the interval, we obtain a
linear system:

m

∑
j=1

aj
j2π2

a2 sin
jπxk

a
= S(xk, t f )− Hρ(xk, t f )−

m

∑
i=1

ciEi(xk), k = 1, . . . , N1. (46)
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Solving this system for aj and inserting them into Equation (44), we can recover the initial
temperature g(x) = v(x, 0).

5.2. Second Method

We take

v(x, t) = Hv(x, t) +
m

∑
j=1

ajEj(x), (47)

where Ej(x) can be definitely constructed from Equations (21)–(23), without needing of
iteration, because ρ(x, t) is replaced by S(x, t), and HT(x, t) is replaced by

Hv(x, t) =
x3

a3 [2v0(t)− 2va(t) + aq0(t) + aqa(t)]

− x2

a2 [3v0(t)− 3va(t) + 2aq0(t) + aqa(t)] + xq0(t) + v0(t), (48)

and they are both given functions of space and time. Here,

e2 =
∫ a

0
Bj

x(x)2dx,

e1 =
∫ a

0
{2[Bj+1

x (x) + Hv
x(x, t)]Bj

x(x) + [Dα
t Hv(x, t)− S(x, t)]Bj(x)}dx,

e0 =
∫ a

0
{[Bj+1

x (x) + Hv
x(x, t)]2 + [Dα

t Hv(x, t)− S(x, t)][Bj+1(x) + Hv(x, t)]}dx

−[qa(t)va(t)− q0(t)v0(t)] (49)

are used in Equation (22) to determine γj, and then inserting γj into Equation (21) to
determine Ej(x). If t = 0, we set Dα

t Hv(x, t) = 0.
Inserting Equation (47) into Equation (35), generates

m

∑
j=1

ajE
j
xx(x) = Dα

t Hv(x, t)− Hv
xx(x, t)− S(x, t). (50)

For each time step t, collocating N1 points xk = ka/(N1 + 1), k = 1, . . . , N1 inside the
interval, we can obtain a linear system:

m

∑
j=1

ajE
j
xx(xk) = Dα

t Hv(xk, t)− Hv
xx(xk, t)− S(xk, t), k = 1, . . . , N1. (51)

Solving this system for aj and inserting them into Equation (47), we can recover the whole
solution of v(x, t), including the initial temperature g(x) = v(x, 0).

5.3. Third Method

The standard backward time-fractional diffusion problem is sketched by

Dα
t u(x, t) = uxx(x, t) + S(x, t), (x, t) ∈ (0, a)× (0, t f ], (52)

u(0, t) = u0(t), u(a, t) = ua(t), u(x, t f ) = f (x). (53)

Here, we do not need two extra boundary fluxes as that in Section 5.2; however, a condition
u(x, t f ) = f (x) is imposed at the final time.

We introduce a special homogeneous function for u(x, t) by

Hu(x, t) = Hp(x, t) +
t
t f
[ f (x)− Hp(x, t f )], (54)

where
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Hp(x, t) = u0(t) +
x
a
[ua(t)− u0(t)]. (55)

We can verify

Hu(0, t) = u0(t), Hu(a, t) = ua(t), Hu(x, t f ) = f (x), (56)

as that required by Equation (53).
Then we take

u(x, t) = Hu(x, t) +
m1

∑
j=1

m2

∑
k=1

AjkBjk(x, t), (57)

where

Bjk(x, t) =
( x

a

)j
[( x

a

)j
− 1
]

(

t
t f

)k

− 1


. (58)

All the boundary functions B(x, t) satisfying

B(0, t) = 0, B(a, t) = 0, B(x, t f ) = 0, (59)

form an addition group symmetry G. Obviously, Bjk(x, t) ∈ G.
Inserting Equation (57) into Equation (52) renders

m1

∑
j=1

m2

∑
k=1

Ajk[B
jk
xx(x, t)− Dα

t Bjk(x, t)] = Dα
t Hu(x, t)− Hu

xx(x, t)− S(x, t). (60)

By collocating N1 × N2 points with xK = Ka/(N1 + 1), K = 1, . . . , N1 and tJ =
Jt f /(N2 + 1), J = 1, . . . , N2 inside the domain (0, a)× (0, t f ), we can derive

m1

∑
j=1

m2

∑
k=1

Ajk[B
jk
xx(xK, tJ)− Dα

t Bjk(xK, tJ)] = Dα
t Hu(xK, tJ)− Hu

xx(xK, tJ)− S(xK, tJ). (61)

Solving this linear system for Ajk and inserting them into Equation (57), we can recover the
whole solution of u(x, t), including the initial temperature g(x) = u(x, 0).

6. Testing Backward Time-Fractional Diffusion Problems

Example 5. We take Example 1 again,

v(x, t) = e−t sin x, g(x) = sin x. (62)

With s = 2%, m = 5, α = 0.2, t f = 0.6 and N1 = 41, good result is obtained by the first
method as shown in Figure 4a. The ME over the unit interval [0, 1] is 7.16 × 10−4 as shown in
Figure 4b. Under the same values of parameters, the result obtained by the second method is shown
in Figure 4a, whose ME is 4.46 × 10−3 as shown in Figure 4b. The ME rendered by the third
method with m1 = 10 and m2 = 6 is 8.05 × 10−4 as shown in Figure 4b. The CPU times for the
first, second and third methods are, respectively, 8.69 s, 1.56 s and 0.67 s.

Example 6. Consider
v(x, t) = ex+t cos(xt), g(x) = ex. (63)

By s = 10%, m = 5, α = 0.9, t f = 0.2 and N1 = 41, good result is obtained by the first method as
shown in Figure 5a. ME is 4.63 × 10−2 as shown in Figure 5b. The result obtained by the second
method is shown in Figure 5a; ME = 7.21 × 10−2 is seen from Figure 5b. The ME rendered by the
third method with m1 = m2 = 3 is 8.48 × 10−3 as shown in Figure 5b. The CPU times for the first,
second and third methods are, respectively, 5.74 s, 0.67 s and 0.34 s.
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Figure 4. (a) Comparing recovered and exact initial temperatures for Example 5, and (b) numerical errors.

Example 7. A more complex initial temperature is considered:

v(x, t) = e−t2
(xe−x + x2 + cos x), g(x) = xe−x + x2 + cos x. (64)

By s = 2%, m = 6, α = 0.6, t f = 0.1 and N1 = 101, good result is obtained by the first
method as shown in Figure 6a. ME over [0, 1.5] is 6.75 × 10−2 as shown in Figure 6b. The
result obtained by the second method is shown in Figure 6a, whose ME = 2.1 × 10−2 is seen from
Figure 6b. ME = 8.95 × 10−3 is obtained by the third method with m1 = 10 and m2 = 2 as shown
in Figure 6b. The CPU times for the first, second and third methods are, respectively, 2.51 s, 0.39 s
and 0.21 s.

Example 8. For further testing the performance of the third method, we consider

u(x, t) = t2 sin(πx), g(x) = 0, S(x, t) =
[

Γ(3)
Γ(3 − α)

t2−α + π2t2
]

sin(πx). (65)
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Table 2 lists the ME for the recovery of g(x) rendered by the third method with m1 = 4
and m2 = 2. We fix s = 2%, α = 0.7, a = 1, and vary t f . Good results are obtained. It can
be seen that all MEs are much smaller than the error of noise with s = 0.02.

Table 2. For Example 8, solved by the third method, listing the MEs of g(x).

t f 0.2 0.5 0.8 1 1.5 2 3

ME 1.47 × 10−5 5.77 × 10−5 9.97 × 10−5 1.27 × 10−4 1.98 × 10−4 2.69 × 10−4 4.19 × 10−4

Example 9. We apply the third method to a large time span and a high noisy case:

u(x, t) = t + (1 − 2x)(2 − 2x) sin(2πx), g(x) = (1 − 2x)(2 − 2x) sin(2πx),

S(x, t) =
t1−α

Γ(2 − α)
− g′′(x). (66)
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For s = 10%, m1 = 15, m2 = 3, α = 0.25, a = 1.5, and t f = 5, shown in Figure 7a is a good
recovery of the initial temperature with a large time duration and under a large noise. ME over
[0, 1.5] shown in Figure 7b is 1.34 × 10−2.

In addition to Equation (58), the following bases can also be adopted:

Bjk(x, t) = sin
(

jπx
a

)

(

t
t f

)k

− 1


 ∈ G. (67)

We solve this example again by using this sinusoidal bases. We raise m1 to m1 = 25 and other
parameters values are the same. ME over [0, 1.5] shown in Figure 7b is 1.78 × 10−2, which is
slightly larger than that using the polynomial bases in Equation (58).
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Example 10. To compare the result obtained in [41], we take
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Dα
t u(x, t) = uxx(x, t), (x, t) ∈ (0, π)× (0, t f ],

u(0, t) = u(π, t) = 0, u(x, 0) = sin x + sin 2x,

u(x, t) = E1/2,1(−t1/2) sin x + E1/2,1(−4t1/2) sin 2x, (68)

where the function E1/2,1(s) is given by

E1/2,1(s) =
2√
π

es2
∫ ∞

−s
e−τ2

dτ. (69)

The absolute noise δ is imposed on the final time data by

f̂ (x) = u(x, t f ) +

√
2
π

δR(x). (70)

For δ = 0.032, the L2 error obtained in [41] is 1.5415. By m = 3 the second method obtains
0.55203 of the L2 error. With m1 = 2, m2 = 4, α = 0.5, a = π, and t f = 1, we recover the initial
temperature with Bjk(x, t) given by Equation (67). The L2 error obtained by the third method is
0.89075, which is smaller than 1.5415 obtained in [41]. Moreover, the L2 error 0.55203 obtained by
the second method is smaller than 0.89075 obtained by the third method, and much smaller than
1.5415 obtained in [41].
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Table 2. For example 8 solved by the third method, listing the MEs of g(x)

tf 0.2 0.5 0.8 1 1.5 2 3
ME 1.47× 10−5 5.77× 10−5 9.97× 10−5 1.27× 10−4 1.98× 10−4 2.69× 10−4 4.19× 10−4

Example 9. We apply the third method to a large time span and a high noisy case:

u(x, t) = t+ (1− 2x)(2− 2x) sin(2πx), g(x) = (1− 2x)(2− 2x) sin(2πx),

S(x, t) =
t1−α

Γ(2− α)
− g′′(x). (66)

For s = 10%, m1 = 15, m2 = 3, α = 0.25, a = 1.5, and tf = 5, shown in Fig. 7(a) is a good
recovery of the initial temperature with a large time duration and under a large noise. ME over
[0, 1.5] shown in Fig. 7(b) is 1.34× 10−2.

In addition to Equation (58), the following bases can also be adopted:

Bjk(x, t) = sin

(
jπx

a

)[(
t

tf

)k

− 1

]
∈ G. (67)

16

Figure 7. (a) Comparing recovered and exact initial temperatures for Example 9, and (b) numerical errors.
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7. Conclusions

In this paper we have transformed the inverse source problem to recover the space-
time dependent source functions of a time-fractional diffusion equation into a problem
by using a symmetry boundary functions method to find the solution. Four examples
confirmed the efficiency and accuracy of the presented method. Then, three novel methods
were developed to solve the backward problems of the time-fractional diffusion equations.
We first transformed the unknown initial temperature problem into a space-dependent
inverse source problem for a new variable. Then, the initial temperature can be recovered by
using the energetic boundary functions as the bases and solving a second-order boundary
value problem. In the second method, the energetic boundary functions were used as the
bases and then collocated to a linear system to obtain the whole solution. In the first and
second methods, the initial temperature was recovered by over-specifying boundary fluxes
and giving no final time condition. In the third method, two boundary conditions and a
final time temperature were used to construct the bases resorting on the group symmetry.
Then, the governing equation was collocated to a linear system to obtain the whole solution.
These three methods were compared by numerical testings. Among them, the third method
to treat the standard backward time-fractional diffusion problem is the simplest one, whose
accuracy is excellent; the third method spent less CPU time than other two methods.

The main achievements involved in the paper are as follows:

• Introduced the group symmetry boundary functions methods for solving the inverse
source and backward problems of time-fractional diffusion equations.

• Owing to good properties of the boundary functions, we can solve the inverse prob-
lems with a few bases such that without using the regularization technique to obtain
good results.

• We developed three novel group symmetry methods to solve the backward time-
fractional diffusion problems to achieve an accurate recovery of the initial temperature,
which spent a little CPU time and were robust against large noise.
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