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Abstract: In isotropic turbulence, symmetry of different directions can reduce the number of inde-
pendent components for velocity gradient tensors. In three-dimensional isotropic turbulence, the
independent components under either incompressible or compressible conditions have already been
analyzed in the literature. However, for two-dimensional isotropic turbulence, they are still unclear.
We derive rigorously the independent components for velocity gradient tensors of two-dimensional
isotropic turbulence and give physical explanations. These theoretical results are validated using
high-resolution direct numerical simulations (DNSs) of two-dimensional compressible turbulence.
Results show that the present DNS setup is still not sufficient to capture the isotropy of third-order
moments, suggesting that more investigations on determining the smallest scale and improving the
numerical schemes for two-dimensional compressible turbulence are required.

Keywords: two-dimensional turbulence; compressible turbulence; velocity gradient

1. Introduction

Homogeneous and isotropic turbulence (HIT) is the simplest type of turbulent flow.
It provides a cornerstone for us to study more complex turbulence systems. For example,
the local isotropy assumption for small-scale dynamics is one of the main hypotheses in
the celebrated K41 theory [1,2], from which we could obtain the important −5/3 energy
spectrum, the four-fifth law for third-order structure functions, etc. In the small-scale
dynamics of turbulence, the velocity gradient tensor m ≡ ∇u (or mij ≡ ∂ui

∂xj
in component

form, where u denotes the velocity) characterize the local flow pattern. For example, the
deformation and rotational motion can be described by the symmetric part S and the anti-
symmetric part w of m, where S ≡ 1

2 (m + mT) and w ≡ 1
2 (m − mT) [3–5]. Specifically, the

second-order moments of the velocity gradient m, defined as M(2)
ipjq ≡

〈
∂ui
∂xp

∂uj
∂xq

〉
, describe

the strength of the local motions, like the enstrophy D ≡ 1
2 ⟨ωiωi⟩, which describes the

strength of local rotational motion, where ωi = ϵijkwjk is the vorticity vector and ϵijk is

the Levi-Civita symbol. Furthermore, the viscosity dissipation in turbulence, ν
〈

∂ui
∂xj

∂ui
∂xj

〉
,

with ν, the kinematic viscosity, is obviously determined by M(2). Then, in the dynamic
equation of the second-order moment M(2), the third-order moment of the velocity gradient

M(3)
ipjqkr ≡

〈
∂ui
∂xp

∂uj
∂xq

∂uk
∂xr

〉
appears due to the nonlinearity of the Navier–Stokes equation.

These third-order moments M(3) determine the key nonlinear process such as the vortex
stretching rate ωiSijωj [3,5,6], which is crucial for the generation of small-scale motions in
turbulence. As a consequence, a complete understanding of the properties of the moments
of the velocity gradient is important in the studies of small-scale dynamics of turbulence.
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In this work, we will focus on the kinematics properties of M(2) and M(3), especially their
invariants and independent components.

Betchov’s relation is one of the important theoretical results in the studies of kine-
matic properties of velocity gradients. In 1956, Betchov derived two constraints on the
second- and third-order invariants of m for homogeneous and incompressible flows [7].
In three-dimensional (3D) isotropic incompressible turbulence, with the help of Betchov’s
relations, we can determine all the components of M(2) and M(3) with, respectively, only
one scalar quantity [8,9]. Recently, Yang et al. [10] generalized the Betchov’s relation to
compressible turbulence and showed that one needs two and four scalars to fully determine
M(2) and M(3), respectively, in isotropic compressible turbulence. Furthermore, we note
that Carbone and Wilczek [11] have proved that Betchov’s relations are the only constraints
on the invariants of the velocity gradient under the homogeneity condition. In addition
to the second- and third-order moments, the structure of higher-order moments, such as
fourth-order, has also been studied previously for 3D homogeneous incompressible and
compressible turbulence [12–14].

Up to now, most studies on the velocity gradient focus on 3D turbulence. At the
same time, a reduction in dimensionality leads to the emergence of new phenomena.
For example, in two-dimensional (2D) incompressible HIT, all components of the third-
order moments are equal to zero because of the absence of vortex stretching [15–17]. This
results in the conservation of enstrophy and a net energy transfer from small to large
scales, which is known as the inverse energy cascade [18,19]. Furthermore, 2D isotropic
compressible turbulence exhibits distinct phenomena, such as the energy flux loop between
incompressible and compressible components [20]. However, to the best of our knowledge,
the structure of the velocity gradient in 2D turbulence, especially in the compressible case,
is yet to be explored. The current studies on 2D compressible turbulence [20–23] are rather
phenomenological and mainly focus on the dual cascade of energy and enstrophy, as well
as the interchange of energy between the dilation and divergence-free parts in the spectral
space. There is still no strict theory explaining the energy transfer and energy flux loop. We
recall that in 3D isotropic incompressible turbulence, the energy transfer can be represented
by using the Kármán–Howarth equation, in which the analysis of independent scalars plays
an essential role. A study of the velocity gradient tensor in this case would be beneficial for
understanding the local flow motion and energy transfer in 2D turbulence.

In this work, we investigate the structure of the velocity gradient tensor in 2D turbu-
lence, including the components of its low-order moments, i.e., M(2)

ipjq and M(3)
ipjqkr, and the

corresponding invariants, e.g.,
〈
tr(m2)

〉
,
〈
tr(m3)

〉
. The rest of the paper is structured as

follows. In Section 2, we present the theoretical derivations, focusing first on the decomposi-
tion of velocity gradient tensor m, and then using the isotropy and homogeneity constraints
to determine the independent components of low-order moments. Furthermore, we ex-
press the second- and third-order invariants in terms of these independent components
and explain the underlying physical meaning of them. The above theoretical derivation
is verified in Section 3 by direct numerical simulations (DNSs) of 2D homogeneous and
isotropic compressible turbulence. Finally, in Section 4 we give further discussions on the
analytical relations and the numerical results.

2. Analytical Studies on the Components of Velocity Gradient Tensors in 2D Turbulence
2.1. Decomposition of the Velocity Gradient Tensor

In general, the velocity gradient tensor m can be decomposed into dilatational,
symmetric-deviatoric, and antisymmetric parts, as follows:

m =
1
n

θI + s + w, (1)
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where 1
n θI is the dilatational part with θ = ∇ · u = m and n is the dimension of the

flow field. Here, for simplicity, we used the overbar symbol to denote the trace operation:
X = tr(X). The tensor s is the deviatoric part of the rate-of-strain tensor:

s = (m + mT)/2 − 1
n

θI, (2)

where XT is the transpose of the tensor. The tensor w is the antisymmetric rate-of-rotation
tensor defined as in the introduction, which can be equivalently expressed by the vorticity
vector ω with ωi = εijkωjk.

In a 3D space generated by an orthogonal basis (e1, e2, e3), if the flow is confined in
the plane (e1, e2), then the velocity gradient tensor can be decomposed as:

m =
1
2

[
φ ψ
ψ −φ

]
(e1,e2)

+
1
2

ω

[
0 −1
1 0

]
(e1,e2)

+
1
2

θ

[
1 0
0 1

]
(e1,e2)

, (3)

where φ, ψ, ω, θ are four independent components of the local velocity gradient tensor,
and the subscripts of each matrix means that the matrix is expressed in the (e1, e2) basis.
More precisely, φ and ψ are defined as φ ≡ ∂u1

∂x1
− ∂u2

∂x2
and ψ ≡ ∂u1

∂x2
+ ∂u2

∂x1
, respectively,

which represent the local shear motion of the flow. ω denotes the vorticity and because
of the constraints from 2D space, it only has the e3 components, i.e., ω = ωe3, where
ω = ∂u2

∂x1
− ∂u1

∂x2
. Finally, θ denotes the dilatation as mentioned above.

For 2D homogeneous turbulence, the four independent components θ(x), ω(x), ψ(x), φ(x)
are locally independent, but they are globally related in spectral space. This relation is
shown in Appendix A.

2.2. Isotropic Expressions for M(2) and M(3)

Under the isotropic condition, second- and third-order moments of the velocity gradi-
ent, M(2) and M(3), can be expressed, respectively, as the following [9]:

M(2)
ipjq = a1δipδjq + a2δijδpq + a3δiqδpj, (4)

M(3)
ipjqkr =b1δipδjqδkr + b2(δipδjkδqr + δjqδikδpr + δkrδijδpq)

+ b3(δipδjrδqk + δjqδirδpk + δkrδiqδpj) + b4(δiqδpkδjr + δirδpjδqk)

+ b5(δijδpkδqr + δijδqkδpr + δikδpjδqr + δikδrjδpq + δjkδqiδpr + δjkδriδpq),

(5)

where δ is the Kronecker tensor (δij = 1 if i = j, and 0 otherwise), and a1, a2, a3 and
b1, b2, b3, b4, b5 are scalar quantities.

These two formulas generally hold in 2D and 3D (or even in higher-dimension flows,
which do not exist physically). However, if the flow is confined to 2D, the subscripts in
Equations (4) and (5), (i, j, k, p, q, r), can choose only from two different values, 1 and 2. As
the second-order moment M(2)

ipjq has the specific form shown in Equation (4), its components
would be non-zero only if there are even numbers of 1 and even numbers of 2 among
the four subscripts (i, p, j, q). As a consequence, there are only four types of non-zero
components of M(2)

ipjq, as shown in Table 1. For example, if a second-order moment has the

form M(2)
αααα, such as M(2)

1111 with α = 1 and M(2)
2222 with α = 2, its value will be a1 + a2 + a3.

This can be shown by setting all subscripts (i, p, j, q) in Equation (4) to 1 or 2.
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Table 1. All non-zero types of M(2)
ipjq. The subscripts α, β in the type name only show different

numbers without applying the Einstein summation convention.

Type Examples Expression with Independent Scalar

M(2)
αααα M(2)

1111, M(2)
2222 a1 + a2 + a3

M(2)
ααββ M(2)

1122, M(2)
2211 a1

M(2)
αβαβ M(2)

1212, M(2)
2121 a2

M(2)
αββα M(2)

1221, M(2)
2112 a3

Similarly, M(3)
ipjqkr is non-zero only if there are even numbers of 1 and even numbers

of 2 among the six subscripts (i, p, j, q, k, r). We should also note that the indices pairs
(i, p), (j, q), (k, r) are interchangeable due to the symmetry of M(3). M(3)

ipjqkr thus has four

non-zero types of components, as shown in Table 2. For example, M(3)
111122, M(3)

222211 and

M(3)
112211 all belong to the same type M(3)

ααααββ, as the first two are just the cases α = 1, β = 2

and α = 2, β = 1, and the third M(3)
112211 = M(3)

111122 because the indices pairs (j, q) and (k, r)
are interchangeable. Thus, from Equation (5), these three components all have the same
value b1 + b2 + b3.

Table 2. All non-zero types of M(3)
ipjqkr. The subscripts α, β in the type name only show differ-

ent numbers without applying the Einstein summation convention. The order of three pairs, i.e.,
(i, p), (j, q), (k, r), could be interchanged symmetrically.

Type Examples Expression with
Independent Scalar

M(3)
αααααα M(3)

111111, M(3)
222222

b1 + 3b2 + 3b3 + 2b4 + 6b5

M(3)
ααααββ M(3)

111122, M(3)
222211, M(3)

112211, etc. b1 + b2 + b3

M(3)
αααβαβ and M(3)

ααβαβα M(3)
111212, M(3)

222121, M(3)
112121, M(3)

221212, etc. b2 + 2b5

M(3)
αααββα M(3)

111221, M(3)
221221, M(3)

121121, etc. b3 + b4 + b5

It can be shown from Table 2 that

M(3)
αααααα =2(b2 + 2b5) + 2(b3 + b4 + b5) + (b1 + b2 + b3)

=2M(3)
αααβαβ + 2M(3)

αααββα + M(3)
ααααββ.

(6)

Thus, for 2D compressible isotropic turbulence, M(3)
ipjqkr could be fully determined by

three scalars, i.e., B1 = b1 + b2 + b3, B2 = b2 + 2b5, and B3 = b3 + b4 + b5. It should be
remarked that this is only applicable in 2D and b1, b2, b3, b4, b5 are all indeed independent
in 3D or in higher dimensions. This derivation is a novel process in 2D that has not been
and can not be applied in 3D cases to reduce the independent components.

Next, in Tables 3 and 4, we express the second- and third-order invariants in terms
of the scalars in Equations (4) and (5). In these two tables, the first column gives the
tensor notation of the invariants and the second column gives the corresponding subscript
representation in terms of the components of M(2) and M(3). By substituting Equation (3)
into the definitions of the invariants, i.e., the expressions in the first columns of those
tables, we could obtain the expression of these invariants in terms of θ, ω, ψ, φ, the results
of which are presented in the third columns of Tables 3 and 4. Furthermore, with the help
of Equations (4) and (5), we can express these invariants in terms of the scalars, a1, a2, a3
and B1, B2, B3, which is shown in the fourth columns of those tables.
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Table 3. Second-order invariants of the velocity gradient under the isotropic constraints.

Tensor Notation Subscript Notation Expression of θ, ω, ψ and φ Independent Scalar Expression〈
m2
〉

M(2)
iijj

〈
θ2〉 4a1 + 2a2 + 2a3〈

m2
〉

M(2)
ijji

1
2
(〈

ψ2〉+ 〈φ2〉)− 1
2
〈
ω2〉+ 1

2
〈
θ2〉 2a1 + 2a2 + 4a3〈

mmT
〉

M(2)
ijij

1
2
(〈

ψ2〉+ 〈φ2〉)+ 1
2
〈
ω2〉+ 1

2
〈
θ2〉 2a1 + 4a2 + 2a3

Table 4. Third-order invariants of the velocity gradient under the isotropic constraints.

Tensor Notation Subscript Notation Expression of θ, ω, ψ and φ Independent Scalar Expression〈
m3
〉

M(3)
iijjkk

〈
θ3〉 8B1 + 4B2 + 4B3〈

m3
〉

M(3)
ijjkki

3
4
(〈

ψ2θ
〉
+
〈

φ2θ
〉)

− 3
4
〈
ω2θ

〉
+ 1

4
〈
θ3〉 2B1 + 4B2 + 10B3〈

mm2
〉

M(3)
iijkkj

1
2
(〈

ψ2θ
〉
+
〈

φ2θ
〉)

− 1
2
〈
ω2θ

〉
+ 1

2
〈
θ3〉 4B1 + 4B2 + 8B3〈

mmmT
〉

M(3)
iijkjk

1
2
(〈

ψ2θ
〉
+
〈

φ2θ
〉)

+ 1
2
〈
ω2θ

〉
+ 1

2
〈
θ3〉 4B1 + 8B2 + 4B3〈

m2mT
〉

M(3)
ijjkik

3
4
(〈

ψ2θ
〉
+
〈

φ2θ
〉)

+ 1
4
〈
ω2θ

〉
+ 1

4
〈
θ3〉 2B1 + 8B2 + 6B3

The identifications in Tables 3 and 4 also allow us to make a connection between the
independent scalars and θ, ω, ψ, φ. For the second-order values,〈

θ2
〉
= 4a1 + 2a2 + 2a3, (7a)〈

ψ2
〉
+
〈

ϕ2
〉
= 4a2 + 4a3, (7b)〈

ω2
〉
= 2a2 − 2a3. (7c)

For the third-order values, 〈
ψ2θ

〉
+
〈

φ2θ
〉
= 8B2 + 8B3, (8a)〈

ω2θ
〉
= 4B2 − 4B3, (8b)〈

θ3
〉
= 8B1 + 4B2 + 4B3. (8c)

The identifications in Table 4 and Equations (8a)–(8c) are also consistent with the
limiting case when the turbulence is incompressible, i.e., θ = 0. The left-hand side of
Equations (8a)–(8c) will all be zero and will lead to:

B1 = B2 = B3 = 0. (9)

As a result, velocity gradient skewness S =
〈
(∂ux/∂x)3

〉
/
〈
(∂ux/∂x)2

〉3/2
is zero for 2D

incompressible isotropic flows.

2.3. Homogeneity Constraints to Second- and Third-Order Invariants

According to Yang et al. [10], under the homogeneity condition, i.e., (∂/∂xi)⟨•⟩ = 0,
one can obtain two invariants relation for second- and third-order moments of velocity
gradient, i.e.,

M(2)
iijj = M(2)

ijji , (10)

M(3)
ijjkki =

3
2

M(3)
iijkkj −

1
2

M(3)
iijjkk. (11)
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For the second-order invariant, by substituting the results of Table 3 into Equation (10),
we have:

a1 = a3 = M(2)
ααββ = M(2)

αββα. (12)

As a result, the second-order velocity gradient moment only has two independent compo-
nents. From Equations (7a)–(7c), we can show that:〈

ω2
〉
+
〈

θ2
〉
=
〈

φ2
〉
+
〈

ψ2
〉

, (13)

which could also be proved from the spectral approach—see Equation (A13) in the Appendix A.
This shows the consistency between independent scalar analysis and spectral space analysis.

However, if we combine Table 4 and Equation (11) for the third-order invariants,
we find that Equation (11) is automatically satisfied without giving any new constraint to
B1, B2, B3. This is different from the 3D case analysed by Yang et al. [10], where Equation (11)
gives a new constraint b1 = 3b3 − 2b4 to the five independent components. This shows
that the constraints on independent components for the third-order moment are from
different sources. In the 2D case, the constraints are from isotropy, while in the 3D case, the
constraints are from the homogeneity. Consequently, copying simply the same method of
3D tensor derivation in reference [10] will lead to incorrect independent scalars and will
result in a contraction that the third-order moment has more independent components in
2D than in 3D.

We also note that
〈
θ2〉 is positive definite (

〈
θ2〉 ≥ 0), thus, from Equations (7a) and (12),

we can readily show that 3a1 + a2 ≥ 0, and the equal sign holds when
〈
θ2〉 = 0, that is, the

incompressible case. Similarly, as
〈
ω2〉 ≥ 0, from Equations (7c) and (12), we have a2 ≥ a1,

and the equal sign holds when the flow is irrotational. These two inequalities provide
restrictions on the ratio between the components of M(2):

1
3
=

a2

2a2 + a2
≤

M(2)
αβαβ

M(2)
αααα

=
a2

2a1 + a2
= 3

a2

2(3a1 + a2) + a2
≤ 3. (14)

The minimum and maximum of the ratio are achieved, respectively, at irrotational flow
and incompressible flow.

3. Numerical Validation of Independent Components

To verify the theoretical results presented above, we performed a 2D compressible
isotropic DNS. We numerically solve the following two-dimensional compressible Navier–
Stokes equations:

∂ρ

∂t
+

∂ρui
∂xi

= 0, (15a)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij)−

∂

∂xj
σij = 0, (15b)

∂E
∂t

+
∂

∂xj
[(E + p)uj]−

∂

∂xj
(σijui − Qj) = 0, (15c)

in which ρ is the density, p is the pressure, E = 1
2 ρuiui + p/(γ − 1) is the total energy with

γ = 1.4, the ratio of the specific heats, σij = µ( ∂ui
∂xj

+
∂uj
∂xi

− 2
3

∂uk
∂xk

δij) is the viscous stress

tensor with the effect of bulk viscosity neglected [24], and Qj = −κ( ∂T
∂xj

) is the heat flux.
The ideal gas law p = ρRT is applied in calculation to connect the temperature T, pressure
p, and density ρ through the ideal gas law, and R is the ideal gas constant. The viscosity
µ is connected with the local temperature through Sutherland’s law µ = µre f (T/Tre f )

3/2

((Tre f + Ts)/(T + Ts)) with µre f , Tre f , and Ts constants. The thermal conductivity κ is
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determined from the viscosity by a constant Prandtl number Pr = µCp/κ = 0.72, with
Cp = γ

γ−1 R being the specific heat at constant pressure.
In terms of the numerical methods, the set of Equations (15a)–(15c) are solved with a

high-order finite difference method. Specifically, the convective terms are calculated by a
seventh-order low-dissipative monotonicity-preserving scheme [25] such that shock waves
in a compressible flow can be captured and the capabilities of resolving small-scale turbu-
lent structures are preseved. The diffusion terms are discretized by a sixth-order compact
central scheme [26] with a domain decoupling scheme for parallel computation [27]. The
time integration is computed by a three-step third-order total variation diminishing Runge–
Kutta method [28]. For the flow solution of the present study, we use an open-source solver
called ASTR (The code is accessible in https://github.com/astr-code/astr (accessed on 30
December 2023)). This solver has been widely validated in DNSs of various compressible
turbulent flows with and without shock waves [10,14,25,29–31].

The flow we study is a decaying flow. The computational domain is a (2π)2 square
domain discretized with a 40962 uniform grid. Periodic boundary conditions are applied in both
directions. The initial velocity field is divergence-free with a spectrum E(k) = Ak4e−2k2/k2

0 . The
maximum wavenumber is set at k0 = 25 to include both directions of the 2D dual-cascade
effect in the simulation. The initial kinetic energy is determined by a constant A. The
density, pressure, and temperature are all initialized to constant values. The divergence-free
nature of the initial velocity field leads to the emergence of strong compression during the
initial stage before transitioning to a stable decaying state. To measure the compressibility,
we use the turbulent Mach number, which is defined basing on the root-mean-square
velocity u′ =

√
uiui and the speed of sound c =

√
γRT, i.e., Mat = u′/c. Its initial

value is set as Mat = 1.10. Figure 1a shows the evolution of Mat. Except for a small
fluctuation during the initial stage, Mat decreases continuously to about 0.56 at the end
of the simulation. In terms of the time normalization, we adopt the initial large-eddy-
turnover time τ0 = (

∫ ∞
0 E(k)/kdk)/u′3. Throughout the simulation, the Kolmogorov scale

first decreases and then increases continuously once the turbulent regime is well-established.
The minimum Kolmogorov scale verifies η/∆x = 1.8 with ∆x being the grid size; therefore,
the flow is well-resolved down to the dissipation scale.

0 5 10 15 20

t/τ0

0.6

0.8

1.0

1.2

1.4

M
a
t

0 10 20

t/τ0

−10

−5

0

S

0 5 10 15 20

t/τ0

0.0

0.2

0.4

0.6

0.8

1.0

K(
t)
/
K(

0
),
D
(t
)/
D
(0
),
C(
t)
/
C m

a
x

K(t)/K(0)

D(t)/D(0)

C(t)/Cmax

(a) (b)

Figure 1. (a) Time evolution of the turbulent Mach number Mat and the skewness of the longitudinal
velocity derivative S (shown in inset). (b) Time evolution of the kinetic energy normalized by its
initial value K(t)/K(0), the enstrophy normalized by its initial value D(t)/D(0) and the average
squared dilatation normalized by its maximum value C(t)/Cmax .

The inset of Figure 1a represents the evolution of the skewness of the longitudinal velocity
gradient, calculated asS =

〈
(∂u1/∂x1)

3 + (∂u2/∂x2)
3〉/[〈(∂u1/∂x1)

2〉3/2
+
〈
(∂u2/∂x2)

2〉3/2
].

Figure 1b shows the evolution of the kinetic energy K = 1
2⟨ρuiui⟩ normalized by its initial

value K(0), the enstrophy D = 1
2
〈
ω2〉 normalized by its initial value D(0), and the average

squared dilatation C = 1
2
〈
θ2〉 normalized by its maximum value Cmax . The latter is defined

https://github.com/astr-code/astr
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similarly to enstrophy to show the compressibility effect. These figures illustrate the flow
field evolution. In the initial stage, a strong compression emerges due to the divergence-free
uniform-density initial condition, leading to a rapid increase in the average squared dilatation
C, a sharp decrease in the enstrophy D, and a distinct negative peak in the skewness S. Both
C and S reach their extrema at t/τ0 ∼ 1. The flow field attains a relatively stable state after
t/τ0 ∼ 2, from which point, the skewness becomes stable with small oscillations between −8
and −6. The kinetic energy K, the enstrophy D, and the average squared dilatation C all show
a smooth decaying curve caused by the viscous dissipation. Notably, D and C decay more
rapidly than the kinetic energy K.

In the following paragraphs, we will calculate the quantities relating to velocity
gradients to validate the analytical results in Section 2.

Figure 2 shows the time evolution of quantities relating to the independent components
of the second-order moments. Figure 2a shows the equality of a1 and a3 normalized by the
average squared Frobenius norm of the velocity gradient tensor

〈
||m||2F

〉
=
〈

mmT
〉

. The

initial value of a1 (and a3) reaches the incompressible limit of − 1
8 , which can be proved by

using Table 3 and Equation (7a)

a1〈
mmT

〉 =
a1

4a1 + 4a2
=

a1

4a1 − 12a1
= −1

8
. (16)

Figure 2b shows the evolution of the ratio M(2)
αβαβ/M(2)

αααα, which should lie between 1/3
and 3 according to Equation (14). The initial value reaches the incompressible limit value 3.

0 5 10 15 20

t/τ0

−0.2

−0.1

0.0

0.1

0.2

a
1
/
〈m

m
T
〉,
a
3
/
〈m

m
T
〉 a1/〈mmT 〉

a3/〈mmT 〉

0 5 10 15 20

t/τ0

0

1

2

3

M
(2

)
α
β
α
β
/M

(2
)

α
α
α
α

(a) (b)

Figure 2. (a) Time evolution of second-order independent components a1 = M(2)
ααββ and a3 = M(2)

αββα

normalized by
〈

mmT
〉

, which should be equal in 2D isotropic compressible turbulence. The dashed

line in black is −1/8. (b) Time evolution of the ratio M(2)
αβαβ/M(2)

αααα, which should lie between 1/3
and 3 in 2D isotropic turbulence. The dashed lines in black are, respectively, 1/3 and 3.

Figure 3 shows the time evolution of quantities relating to the second-order invariants
or moments of the velocity gradient tensor. The evolution of the third-order invariants

M(3)
ijjkki and 3

2 M(3)
iijkkj − 1

2 M(3)
iijjkk is presented in Figure 3a, normalized by

〈
mmT

〉3/2
. The

equality in Equation (11), obtained by homogenous constraints, is validated perfectly. For
Equation (6), the time evolution of the left-hand side, i.e., M(3)

αααααα, and of the right-hand
side, i.e., 2M(3)

αααβαβ + 2M(3)
αααββα + M(3)

ααααββ, is presented in Figure 3b. Their values are both

normalized by
〈

mmT
〉3/2

. To mitigate directional bias, each type of velocity gradient

moment is computed by considering all possible expressions. For instance, M(3)
αααααα is

calculated using 1
2 (M(3)

111111 + M(3)
222222). In Figure 3b, both values exhibit similar trends and

fall to the same level, but slight differences occur occasionally. These small disagreements
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are due to the strict isotropy condition required for Equation (6), which is difficult to
achieve numerically. In compressible flow, strong local shocks are likely to occur and cause
local anisotropy, as a single shock can only be oriented in a specific direction; while global
isotropy is theoretically attainable in a sufficiently large flow field, practical limitations
emerge due to bounded domains and finite grid sizes, resulting in unavoidable random
anisotropy in numerical results. This random anisotropy leads to disagreements in results
requiring isotropic conditions. In particular, third-order moments of the velocity gradient
are more sensitive than second-order moments, since they are more influenced by rare
but extreme values of the local velocity gradient. These extreme values are exactly caused
by local strong shocks. As our DNS is performed by the exact use of classical numerical
criteria, i.e., the grid resolution set to η/∆x > 0.5 with η the Kolmogorov length, in this
sense, the present analytical study on the moments of the velocity gradient tensor reveals
the limitation of current numerical methods in capturing isotropy of third-order moments
in 2D compressible turbulence. This calls for more investigations on the smallest scale of
two-dimensional compressible turbulence and the numerical schemes of shock capturing
in the future.
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t/τ0
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−1
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M
(3

)
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k
k
i
/
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T
〉3 2
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(
3 2
M

(3
)

ii
j
k
k
j
−

1 2
M

(3
)
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j
j
k
k
)/
〈m

m
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〉3 2

M
(3)
ijjkki/〈mmT 〉 3

2

( 3
2
M

(3)
iijkkj − 1

2
M

(3)
iijjkk)/〈mmT 〉 3

2
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M

(
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)

α
α
α
α
α
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,

(
2
M

(
3
)
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α
β
+

2
M

(
3
)

α
α
α
β
β
α
+

M
(
3
)

α
α
α
α
β
β
)
/
〈 m

m
T
〉

3 2

M(3)
αααααα

/〈mmT 〉 3

2

(2M
(3)
αβαβ + 2M

(3)
αααββα + M

(3)
ααααββ)/〈mmT 〉 3

2

(a) (b)

Figure 3. (a) Time evolution of third-order invariants M(3)
ijjkki and 3

2 M(3)
iijkkj − 1

2 M(3)
iijjkk, normalized by〈

mmT
〉3/2

, which should be equal in 2D isotropic compressible turbulence. (b) Time evolution of

third-order independent components M(3)
αααααα and 2M(3)

αβαβ + 2M(3)
αααββα + M(3)

ααααββ, normalized by〈
mmT

〉3/2
, which should be equal in strictly isotropic 2D compressible turbulence.

4. Conclusions

In this paper, we analyze the independent components of the second- and third-order
moments of the velocity gradient tensor in 2D isotropic turbulence. The second-order
moments have two independent components in the 2D compressible isotropic turbulence,
which is the same as in the 3D case. However, as an example of the effect of dimension
reduction, the third-order moments could be fully determined by three independent com-
ponents in 2D isotropic compressible turbulence, while in 3D we need four. This fact leads
to an important result that the third-order moments disappear when the flow is incom-
pressible in 2D. From the perspective of small-scale generation, which is closely related to
the third-order moments of the velocity gradient, the difference between the number of
independent components for 2D and 3D is a consequence of the absence of vortex stretching
in two-dimensional flows. We expect that the present study on the independent scalars in
2D isotropic compressible turbulence will represent a step toward rigorously explaining
the energy transfer in the future.

We further demonstrate those analytical discussions by numerical simulations. We
find that all theoretical results are satisfied by the DNS data except Equation (6), where we
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see small discrepancies between the l.h.s. and r.h.s. of the equation. This observation is
novel and shows that the isotropy of third-order moment of the velocity gradient is not
satisfied, such that the derived exact relation, i.e., Equation (6), cannot be obtained by a
classical DNS numerical setup. The underlying reason for this might due to the inappro-
priate prediction on the smallest scale of two-dimensional compressible turbulence, or the
inappropriate numerical schemes of shock capturing, which requires future improvement
in numerical simulations of HIT. Our result is thus expected to be a criterion for examining
the appropriate resolution of small-scale structures and the isotropy of the turbulence field.
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Appendix A. The Relation of θ, ω, ψ,φ in Fourier Space

In this appendix, we will show the global relation of the locally independent velocity
gradient components, i.e., θ(x), ω(x), ψ(x), φ(x), in the Fourier space.

In a 3D space generated by an orthogonal basis (e1, e2, e3), where the flow is confined
in the plane (e1, e2), we first apply the Helmholtz decomposition to the velocity field
u(x), as

û(k) = ûs(k) + ûd(k) = ûs(k)k̃⊥ + ûd(k)k̃, k ̸= 0, (A1)

where û(k) denotes the Fourier transform of the velocity field, k̃ = k
|k| =

k
k denotes the unit

vector in the direction of wave vector k, and k̃⊥ = e3 × k̃ denotes the unit vector with which
an orthogonal right-hand coordinate system (k̃, k̃⊥, e3) can be formed. In this equation,
ûs(k) and ûd(k) represent, respectively, the solenoidal and the dilatational component of
the velocity fluctuation field. The k = 0 component of û is exactly the ensemble average of
velocity field

û(k = 0) = ⟨u⟩, (A2)

which will be dropped out in the following text as it will not contribute to the velocity gradi-
ent. It is also worth noting that the solenoidal component can only follow one direction, i.e.,
k̃⊥, in 2D, while in 3D, it can be in the Craya plane and gives two independent components.

The counterpart of the velocity gradient tensor in Fourier space can be expressed as

m̂(k) = (ik ⊗ û(k))T , k ̸= 0 (A3)

Furthermore, we set m̂(k = 0) = 0. Specifically, the vorticity and the dilatation in Fourier
space can be uniquely expressed as

ω̂(k) = ω̂(k)e3 = ik × ûs(k) = ik × k̃⊥ûs(k) = ikûs(k)e3, (A4)

θ̂(k) = ik · ûd(k) = ik · k̃ûd(k) = ikûd(k). (A5)
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The velocity field can also be expressed as

û(k) = ûs(k)k̃⊥ + ûd(k)k̃ =
ω̂(k)

ik
k̃⊥ +

θ̂(k)
ik

k̃, k ̸= 0. (A6)

As a result, the velocity gradient tensor in Fourier space can be expressed with only θ̂(k)
and ω̂(k)

m̂(k) =

[
ik ⊗

(
ω̂(k)

ik
k̃⊥ +

θ̂(k)
ik

k̃

)]T

= ω̂(k)k̃⊥ ⊗ k̃ + θ̂(k)k̃ ⊗ k̃, k ̸= 0. (A7)

The Fourier space velocity gradient tensor can also be decomposed into dilatational,
symmetric-deviatoric, and antisymmetric parts. When it is expressed in the global basis
(e1, e2), it can result in a similar expression to Equation (3) with φ̂(k), ψ̂(k), ω̂(k), θ̂(k).
However, when we express it in the local wave-number basis (k̃, k̃⊥), it gives

m̂(k) =
1
2

[
θ̂(k) ω̂(k)
ω̂(k) −θ̂(k)

]
(k̃,k̃⊥)

+
1
2

ω̂(k)
[

0 −1
1 0

]
(k̃,k̃⊥)

+
1
2

θ̂(k)
[

1 0
0 1

]
(k̃,k̃⊥)

, k ̸= 0. (A8)

It should be noted that (k̃, k̃⊥) is a local basis. For different wave numbers ka, kb , unless
they are in the same direction, (k̃a, k̃⊥

a ) and (k̃b, k̃⊥
b ) give two different bases. If we carry

out a change of basis for Equation (A8) to (e1, e2), we can derive for k ̸= 0

θ̂(k) = 2ψ̂(k)k̃1k̃2 + φ̂(k)(k̃2
1 − k̃2

2), (A9)

ω̂(k) = ψ̂(k)(k̃2
1 − k̃2

2)− 2φ̂(k)k̃1k̃2, (A10)

with k̃i =
ki
k being the coordinate of k̃ in ei(i = 1, 2) direction. These two equations link

ω̂(k), θ̂(k) and φ̂(k), ψ̂(k), showing the consistency between different decompositions.
It can also be concluded from Equations (A9) and (A10) that

ω̂2(k) + θ̂2(k) = φ̂2(k) + ψ̂2(k), k ̸= 0 (A11)

and k = 0 also verifies this equation. With an integral in the whole wave number space
and Parseval’s identity, this leads to∫

x∈R2
ω2(x)dx +

∫
x∈R2

θ2(x)dx =
∫

x∈R2
φ2(x)dx +

∫
x∈R2

ψ2(x)dx. (A12)

In the case of homogeneous turbulence, we then obtain〈
ω2
〉
+
〈

θ2
〉
=
〈

φ2
〉
+
〈

ψ2
〉

, (A13)

which is also proved in Equation (13) using the independent components of the second-
order moment.
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