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Abstract: The environmental vibrations of tunnels and soil caused by metro operations is one of
the most important issues in the field of environmental geotechnical engineering. Recent studies in
metro-induced vibrations have revealed significant uncertainties in the vibration responses of tunnels
and the surrounding soil. A two-step method of obtaining train loads considering uncertainty was
introduced. The first step was to obtain the train loads via an inverse model based on measurements,
and the second step was to quantify the uncertainty of train loads based on complex principal
component analysis. A portion of a tunnel of the Beijing metro was selected as the object of study,
where the vertical accelerations on the rail and on the tunnel wall were measured under different train
speeds of 35, 45 and 55 km/h. Inputting the train loads based on the measured rail accelerations into
an axisymmetric numerical model, established using ANSYS, the vibration responses of the tunnel
wall in a probabilistic framework were calculated and were compared with the measured results.
By using an accuracy index that considers both calculation bias and uncertainty, the accuracy of the
calculated vibration response was quantitatively evaluated. It can be concluded that the calculated
vibration response can reflect the actual vibration level and uncertainty of the tunnel wall. The
accuracies of the calculated results under different speeds were generally high while showing a slight
difference in amplitude.

Keywords: environmental geotechnical engineering; metro; tunnel wall; vibration response;
uncertainty; accuracy

1. Introduction

The urban rail transit system, characterised by convenience and speed, has become
one of the main ways of transportation for daily travel. However, the operation of an
urban rail transit system may increase the environmental vibration level around the lines,
bringing some adverse effects to workplaces and living environments [1-3].

To mitigate the environmental vibration problems caused by an urban rail transit
system, researchers generally provide certainty ground-borne vibration prediction re-
sults through empirical methods, analytical methods, and numerical methods. Empirical
methods, which usually establish empirical formulas for fast prediction, tend to be highly
efficient and are preferred [4,5]. Analytical methods are based on the pipe-in-pipe model [6],
the transfer matrix method [7], the semi-analytical method [8] or others for modelling soil—-
tunnel coupling in elastic semi-infinite space or full space, which have good computational
efficiency. Numerical methods include the finite element model [9], the 2.5-dimensional
finite element model [10], the finite element-infinite element model [11] and the boundary
element model [12], which allow for more detailed modelling. In some cases, symmetry
is used to reduce the model size and then improve computational efficiency. However,
noise and vibration reduction designs based on the above methods often cannot achieve the
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desired effect in actual engineering. This may lead to public complaints and even violations
of regulations related to environmental vibration, resulting in adverse social impacts [13].

After extensive measures and analysis [14-16], researchers have focused on the sig-
nificant uncertainty of environmental vibrations caused by an urban rail transit system.
The large differences in the vibration response induced by the trains at the same position
lead to an effect of uncertainty that cannot be ignored. Therefore, researchers have recently
carried out many studies, using a large number of experimental methods to analyse the
uncertainty associated with the vibration source intensity [17,18], the finite element method
to analyse the effect of uncertainty generated by the fastening system’s properties on the
wheel-rail force [19], and the stochastic field theory to analyse the uncertainty of the soil
propagation system [20]. At the same time, machine learning methods have been used
to analyse the characteristics and sources of uncertainty in the environmental vibrations
induced by the metro [21,22]. In this, the uncertainty of the intensity of vibration sources
plays an important role [23]. The excitation of the vibration source subsystem can be
divided into quasi-static excitation and dynamic excitation [24,25], so its uncertainty mainly
comes from the differences in vehicle conditions and rail conditions [26].

Specifically, the vehicle conditions, including its axle load, wheel out-of-roundness,
and maintenance level, affect the generation of vibration source strength uncertainty. Even
without considering the deterioration of track conditions caused by increased operating
mileage, the uncertainty caused by different vehicle conditions and loads in the short term
is quite significant [27,28]. Researchers have found that differences in vibration source
intensity can be caused by changes in a train’s speed and axle load [29]. In addition,
there is a certain difference in wheel out-of-roundness between different vehicles [30].
For example, there are corrugation excitations in the wheelset and track system, whose
different wavelengths affect the frequency of wheel-rail dynamic action as well as the
amplitude of the wheel-rail force [31]; the wheelsets are also operated with varying degrees
of polygonality, which has a significant effect on wheel-rail system interactions [32]; and
the tread surface of wheelsets tends to be flat, which generates a series of impact loads
due to collisions with the rail during its movement [33]. These are crucial factors causing
uncertainty in vibration source strength, and the vibration intensity strength caused by
corrective wheel maintenance will be significantly reduced [34].

Rail conditions mainly refer to the unevenness of the track. There are a large number
of non-periodic local defects on the rail surface, and these irregular local defects can result
in significant differences in the amplitude and frequency of vibration source intensity [35].
Therefore, track unevenness can be regarded as a random process and has an impact on
vibration response prediction results [36-38]. At the same time, the effects of the irregularity
of short wavelength and the irregularity of medium wavelength on different frequency
vibration source intensities on different track forms are different, leading to uncertainty [39].

In recent years, research on train-induced vibration considering uncertainty has been
a hot topic, but most studies on train loads are based on analytical or numerical methods.
However, for both vehicles and rails, their randomness is reflected in the differences in real
rail vibration responses. Considering that rail vibration is easy to measure continuously
in large quantities, a convenient way to quantify uncertainty is based on measured rail
vibration responses. Specifically, different wheel-rail forces are obtained by inputting
multiple sets of measured results into the identification method, and then the uncertainty
of wheel-rail forces or train loads acting on the tunnel structure is quantified reasonably
to obtain random train loads. This can provide input excitations for calculating uncertain
tunnel wall (or ground) vibration responses in the probability system.

This paper aims to quantify the uncertainty of train loads and establish a symmetric
numerical model for calculating the vibration response of tunnel walls in a probabilistic
framework. Firstly, the wheel-rail forces and the train loads, namely the forces acting on
the roadbed by the vehicle-rail system, are identified based on the measured rail vibration
response. Then, the uncertainties of train loads under different speeds are quantified,
which can generate a large number of random excitation loads. After that, an axisymmetric
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finite element model is established, and random excitation loads are input to obtain the
vibration response in the probabilistic prediction system. Finally, a prediction accuracy
evaluation index that considers bias and uncertainty is used to quantify the accuracy of the
prediction results.

2. Train Loads and Uncertainty Qualification

As the inputting excitation for numerical models, train loads are the bases in cal-
culating vibration responses. The obtaining method of train loads and the uncertainty
qualification method of train loads are introduced here.

Traditional methods for obtaining train loads mainly include establishing vehicle-track
analytical or numerical models. Due to simplifications and assumptions in the models,
some differences exist between the train loads calculated using these models and the
actual situation. The measured rail accelerations can reflect the dynamic characteristics
of the vehicle-track system and provide a new idea for identifying the train loads. Li
et al. [40] proposed an efficient train load identification method based on an analytical
model and measured rail accelerations. On this basis, a method to quantify the uncertainty
of train loads based on complex principal component analysis (CPCA) and orthogonal
transformation was proposed as well [41]. Therefore, the obtaining procedure of train
loads considering uncertainty involves two steps: to obtain the train loads based on
measurements and to quantify the uncertainty of train loads. The brief process can be seen
in Figure 1.

Build train load identification model (an inverse model)

:

Measure vertical accelerations on rail

- Train loads based on measurement

Y

Input the measured data to the inverse model to get wheel-rail contact forces

!

Get the forces transmitted from the vehicle-rail system to roadbed (train loads) -

!

Build a sample set of train loads using multiple measured rail accelerations

|

Get principal components and corresponding contribution factors of train loads based on CPCA

- Quantification of uncertainty in train loads

A 4

Obtain statistical description of train loads regarded the contribution factors as random variables

!

Generate random samples of train loads -

End

Figure 1. The process of obtaining the train loads and quantifying the uncertainties.

The first part was to retrieve the train loads based on measurements. An analytical
model to identify the train loads by measured rail accelerations was established firstly. The
core ideas of this model were to establish a transfer matrix of wheel-rail forces and rail
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vibration responses in the frequency domain and to obtain the wheel-rail forces by solving
a set of linear equations. Then, rail accelerations were measured as the inputting data of
this inverse model to obtain the wheel-rail contact forces. Considering the symmetry of the
vehicle-track dynamic system, the measured data for a single rail was used. According to
the needs of environmental vibration research, the final step was to calculate the excitation
forces transmitted from the vehicle-track system to the roadbed, i.e., the train loads for the
vibration propagation models.

The second part was to quantify the uncertainty in train loads. A train loads sample set
could be built using multiple measured rail accelerations induced by passages of different
trains. The next step was to transform the train loads to the frequency domain through the
Fourier transform. We considered the value of the train loads at each frequency as a complex
random variable, so that the train loads could be viewed as a complex random vector. Via
the CPCA procedure, the principal components and the corresponding contribution factors
could be obtained. The principal components were regarded as the inherent features of the
train loads, while the contribution factor were regarded as the contribution of each feature
in the train loads. The contribution factors were random variables and their probabilistic
distributions could be obtained from train load samples. Therefore, the uncertainty of train
loads could be described by the uncertainty of the contribution factors. After obtaining the
statistical description of the train loads uncertainty, a large number of train load samples
was obtained by generating random numbers finally. This provided a basis for using the
Monte Carlo method, i.e., the random simulation method, to simulate the calculation of
train-induced vibrations.

3. Description of Vibration Response Uncertainty

The vibration response signals have different forms in the time domain and in the
frequency domain, which require different representation methods to describe uncertainty
based on their signal characteristics.

In environmental vibration research, the vibration source intensity refers to the maxi-
mum Z vibration level caused by the running trains. For underground lines, the measure-
ment location is at the tunnel wall farthest from the other tunnel in a single-line tunnel,
and the height is required to be about 1.25 m higher than the rail level. The original data
for calculating the vibration source intensity are the time domain signals recorded by the
sensors when the train passes. Due to differences in the vehicle conditions and axle loads
of trains passing through the same section, the measured time domain signals and the
one-third octave spectrum reflecting the frequency domain properties also have uncertainty.
This can also result in the uncertainty of the maximum Z vibration level. To obtain a source
strength considering uncertainty, it is first necessary to describe the method of describing
vibration uncertainty within the probability system.

Physical quantities describing vibration responses include displacement, velocity, and
acceleration. As with certainty results, results within the probability system also need to be
analysed in both the time and frequency domains to evaluate the vibration response levels.
In the certainty system, the amplitude of the vibration response at any given moment in
the time domain is constant. In the probabilistic system, however, the amplitude of the
vibration at any given moment can be described by a random variable. Meanwhile, one-
third octave spectra with uncertainty can be used for description in the frequency domain.
At this point, the vibration level corresponding to each centre frequency is a random
variable. The Z vibration level can be obtained for each sample by weighting the vertical
one-third octave spectrum, making the maximum Z vibration level a random variable.

For a certain period, the vibration response, such as the vibration acceleration Y(t) at a
point on the ground caused by the train running from point A to point B, can be considered
using a zero-mean Gaussian process. Each calculated time history is an implementation of
this Gaussian process. For each moment t;, the vibration response y(t;) is uncertain and can
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be considered a random variable, denoted as Y(t;). All random variables Y(¢;) constitute a
random process Y (f):

Y(t) = {Y(t1),Y(t2),Y(t3), - - Y(tn)}- (1)

Since the average value of the vibration response amplitude is 0, its absolute value’s
randomness reflects the vibration response’s uncertainty. Referring to the idea of Lombaert
et al. [23], the random characteristics of |Y(t)| are quantified from the perspective of the
ensemble average. For a Gaussian process, the square value Y?(t) of the vibration response
Y at any time ¢, after variance normalisation, follows a chi-square distribution with 1 degree
of freedom:

r (1 2
m ~x (1), )
where E[Y?(t)] represents the mean square value of the random variable. For the vibration
response at any moment, the prediction result considering uncertainty can be expressed by
a confidence interval. At this time, the vibration response at the moment is an interval rather
than a certainty value. The calculation of this interval requires the use of the distribution
function of the chi-square distribution (Figure 2). For example, the 70% confidence interval
for the response amplitude at any given moment corresponds to the 15% and 85% quantiles
of the distribution function, which means the instantaneous mean square value E[Y2(H)]
of @ =0.04 times and § = 2.07 times. Therefore, the boundaries of the 70% confidence
interval of the absolute value |Y(t)| of the vibration response at any given moment are
V& = 0.2 times and /B = 1.44 times the instantaneous root mean square value RMS(t;). It
should be noted that the instantaneous root mean square value here refers to the ensemble
average obtained through statistics between different time histories at a specific moment
rather than the time domain average of the same time history.
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Figure 2. Cumulative distribution function of chi-squared distribution.

When considering uncertainty, both one-third octave band levels and Z vibration lev-
els need to be represented by random variables. Each waveform curve can be processed for
multiple groups of time domain signals to obtain its respective one-third octave spectrum.
The probability distribution type, mean value, variance, and other statistical indicators
of the one-third octave band level can be obtained by conducting statistical analysis and
goodness-of-fit tests on the data set consisting of the vibration levels of each centre fre-
quency. Similarly, the commonly used Z vibration level can be calculated by weighting
the one-third octave spectra of each waveform curve. The probability distribution of the Z
vibration level can be obtained by conducting statistical analysis on this set of Z vibration
level data.
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4. Calculation of Tunnel Wall Vibration Responses

According to the method introduced in Section 2, the train loads considering uncer-
tainty can be obtained, and the vibration response of the tunnel or soil can be calculated
by inputting it into the vibration propagation model. This section carried out measure-
ments and calculations inside a tunnel to calculate the tunnel wall vibration responses
considering uncertainty.

4.1. Project Outline

A section of the Beijing metro was selected as the research site. In this section, a double-
line shield tunnel was designed with a diameter of approximately 6 m, a lining thickness
of 0.3 m, and a buried depth of about 14.5 m. The rails used in this section were T60 rails.
A concrete roadbed with DTVI,-type fasteners was designed in this section. The B-type
vehicles with six carriages passed through the measured cross-section. The surrounding
strata of the tunnel were simplified into three layers from top to bottom: 6.2 m thick silt,
5.7 m thick fine sand, and a pebble layer. The tunnel was embedded in the pebble layer.

The acceleration measurement was conducted on the rail and tunnel wall (Figure 3).
At these two points, only the vertical accelerations were measured. The acceleration sensor
of the rail was installed at the bottom of the rail. Its sensitivity was 25 mv/g with a range
of 200 g. The acceleration sensor of the tunnel wall was installed on the lining, which was
1.25 m away from the rail head following the Chinese standard “Technical guidelines for
environmental impact assessment—Urban rail transit”. Its sensitivity was 1000 mv/g with
a range of 5 g. The sampling frequencies on the two points were both set as 2048. Over
200 acceleration signals on each measured point were obtained within one day.

Figure 3. The measurement of accelerations on rail and tunnel wall.

4.2. Train Loads Considering Uncertainty

According to the identification of vertical wheel-rail force, multiple train loads can be
obtained by inputting multiple measured vertical accelerations of the rail. Then, based on
the train loads uncertainty quantification method proposed in this paper, a sufficiently large
sample of train loads can be obtained. Based on this, the vertical vibration acceleration of
the tunnel wall can be calculated and compared with the measurement. A total of three
working conditions were selected for calculation, where the train speeds were 35 km/h,
45 km/h, and 55 km/h, respectively, with all other conditions remaining the same. The
sample size of each group of vibration acceleration was set to 50, representing the overall
level of vibration response in that working condition, with a representative time history of
these shown in Figure 4. Considering that vibration rather than noise was the main focus, a
low-pass filtering with a cutoff frequency of 200 Hz was implemented.
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Figure 4. The measured vertical rail accelerations of the different speeds: (a) 35 km/h, (b) 45 km/h,
(c) 55 km/h.

o

From Figure 4, it can be observed that the three-time histories show similar charac-
teristics within a time window of 16 s, reflecting the process of the train passing through
the measurement section. Comparing the three working conditions, it can be seen that
as the speed of the train increases, the amplitude of the acceleration tends to increase. In
response to the need for studying train-induced environmental vibration and secondary
noise, the main frequency range of this study was 1~200 Hz. The sampling rate of the
vibration acceleration was set at 2048, and the analysis frequency covered the study scope
of both environmental vibration and secondary noise.

For each working condition, the measured time history of the vertical acceleration of
the rail was successively input into the identification method [40], and 50 train loads were
obtained. The rail parameters used in the identification method are shown in Table 1. The
train loads here refer to the excitation forces applied on the roadbed in the 2D finite element
model, which are averaged. Based on the train loads uncertainty quantification method pro-
posed in this paper, 49 principal components and their corresponding contribution factors
of the force in the frequency domain can be obtained. The principal component refers to the
unit vector in the direction of the orthogonal space, which has components at any frequency.
This unit vector is represented by the direction cosine of all frequencies. The contribution
factor refers to the probability distribution of this principal component, described by the
joint probability density function. The two-dimensional normal distribution probability
density function can be visually represented by equi-probability curves. Figure 5 shows
the first principal components and corresponding contribution factors of the random train
loads in various working conditions. It can be seen that the first principal component has
larger values within the ranges of 0~5 Hz and 50~100 Hz, corresponding to the two main
peaks of the load. Assuming that all the contribution factors satisfy the complex normal
distribution, each complex random variable can be described by the two-dimensional joint
probability density function of the real and imaginary variables. It can be noticed that the
contribution factors of each working condition have no apparent commonality, and the real
and imaginary parts show a positive or negative correlation.

Table 1. The rail parameters.

Parameter Value
Mass of rail per unit length m 60.64 kg-m~!
Moment of inertia of rail I, 3217 cm?
Elastic modulus E; 210 GPa
Damping ratio of rail 7, 0.01
Fastener spacing L 0.6 m
Stiffness of fastener k 42 M-Nm !

Damping of fastener c 75kN-s-m~!




Symmetry 2024, 16, 145

8 of 18

Real part
0.2 Imaginary part

Directional cosine
Imaginary part

03 T T T T T T T T 1
0 25 50 75 100 125 150 175 200
Frequency (Hz) Real part
(a)
03— 1000
Real part
202 Imaginary part
z E
S 0.1+ o
g &
§ 001 g 0
5 5D
801 £
5 —
-0.2 A
-0.3 T T T T T T T 1 -1000
0 25 50 75 100 125 150 175 20 -1000 0 1000
Frequency (Hz) Real part
(b)
6
x10
1000
0.3 4 6
Real part
_E 0.2 4 Imaginary part E 5
§ 0.1+ = 4
3 o ‘ g
g 0.0 £ 3
2 i 2
8 -0.14 g 2
'D" —
-0.2 A 1
-0.3 T T T T T T T 1 -1000
0 25 50 75 100 125 150 175 200 -1000 0 1000
Frequency (Hz) Real part
(c)

Figure 5. The first principal component and its contribution factor for different speeds: (a) 35 km/h,
(b) 45 km/h, (c) 55 km/h.

Each principal component corresponds to a contribution factor in the form of a complex
random variable, representing the size of the fluctuation of the random train loads in the
direction of the principal component. In these three working conditions, statistics of the
contribution factors corresponding to the first ten principal components of the random train
loads are shown in Table 2, including the standard deviations of the real and imaginary
variables and the correlation coefficient between the two. Since the train loads are initially
centred, the mean value of each contribution factor is pir = 0,; = 0. According to the
sorting rule, the amplitude of the contribution factors gradually decreases, which means the
fluctuation range of the train load vector in each principal component direction gradually
decreases. The correlation coefficient p;; of the different working conditions shows no
obvious pattern. Taking working condition one as an example, for the first contribution
factor, the real and imaginary variables are statistically positively correlated. While the
two variables of the third contribution factor show a negative correlation, the two variables
of the eighth contribution factor can be considered statistically uncorrelated.

Once the values of the contribution factors are determined, the random train loads in
the principal component space can be transformed into the frequency domain, representing
the spectrum of the train loads. Then, through the inverse Fourier transform, the time
history of the train loads can be obtained. In response to the subsequent random simulation
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requirements, by generating random numbers that satisfy the probability distribution of
the contribution factors, a large-capacity sample of train load spectra and time history data
can be generated. In this prediction, the sample size of the train loads was set at 500. Three
approximately symmetrical train loads in the time domain and spectrums for each working
condition are shown in Figure 6. The characteristic peaks with intervals identical to bogies
can be seen.

Table 2. The statistics parameters of contribution factors for the first working condition.

Working Contribution

Condition Factor 1 2 3 4 5 6 7 8 ? 10
or 314 284 42 153 75 134 107 136 103 137
First oj 138 147 256 133 181 133 147 118 140 100
Ori 0.29 0.33 —0.61 0.60 0.32 0.17 —0.30 —0.08 0.04 0.50
or 196 142 73 95 90 125 104 121 104 89
Second oj 155 109 157 141 137 98 113 92 109 117
Ori —0.11 0.55 —0.09 —0.11 0.48 0.21 0.16 —-0.09 -0.07 —0.33
or 240 148 248 236 194 153 154 167 140 124
Third oy 201 244 121 116 157 160 150 128 149 156
Ori -087 051  —037  —032 —062 —041 0.8 0.30 -017 017
10 10 10
eI N 2 I 2=
S0 | / e | \‘ L S0 \ .‘ ( S0 L it
8 .20 ) \ [ | g 20 I | g 20 (|
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Figure 6. The samples of train loads for different speeds: (a) 35 km/h, (b) 45 km/h, (c) 55 km/h.

If the train loads are used for a 2D finite element model, it is necessary to average the
train loads to obtain the equivalent loads. According to the suggestion of Xu et al. [42], an
averaging process within the length range of one carriage (32 fasteners) in the time domain
was carried out. The time history and frequency spectra of the processed train load are
shown in Figure 7. According to the calculation requirements, the sampling rates of the
train load time history in each working condition are set at 512, meeting the requirements
for the analysis frequency. The waveforms and spectra show that the generated train load
has similar characteristics to the original train load.
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-30 T T T T T T T 1 0.01 T T T T T T T T 1
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Figure 7. Cont.
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Figure 7. The train loads after averaging process in the time domain and in the frequency domain for
different speeds: (a) 35 km/h, (b) 45 km/h, (c) 55 km/h.

4.3. Numerical Model

To calculate the vertical vibration response of the tunnel wall, a 2D axisymmetric finite
element model shown in Figure 8 was established using ANSYS. The model was 64 m
long and 50 m high, and an eight-node element was used for computation. In this case,
the tunnel was embedded in a layer of pebble, with a shear wave speed of 360 m/s for
the soil layer. This calculation’s frequency band of interest was 1~200 Hz, resulting in a
minimum shear wavelength of 1.8 m. To ensure adequate accuracy for high-frequency
vibrations, the size of the soil elements surrounding the tunnel was controlled within
0.4 m so that at least four elements were included in each shear wavelength range. As
the distance from the vibration source increased, the element size gradually increased to
control the number of elements. The roadbed elements, tunnel elements and soil elements
met the compatibility condition. A consistent viscous-spring artificial boundary was used
for the model boundary, which can effectively reduce the reflection effect of waves at the
boundary. Damping was modelled using the Rayleigh damping, with parameters a = 3.425
and B = 8.68 x 10~°. For detailed descriptions of boundary and damping, refer to Ma
et al. [43]. The physical and mechanical parameters of each set of elements are shown in
Table 3. It was assumed that the two rails receive the same train load, which represents the
fixed excitation force transmitted to the roadbed through fasteners. The input load was
detailed in Section 4.2. For the calculation, we adopted transient analysis and utilized the
Newmark-f3 method. Considering the symmetry of the model and loads, a receiver point
on one side of the tunnel wall was placed at a height of 1.25 m from the rail, and the vertical
acceleration of this point was recorded during the calculation process.
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Figure 8. The numerical tunnel-soil model.

Table 3. The physical and mechanical parameters of elements.

Soil or Tunnel Density Poi Rati Elastic Modulus S-Wave Speed  P-Wave Speed Damping
Structure (kg/m?3) orsson Ratio (MPa) (m/s) (m/s) Ratio
Lining 2500 0.2 30,000 - - 0.03
Roadbed 2500 0.2 28,000 - - 0.03
Silt 1940 0.3 113 150 260 0.03
Fine sand 2030 0.3 248 220 370 0.03
Pebble 2150 0.3 720 360 650 0.03

Since the purpose of this research was to quantify the uncertainty of the vibration
source intensity, the Monte Carlo method was adopted for the calculation. In this method,
the probability prediction was decomposed into several certainty calculations, and each
calculation process did not interact. By successively applying a single train load to the
numerical model, 500 vibration responses could be calculated, and then statistical analysis
could be performed to obtain the statistical rules of the receiver point response.

4.4. Analysis of Results

Once the vertical vibration acceleration sample set of the receiver point on the tunnel
wall was obtained, the random characteristics of the vibration response could be described
using the uncertainty quantification methods in the time domain and frequency domain
presented in this paper. In the time domain, the uncertainty was described using the instan-
taneous root mean square values of the vibration amplitudes under ensemble averaging.
In each working condition, there was a 90% confidence interval of the instantaneous root
mean square of the vertical acceleration of the tunnel wall, as shown in Figure 9. It can be
seen that the confidence interval range of the predicted results and the measured results
was very close. With an increase in train speed, both the upper limits of the predicted
and measured confidence intervals showed an increasing trend. The measured results
can reflect the characteristics of different axle passages through the measurement section.
However, since the train load in the prediction model was subjected to averaging treatment,
the passing effect of different axles was not evident.
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Figure 9. The 90% confidence interval of instantaneous RMS of vertical accelerations on the tunnel
wall: (a) 35 km/h, (b) 45 km/h, (c) 55 km/h.

A one-third octave spectrum analysis was performed on each predicted and measured
time history. Then, the vibration level corresponding to each centre frequency was treated
as a continuous random variable, and the probability distribution of the vibration level at
specific frequencies could be obtained through statistical analysis. After obtaining statistical
parameters such as the mean and standard deviation, the confidence intervals at a certain
confidence level could be obtained. As shown in Figure 10, the black lines represent the
average one-third octave vibration levels of the predicted and measured results, and the
grey bands represent the 90% confidence interval of the one-third octave vibration levels.
It can be seen that the average predicted and measured values have the same trend with
the change of frequency, and the vibration levels corresponding to each centre frequency
are relatively close. In terms of uncertainty, the width of the 90% confidence interval of the
vibration level at each frequency is also quite close.
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Figure 10. The 90% confidence interval of the one-third octave bands of vertical accelerations on the
tunnel wall: (a) 35 km /h, (b) 45 km/h, (c) 55 km/h.

The calculation results of the tunnel wall vibration response are evaluated using
the prediction accuracy evaluation method [41]. The predictions considering uncertainty
and the measured results are denoted as random variables X}, and X, respectively. The
distribution of the two-dimensional random vector (X}, X;;) on the plane can reflect the
accuracy of the predicted results. The closer the two-dimensional random vector is to
the y = x, the more accurate the prediction result. The root mean square error of the two
random variables X}, and Xy, is given as the following:

oo ftoo )
RMSE = / / h(xp, Xm) (Xp — Xm) “dxmXp, 3)

where h(xp, xm ) represents the probability density function of the two-dimensional random
vector (Xp, X,). For descriptive convenience, the relative value after normalisation is used
to define the accuracy of the prediction results:

PAI=1— RMSE, 4)
Hm
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where jim, represents the mathematical expectation of the measured random variable Xp,. It
can be seen that PAl is a dimensionless quantity, and the larger its value, the more accurate
the prediction.

Assuming that the vibration levels at each centre frequency are normally distributed,
and assuming that the correlation coefficient between the predicted and measured values
is 0.8 based on prior information, the PAI values of the one-third octave vibration level in
each working condition can be calculated, as shown in Figure 11. It can be seen that the
PAI values reach 0.65 or above at each centre frequency, which overall shows a high level of
accuracy for the predicted values. In these three working conditions, the PAI values show
a similar trend with frequency, maintaining a relatively high level below 4 Hz and above
40 Hz. The least accurate prediction is at the centre frequency of 20 Hz, where the bias
between the predicted and measured results is larger.

1.0 4 )
0.9 - /ﬁ W
0.8 _W\?\Yf.

0.7 -

—&— 35 km/h

PAI

0.6

—0— 45 km/h
0.5 4 —A— 55 km/h
0.4 T T
1 10 100
Frequency (Hz)

Figure 11. The PAI values of the one-third octave bands of vertical accelerations on the tunnel wall.

Based on the same principle and process, the maximum Z vibration level can also be
treated as a continuous random variable, and its probability distribution can be obtained.
In each prediction case, by performing a maximum Z vibration level analysis on each
acceleration time history of the predicted results, a sample of the maximum Z vibration
level with a sample size of 500 can be obtained. As shown in Figure 12, this sample can
be presented in the form of a frequency distribution histogram. By conducting a K-S test
with a significance level of o = 0.05 on the maximum Z vibration level samples in these
three working conditions, it can be found that all follow a normal distribution. According
to the distribution of the samples, a continuous probability density function curve can be
fitted, and the vertical axis of this curve has the same coordinate scale as the frequency
density. From the perspective of mean values, the predicted values in all three working
conditions are close to the measured values, with biases of 0.19 dB, —2.94 dB, and —2.64 dB,
respectively. From the perspective of standard deviation, the standard deviations of the
predicted values in cases 1 and 2 are smaller than those of the measured values; in the
last working condition, the standard deviations of the predicted and measured values are
very close.

0.5 0.5
[ Predicted []Measured
0.4 0.4 4
9 031 K,;::sl:lllll“ycdl:rllbllgﬁg normal &9 0.3 7 Probability distribution: normal
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Figure 12. Cont.
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Figure 12. The probabilistic distribution histograms and fitting curves (red lines) of the maximum Z
vibration levels of vertical accelerations on the tunnel wall: (a) 35 km/h, (b) 45 km/h, (c) 55 km/h.

To visually represent this, the joint probability density function of the predicted and
measured values are displayed in Figure 13. The equal probability ellipses for all three
working conditions are located near the reference line x, = xp, showing high accuracy.
The state of the ellipse also reflects the bias and uncertainty of the prediction. For the
latter two working conditions, the centre of the ellipse is in the upper left of the plane,
indicating that the prediction underestimates the mean value. The first two ellipses show
a “raised head” state, indicating that the predicted values underestimates the uncertainty.
The accuracy index PAI is also used to evaluate the effect of the maximum Z vibration
level prediction. The PAI values for these three working conditions reach 0.99, 0.96, and
0.97, respectively, showing high prediction accuracy. For the prediction of vibration source
strength, the distance between the train load and the receiver point is very close, and the
vibration propagation path is relatively clear. Moreover, the vibration mainly propagates
in the concrete structure, so the accurate prediction of vibration source strength directly
reflects the high accuracy of the random train loads.

0.25 95 0.25 0.25
0.2 90 0.2 0.2
3 3 3
55 0.15 ;85 0.15 55 0.15
2] w2 7]
8 L0.1 5 80 0.1 8 0.1
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Figure 13. The joint distributions of predicted and measured maximum Z vibration levels on the
tunnel wall: (a) 35 km/h, (b) 45 km/h, (c) 55 km/h.
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On the other hand, the PAI values and the joint distributions of prediction and mea-
surement show a certain degree of difference in different working conditions. The PAI
value under the first working condition is the highest, indicating a good fit between the
elliptical-shaped bright spot of the joint distribution and the reference line. The bright
spots under the second working condition show a “rising” appearance, indicating that
the predicted values underestimate uncertainty, resulting in the lowest PAI value. Under
the third operating condition, the long axis of the bright spot is parallel to the reference
line, indicating that the uncertainty of the predicted and measured values is consistent,
but the prediction overestimates the average vibration response. This difference is not
significantly related to the vehicle speed, but it is caused by the superposition of various
accidental factors.

5. Conclusions

This paper quantified the uncertainty of train loads and established a symmetric
numerical model for calculating the vibration response of tunnel wall in a probabilistic
framework. By comparing the calculated results with the measurements, some conclusions
can be drawn.

(1) A method for quantifying the uncertainty of train loads is introduced, based on the
identification method as well as the principal component analysis method to generate
large-capacity samples to reflect the randomness of the loads. Then, the method to
describe the uncertainty of train-induced vibrations in the time domain and frequency
domain is presented.

(2) The probabilistic distributions of the vibration response of the tunnel wall under
three different train speeds are calculated using the random simulation method and
compared with the measured results. The results show that the amplitude and trend
of the predicted and measured results are similar, and the predicted and measured
results are in good agreement in terms of bias and uncertainty.

(3 Anaccuracy index PAI was used to quantitatively evaluate the calculation accuracy
of the proposed method. The results show that the PAI value reaches more than 0.65
at each centre frequency, indicating that the proposed method has high accuracy and
that the bias between the prediction results and the measured results is within an
acceptable range. Since the vibration propagation path inside the tunnel is short, the
accurate results of vibration responses directly reflect the accuracy of train loads.

(4) The accuracies represented by PAI values under different speeds show differences,
but the differences are not significantly related to the vehicle speed.

(5) In the socio-economic sense, accurate predicted results are beneficial for selecting
appropriate vibration mitigation measures during the design phase. It helps to balance
the risk of excessive vibration and the risk of excessive use of vibration mitigation
measures. The latter usually means higher prices.
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