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1. Introduction and Preliminaries

The Banach Contraction Principle is a fundamental result in the field of functional
analysis and topology. It provides conditions under which a mapping on a complete
metric space has a unique fixed point. The Banach Contraction Principle has significant
applications in various fields, including mathematical analysis, numerical methods, and
optimization. It provides a powerful tool for establishing the existence and uniqueness
of solutions to many kinds of equations. Additionally, it has implications in the study
of dynamical systems and stability analysis. However, owing to the strict conditions of
the metric space and the specific properties imposed, the need to work with topological
structures that have more flexible conditions than the metric space has emerged. Therefore,
many generalizations of the Banach Contraction Principle have been obtained in this
space by defining the quasi-metric space. Furthermore, quasi-metric spaces are useful
in numerous topics of mathematics, like optimization, functional analysis, and computer
science. They provide a more general framework for studying approaches related to
distances and convergence, allowing for more flexible and adaptable notions of proximity
(see [1–6]). We now go over the terms and symbols associated with quasi-metric space:

Definition 1 ([6,7]). Let us consider the following properties for the function σ : Ω × Ω → R,
where Ω be a nonempty set: for each ξ, ζ, ς ∈ Ω

(i) σ(ξ, ξ) = 0.
(ii) σ(ξ, ζ) ≤ σ(ξ, ς) + σ(ς, ζ) (triangle inequality).
(iii) σ(ξ, ζ) = σ(ζ, ξ) = 0 implies ξ = ζ.
(iv) σ(ξ, ζ) = 0 implies ξ = ζ.

When (i) and (ii) are met, σ is referred to as a quasi-pseudo metric or simply qpm.
When requirements (i), (ii), and (iii) are met,
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It is clear that every T1-qm is a qm, every qm is a qpm, and every ordinary metric is
a T1-qm. If (Ω, σ) is a quasi-pseudo metric space (abbreviated qpms), then σ produces a
topology τσ on Ω, with the following family of open balls serving as its base:

{Bσ(ξ, ε) : ξ ∈ Ω and ε > 0},

where Bσ(ξ0, ε) = {ζ ∈ Ω : σ(ξ0, ζ) < ε}. τσ is a T0 topology on
On the other hand, the mappings, σ−1, σs, σ+ : Ω × Ω → [0, ∞) defined as

σ−1(ξ, ζ) = σ(ζ, ξ)

σs(ξ, ζ) = max{σ(ξ, ζ), σ−1(ξ, ζ)}
σ+(ξ, ζ) = σ(ξ, ζ) + σ−1(ξ, ζ)

are also qpms on Ω, whenever σ is a qpm. If σ is a qm, then σs and σ+ are (equivalent)
metrics on Ω.

Let (Ω, σ) be a qm, {ξn} be a sequence in Ω and ξ ∈ Ω. If {ξn} converges to ξ with
respect to τσ, this is denoted as ξn

σ→ ξ and called σ-convergence. In this case, by the
definition of τσ, ξn

σ→ ξ if and only if σ(ξ, ξn) → 0. Similarly, if {ξn} converges to ξ with

respect to τσ−1 , this is denoted as ξn
σ−1
→ ξ and called σ−1-convergence. In this case, by the

definition of τσ−1 , σ(ξn, ξ) → 0 if and only if ξn
σ−1
→ ξ. Finally, if {ξn} converges to ξ with

respect to τσs , this is denoted as ξn
σs
→ ξ and called σs-convergence. If for every ε > 0, there

exists n0 ∈ N such that for every n, k ∈ N with n ≥ k ≥ n0 (k ≥ n ≥ n0), σ(ξk, ξn) < ε,
then the sequence {ξn} in Ω is called left (right) K-Cauchy. Under σ, the right K-Cauchy
property under σ−1 is implied by the left K-Cauchy property. It is clear that, if

∞

∑
n=1

σ(ξn, ξn+1)

is convergent, then the sequence {ξn} is left K-Cauchy.
Every convergent sequence in a metric space is, in fact, a Cauchy sequence; in qms,

this may not be the case. Completeness is one of the indispensable concepts in metric
fixed-point theory. However, while completeness is defined in one way in metric spaces,
this concept is diversified in quasi-metric spaces since quasi-metric does not have the
symmetry property. The literature contains numerous definitions of completeness in these
domains (see [8,9]). Let (Ω, σ) be a qms. If every left (right) K-Cauchy sequence is σ (resp.
σ−1, σs)-convergent, then (Ω, σ) is considered left (right) K (resp. M, Smyth)-complete.
You may obtain a more thorough discussion of a few key metric features in [8].

Let us now recall the notion of α-admissibility defined by Samet et al. [10], which
has recently become important in metric fixed-point theory. This notion has the effect of
weakening the hypotheses in the theorems since it restricts the set of points that are required
to satisfy the contraction inequality in metric fixed-point theory. Let Ω ̸= ∅, Γ : Ω → Ω be
a mapping and

α(ξ, ζ) ≥ 1 implies α(Γξ, Γζ) ≥ 1.

Samet et al. [10] established several universal fixed-point results encompassing several
well-known theorems regarding complete metric space by introducing the α-admissibility
technique. These discoveries on fixed points offer a framework for investigating the
existence and characteristics of fixed points for self-mappings on a complete metric space,
employing the α-admissibility method (see [11–17]).

On the other hand, [18] saw the introduction of a novel kind of contractive mapping
called a θ-contraction by Jleli and Samet. Within the field of fixed-point theory, this θ-
contraction is an appealing generalization. Let us go over a few concepts and associated
findings on θ-contraction to gain a better understanding of this method. Let Θ represent
the set of all functions θ : (0, ∞) → (1, ∞) that meet the specified criteria:
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• (θ1) θ is non-decreasing,
• (θ2) For each sequence {ϱn} ⊂ (0, ∞), limn→∞ ϱn = 0+ if only if limn→∞ θ(ϱn) = 1,

• (θ3) There exist 0 < p < 1 and µ ∈ (0, ∞] such that limϱ→0+
θ(ϱ)−1

ϱp = µ.

For example, the θ, defined by θ(ϱ) = e
√

ϱ for ϱ ≤ 1 and θ(ϱ) = 9 for ϱ > 1, belongs
to Θ.

Let (Ω, σ) be a metric space and θ ∈ Θ. Then, a self-mapping Γ of Ω is said to be a
θ-contraction if there exists 0 < δ < 1 satisfying

θ(σ(Γξ, Γζ)) ≤ [θ(σ(ξ, ζ))]δ (1)

for each ξ, ζ ∈ Ω with σ(Γξ, Γζ) > 0.
Various contractions can be obtained by selecting suitable functions for θ in (1), e.g.,

θ1(ϱ) = e
√

ϱ and θ2(ϱ) = e
√

ϱeϱ
. It has been demonstrated by Jleli and Samet [18] that

each θ-contraction on a complete metric space has a unique fixed point. This outcome
offers a useful perspective on the presence and uniqueness of fixed points for a large class
of contractive mappings. There are various articles accessible if additional papers in the
literature about θ-contractions are required (see [19–21]).

In our previous paper [22], by combining the concept of ζ-contraction, which was
created with the simulation function used by Khojasteh et al. [23] for the first time in fixed-
point theory, and Berinde’s almostness idea [24], the concept of almost-ζ-contraction in
quasi-metric space was defined, and then the related fixed-point theorem was established.
Then, an application was made to a fractional order boundary-value problem.

In this study, we establish the notion of (α − θσ)-contraction mappings on quasi-metric
spaces, taking into account the preceding arguments, and then present some fixed-point
results for such mappings quasi-metric spaces. Finally, the obtained theoretical result was
applied to the existence of a solution to a second-order boundary-value problem.

2. The Results

In this section, we present our theoretical results.
Let Γ be a self-mapping on qms (Ω, σ), α : Ω × Ω → [0, ∞) be a function and Γα be a

set defined by

Γα = {(ξ, ζ) ∈ Ω × Ω : α(ξ, ζ) ≥ 1 and σ(Γξ, Γζ) > 0}. (2)

Definition 2. Let Γ be a self-mapping on qms (Ω, σ) satisfying

σ(ξ, ζ) = 0 =⇒ σ(Γξ, Γζ) = 0. (3)

α : Ω × Ω → [0, ∞) and θ ∈ Θ be two functions. Then, Γ is called (α − θσ)-contraction if there
exists 0 < δ < 1 such that

θ(σ(Γξ, Γζ)) ≤ [θ(σ(ξ, ζ))]δ, (4)

for each (ξ, ζ) ∈ Γα.

Prior to outlining our primary findings, let us put on two crucial points:

• Every self-mapping Γ meets the requirement (3) if (Ω, σ) is a T1-qms.
• It is clear from (2)–(4) that if Γ is an (α − θσ)-contraction on a qms (Ω, σ), then

σ(Γξ, Γζ) ≤ σ(ξ, ζ),

for each ξ, ζ ∈ Ω with α(ξ, ζ) ≥ 1.

The next theorem will be discussed using the (α − θσ)-contraction technique.
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Theorem 1. Let (Ω, σ) be a left K-complete T1-qms such that (Ω, τσ) is Hausdorff topological
space, and let Γ : Ω → Ω be a (α − θσ)-contraction. Assume that Γ is τσ-continuous and
α-admissible. If there exists ξ0 ∈ Ω such that α(ξ0, Γξ0) ≥ 1, then Γ has a fixed point in Ω.

Proof. Let ξ0 ∈ Ω be a such that α(ξ0, Γξ0) ≥ 1. Define a sequence {ξn} in Ω by ξn+1 = Γξn.
Since Γ is α-admissible, we have α(ξn, ξn+1) ≥ 1 for n ∈ N. If there exist k ∈ N such that
σ(ξk, Γξk) = 0 then by T1 property of σ, we have Γξk = ξk, i.e., ξk is a fixed point of Γ.
Assume σ(ξn, Γξn) > 0 for n ∈ N. Hence, the pair (ξn, ξn+1) ∈ Γα for n ∈ N. Since Γ is
(α − θσ)-contraction, then by (θ1), we obtain

θ(σ(ξn, ξn+1)) = θ(σ(Γξn−1, Γξn))

≤ [θ(σ(ξn−1, ξn))]
δ. (5)

Let σn = σ(ξn, ξn+1) for n ∈ N. Then σn > 0 for n ∈ N and so, from (5) , we obtain

θ(σn) ≤ [θ(σ0)]
δn

,

i.e.,
1 < θ(σn) ≤ [θ(σ0)]

δn
(6)

for n ∈ N. Letting n → ∞ in (6), we obtain

lim
n→∞

θ(σn) = 1. (7)

From (θ2), we obtain that limn→∞ σn = 0+, so from (θ3), there exist p ∈ (0, 1) and µ ∈ (0, ∞]
such that

lim
n→∞

θ(σn)− 1
(σn)p = µ.

Now, assume that µ < ∞ and let M = µ
2 > 0. According to the limit’s definition, there

exists n0 ∈ N such that, for each n0 ≤ n,∣∣∣∣ θ(σn)− 1
(σn)p − µ

∣∣∣∣ ≤ M.

Hence, for each n0 ≤ n, we have

θ(σn)− 1
(σn)p ≥ µ − M = M.

Then, for each n0 ≤ n ,
n(σn)

p ≤ Bn[θ(σn)− 1],

where B = 1/M.
For the second case, assume that µ = ∞ and let F > 0 be an arbitrary positive number.

According to the limit’s definition, there exists n0 ∈ N such that, for each n0 ≤ n,

θ(σn)− 1
(σn)p ≥ M.

Hence, for each n0 ≤ n, we have

n[σn]
p ≤ Bn[θ(σn)− 1],

where B = 1/M.
Therefore, in two cases, there exist B > 0 and n0 ∈ N such that

n[σn]
p ≤ Bn[θ(σn)− 1],
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for each n0 ≤ n. Using (6), we obtain

n[σn]
p ≤ Bn

[
[θ(σ0)]

δn
− 1

]
,

for each n0 ≤ n. Taking n → ∞ from both sides the last inequality, we have

lim
n→∞

n[σn]
p = 0.

Thus, there exists n1 ∈ N such that n[σn]
p ≤ 1 for each n ≥ n1, so, we have, for each n ≥ n1,

σn ≤ 1
n1/p . (8)

Therefore, for each n ≥ n1 from (8) we have

σ(ξn, ξn+1) ≤
1

n1/p

and so
∞

∑
i=n1

σ(ξn, ξn+1) ≤
∞

∑
i=n1

1
n1/p .

Since the series
∞
∑

i=1

1
i1/p is convergent we have

∞
∑

i=1
σ(ξn, ξn+1) is convergent. This show that

{ξn} is a left K -Cauchy sequence. By the left K-completeness of (Ω, σ), there exists ς ∈ Ω
such that σ(ς, ξn) → 0 as n → ∞. Since Γ is τσ-continuous then we have σ(Γς, Γξn) =
σ(Γς, ξn+1) → 0 as n → ∞. Since Ω is Hausdorff, we obtain Γς = ς .

Now, we present an illustrative example.

Example 1. Let Ω = {0, 1, 2, · · · } and

σ(ξ, ζ) =


0 , ξ = ζ

ξ + ζ , ξ ̸= ζ
.

Then (Ω, σ) is a left K-complete T1-qms. Moreover, (Ω, τσ) is Hausdorff topological space. Define
two mappings α : Ω × Ω → [0,+∞) by

α(ξ, ζ) =


1 , ξ ≥ ζ > 0

0 , otherwise

and Γ : Ω → Ω by

Γξ =


ξ , ξ ∈ {0, 1}

ξ − 1 , ξ ≥ 2
.

It is easy to see that Γ is τσ-continuous and α-admissible. Also, for ξ0 = 1 we have α(ξ0, Γξ0) ≥ 1.

Now, we claim that Γ is (α − θσ)-c with θ(ϱ) = e
√

ϱeϱ
and δ = e−

1
2 . To see this, we must show that

σ(Γξ, Γζ)

σ(ξ, ζ)
eσ(Γξ,Γζ)−σ(ξ,ζ) ≤ e−1. (9)

for all (ξ, ζ) ∈ Γα. First, observe that

Γα = {(ξ, ζ) ∈ Ω × Ω : α(ξ, ζ) ≥ 1 and σ(Γξ, Γζ) > 0}
= {(ξ, ζ) ∈ Ω × Ω : ξ > ζ > 0}\{(2, 1)}.
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Let (ξ, ζ) ∈ Γα. Then

σ(Γξ, Γζ)

σ(ξ, ζ)
eσ(Γξ,Γζ)−σ(ξ,ζ) ≤ ξ + ζ − 1

ξ + ζ
e−1 ≤ e−1.

This shows that (9) is true. Hence, all conditions of Theorem 1 are satisfied and so Γ has a fixed point
in Ω . Here 0 and 1 are fixed points of Γ. On the other hand, since σ(Γ0, Γ1) = 1 = σ(0, 1), then
we have

θ(σ(Γ0, Γ1)) > [θ(σ(0, 1))]δ,

for all θ ∈ Θ and δ ∈ (0, 1). This situation shows the importance and effect of α in Theorem 1 .

The outcomes that follow are a direct result of the Theorem 1.

Corollary 1. Let (Ω, σ) be a left K-complete T1-qms such that (Ω, τσ) is Hausdorff topological
space, and let Γ : Ω → Ω be a τσ-continuous and α-admissible such that

σ(Γξ, Γζ)

σ(ξ, ζ)
eσ(Γξ,Γζ)−σ(ξ,ζ) ≤ δ

for all (ξ, ζ) ∈ Γα. Finally, if there exists ξ0 ∈ Ω such that α(ξ0, Γξ0) ≥ 1, then Γ has a fixed point
in Ω.

Proof. If we take θ(ϱ) = e
√

ϱeϱ
in Theorem 1, we obtain the desired result.

Corollary 2. Let (Ω, σ) be a left K-complete T1-qms such that (Ω, τσ) is Hausdorff topological
space, and let Γ : Ω → Ω be a τσ-continuous and α-admissible such that

σ(Γξ, Γζ) ≤ δσ(ξ, ζ)

for all (ξ, ζ) ∈ Γα. Finally, if there exists ξ0 ∈ Ω such that α(ξ0, Γξ0) ≥ 1, then Γ has a fixed point
in Ω.

Proof. If we take θ(ϱ) = e
√

ϱ in Theorem 1, we obtain the desired result.

Corollary 3. Let (Ω, σ) be a left K-complete T1-qms such that (Ω, τσ) is Hausdorff topological
space, and let Γ : Ω → Ω be a τσ-continuous mapping such that

θ(σ(Γξ, Γζ)) ≤ θ(σ(Γξ, Γζ))δ

for all ξ, ζ ∈ Ω with σ(Γξ, Γζ) > 0. Then Γ has a fixed point in Ω.

Proof. If we take σ(ξ, ζ) = 1 in Theorem 1, we obtain the desired result.

Within Theorem 1, considering the τσ−1-continuity technique, the following theorem
can be obtained:

Theorem 2. Let (Ω, σ) be a left M-complete T1-qms such that (Ω, τσ−1) is Hausdorff topological
space, and Γ : Ω → Ω be a (α − θσ )-contraction. Assume that Γ is τσ−1-continuous and α-
admissible. Then, Γ has a fixed point in Ω, provided that there exists ξ0 ∈ Ω such that α(ξ0, Γξ0) ≥ 1.

Proof. By the similar proof of Theorem 1, the constructed sequence {ξn} is left K-Cauchy.
Hence from the left M-completeness of the space (Ω, σ), there exists ς ∈ Ω such that
σ(ξn, ς) → 0 as n → ∞. Using τσ−1 -continuity of Γ, we obtain σ(Γξn, Γς) = σ(ξn+1, Γς) → 0
as n → ∞. Since (Ω, τσ−1) is Hausdorff, we obtain ς = Γς.

The outcomes that follow are a direct result of the Theorem 2.
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Corollary 4. Let (Ω, σ) be a left M-complete T1-qms such that (Ω, τσ−1) is Hausdorff topological
space, and let Γ : Ω → Ω be a τσ−1 -continuous and α-admissible such that

σ(Γξ, Γζ)

σ(ξ, ζ)
eσ(Γξ,Γζ)−σ(ξ,ζ) ≤ δ

for all (ξ, ζ) ∈ Γα. Then, Γ has a fixed point in Ω, provided that there exists ξ0 ∈ Ω such that
α(ξ0, Γξ0) ≥ 1.

Proof. If we take θ(ϱ) = e
√

ϱeϱ
in Theorem 2, we obtain the desired result.

Corollary 5. Let (Ω, σ) be a left M-complete T1-qms such that (Ω, τσ−1) is Hausdorff topological
space, and let Γ : Ω → Ω be a τσ−1 -continuous and α-admissible such that

σ(Γξ, Γζ) ≤ δσ(ξ, ζ)

for all (ξ, ζ) ∈ Γα. Then, Γ has a fixed point in Ω, provided that there exists ξ0 ∈ Ω such that
α(ξ0, Γξ0) ≥ 1.

Proof. If we take θ(ϱ) = e
√

ϱ in Theorem 2, we obtain the desired result.

Corollary 6. Let (Ω, σ) be a left M-complete T1-qms such that (Ω, τσ−1) is Hausdorff topological
space, and let Γ : Ω → Ω be a τσ−1 -continuous mapping such that

θ(σ(Γξ, Γζ)) ≤ θ(σ(Γξ, Γζ))δ

for all ξ, ζ ∈ Ω with σ(Γξ, Γζ) > 0. Then Γ has a fixed point in Ω.

Proof. If we take σ(ξ, ζ) = 1 in Theorem 2, we obtain the desired result.

The Hausdorffness constraint can be dropped if we take the space Ω’s left Smyth
completeness into account. But in this instance, the σ needs to remain a T1-qm.

Theorem 3. Let (Ω, σ) be a left Smyth complete T1-qms and Γ : Ω → Ω be a (α− θσ )-contraction.
Assume that Γ is τσ or τσ−1 -continuous, and α-admissible. Then, Γ has a fixed point in Ω, provided
that there exists ξ0 ∈ Ω such that α(ξ0, Γξ0) ≥ 1.

Proof. By the similar proof of Theorem 1, the constructed sequence {ξn} is left K-Cauchy.
By the left Smyth completeness of the space (Ω, σ), there exists ς ∈ Ω such that {ξn} is
σs-converges to ς ∈ Ω, i.e., σs(ξn, ς) → 0 as n → ∞. If Γ is τσ-continuous, then

σ(Γς, Γξn) = σ(Γς, ξn+1) → 0 as n → ∞.

Therefore we obtain

σ(Γς, ς) ≤ σ(Γς, ξn+1) + σ(ξn+1, ς) → 0 as n → ∞.

If Γ is τσ−1 -continuous, then

σ(Γξn, Γς) = σ(ξn+1, Γς) → 0 as n → ∞.

Therefore we have,

σ(ς, Γς) ≤ σ(ς, ξn+1) + σ(ξn+1, Γς) → 0 as n → ∞.

Since Γ is T1-qms, we obtain Γς = ς.

The outcomes that follow are a direct result of the Theorem 3.
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Corollary 7. Let (Ω, σ) be a left Smyth complete T1-qms, and let Γ : Ω → Ω be a α-admissible
and τσ(or τσ−1 )-continuous such that

σ(Γξ, Γζ)

σ(ξ, ζ)
eσ(Γξ,Γζ)−σ(ξ,ζ) ≤ δ

for all (ξ, ζ) ∈ Γα. Then, Γ has a fixed point in Ω, provided that there exists ξ0 ∈ Ω such that
α(ξ0, Γξ0) ≥ 1.

Proof. If we take θ(ϱ) = e
√

ϱeϱ
in Theorem 3, we obtain the desired result.

Corollary 8. Let (Ω, σ) be a left Smyth complete T1-qms, and let Γ : Ω → Ω be a α-admissible
and τσ(or τσ−1 )-continuous such that

σ(Γξ, Γζ) ≤ δσ(ξ, ζ)

for all (ξ, ζ) ∈ Γα. Then, Γ has a fixed point in Ω, provided that there exists ξ0 ∈ Ω such that
α(ξ0, Γξ0) ≥ 1.

Proof. If we take θ(ϱ) = e
√

ϱ in Theorem 3, we obtain the desired result.

Corollary 9. Let (Ω, σ) be a left Smyth complete T1-qms, and let Γ : Ω → Ω be a τσ(or τσ−1)–
continuous mapping such that

θ(σ(Γξ, Γζ)) ≤ θ(σ(Γξ, Γζ))δ

for all ξ, ζ ∈ Ω with σ(Γξ, Γζ) > 0. Then Γ has a fixed point in Ω.

Proof. If we take σ(ξ, ζ) = 1 in Theorem 3, we obtain the desired result.

Let (Ω, σ) be a qms and α : Ω × Ω → [0, ∞) be a function. In this case, (Ω, σ) is
said to have the property Aσ (respectively Bσ), if for every sequence {ξn} in Ω and ς ∈ Ω
satisfying both α(ξn, ξn+1) ≥ 1 and ξn

σ→ ς, then α(ξn, ς) ≥ 1 (respectively α(ς, ξn) ≥ 1) for
every n ∈ N. In Theorem 3, the property Aσ or Bσ property of the space can be considered
instead of the continuity of mapping.

Theorem 4. Let (Ω, σ) be a left Smyth complete T1 qms and Γ : Ω → Ω be a (α− θσ)-contraction.
Presume that Γ is α-admissible and Ω has one of the properties Aσ, Aσ−1 , Bσ, Bσ−1 . Then, Γ has a
fixed point in Ω, provided that there exists ξ0 ∈ Ω such that α(ξ0, Γξ0) ≥ 1.

Proof. By the similar proof of Theorem 1, the constructed iterative sequence {ξn} is left
K-Cauchy. By the left Smyth completeness of the space (Ω, σ), there exists ς ∈ Ω such that
{ξn} is σs-converges to ς ∈ Ω; that is, σs(ξn, ς) → 0 as n → ∞. If Ω has the property Aσ or
Aσ−1 , then α(ξn, ς) ≥ 1. Therefore we obtain

σ(ς, Γς) ≤ σ(ς, ξn+1) + σ(ξn+1, Γς)

≤ σ(ς, ξn+1) + σ(Γξn, Γς)

≤ σ(ς, ξn+1) + σ(ξn, ς) → 0 as n → ∞.

If Ω has the property Bσ or Bσ−1 , then α(ς, ξn) ≥ 1. Therefore, we obtain,

σ(Γς, ς) ≤ σ(Γς, Γξn) + σ(Γξn, ς)

≤ σ(ς, ξn) + σ(ξn+1, ς) → 0 as n → ∞.

Since Γ is T1-qms, we obtain Γς = ς.
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The outcomes that follow are a direct result of the Theorem 4.

Corollary 10. Let (Ω, σ) be a left Smyth complete T1-qms, and let Γ : Ω → Ω be a α-admissible
mapping such that

σ(Γξ, Γζ)

σ(ξ, ζ)
eσ(Γξ,Γζ)−σ(ξ,ζ) ≤ δ

for all (ξ, ζ) ∈ Γα. Assume that Ω has one of the property Aσ, Aσ−1 , Bσ, Bσ−1 . Then, Γ has a fixed
point in Ω, provided that there exists ξ0 ∈ Ω such that α(ξ0, Γξ0) ≥ 1.

Proof. If we take θ(ϱ) = e
√

ϱeϱ
in Theorem 4, we obtain the desired result.

Corollary 11. Let (Ω, σ) be a left Smyth complete T1-qms, and let Γ : Ω → Ω be a α-admissible
mapping such that

σ(Γξ, Γζ) ≤ δσ(ξ, ζ)

for all (ξ, ζ) ∈ Γα. Assume that Ω has one of the property Aσ, Aσ−1 , Bσ, Bσ−1 . Then, Γ has a fixed
point in Ω, provided that there exists ξ0 ∈ Ω such that α(ξ0, Γξ0) ≥ 1.

Proof. If we take θ(ϱ) = e
√

ϱ in Theorem 4, we obtain the desired result.

Remark 1. We can achieve similar theorems in qm spaces by taking into account the concept of
right completeness in the sense of K, M, and Smyth.

3. Application

In this section, we obtain an existing result about the solution of a second-order
boundary-value problem (shortly BVP) by applying Theorem 1. We will consider the BVP
as follows: {

− d2ξ
dt2 = H(t, ξ(t)), t ∈ [0, 1]

ξ(0) = ξ(1) = 0
, (10)

where H : [0, 1] × R → R is a continuous function. In the literature, there have been
existence theorems provided for the problem (10) that consider certain requirements on H
(see [25–30]). In this instance, we will examine different conditions on H and offer a novel
theorem. It is evident that the following integral equation is equal to the problem (10):

ξ(t) =
∫ 1

0
G(t, τ)H(τ, ξ(τ))dτ, t ∈ [0, 1], (11)

where G(t, τ) is associated Green’s function defined as

G(t, τ) =


t(1 − τ) , 0 ≤ t ≤ τ ≤ 1

τ(1 − t) , 0 ≤ τ ≤ t ≤ 1
.

Hence, ξ ∈ C2[0, 1] is a solution of (10) if and only if it is a solution of (11). It is clear that∫ 1

0
G(t, τ)dτ =

t(1 − t)
2

.

Let (Ω, σ) be the T1-qms, where Ω = C[0, 1] and σ is given by

σ(ξ, ς) = max

{
sup

t∈[0,1]
{ξ(t)− ς(t)}, 2 sup

t∈[0,1]
{ς(t)− ξ(t)}

}
.

It is clear that (Ω, σ) is left K-complete. Also (Ω, τσ) is Hausdorff topological space.
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Theorem 5. Under the following assumption, the second-order BVP given by (10) has a solution:
for all ξ, ς ∈ Ω

max

{
sup

τ∈[0,1]
{H(τ, ξ(τ))− H(τ, ς(τ))}, 2 sup

τ∈[0,1]
{H(τ, ς(τ))− H(τ, ξ(τ))}

}
≤ Kσ(ξ, ς),

where K < 8.

Proof. Consider the operator T : ξ → ξ defined by

Γξ(t) =
∫ 1

0
G(t, τ)H(τ, ξ(τ))dτ

Then for any ξ, ς ∈ ξ and t ∈ [0, 1] we have

σ(Γξ, Γς) = max

{
sup

t∈[0,1]
{Γξ(t)− Γς(t)}, 2 sup

t∈[0,1]
{Γς(t)− Γξ(t)}

}

= max

 supt∈[0,1]

{∫ 1
0 G(t, τ)H(τ, ξ(τ))dτ −

∫ 1
0 G(t, τ)H(τ, ς(τ))dτ

}
,

2 supt∈[0,1]

{∫ 1
0 G(t, τ)H(τ, ς(τ))dτ −

∫ 1
0 G(t, τ)H(τ, ξ(τ))dτ

} 
= max

 supt∈[0,1]

{∫ 1
0 G(t, τ){H(τ, ξ(τ))− H(τ, ς(τ))}dτ

}
,

supt∈[0,1]

{∫ 1
0 G(t, τ)2{H(τ, ς(τ))− H(τ, ξ(τ))}dτ

} 
≤ max

 supt∈[0,1]

{∫ 1
0 G(t, τ)Kσ(ξ, ς)dτ

}
,

supt∈[0,1]

{∫ 1
0 G(t, τ)Kσ(ξ, ς)dτ

} 
= Kσ(ξ, ς) sup

t∈[0,1]

{∫ 1

0
G(t, τ)dτ

}
= Kσ(ξ, ς) sup

t∈[0,1]

{
t(1 − t)

2

}
=

K
8

σ(ξ, ς)

Consequently, Γ is a (α − θσ)-contraction with the functions θ(ϱ) = e
√

ϱ and α(ξ, ς) = 1. It
is evident that the remaining requirements of Theorem 1 are met. Thus, ζ ∈ C[0, 1] exists,
and it is the operator Γ’s fixed point. Thus, the solution to Equation (10) is guaranteed in
C[0, 1].

4. Conclusions

We introduced the notion of (α − θσ)-contraction mappings on quasi-metric spaces.
Then, we provided some fixed-point results for such mappings. In addition, we presented
an illustration to back up our theoretical results. Finally, we provide an existence theorem
for the second-order boundary-value problem. The outcomes of this paper are new and
contribute to the fixed-point theory and applications. For future research, both new theoret-
ical results can be proved by expanding contraction, and the theoretical results can be used
to obtain the existing results for some kinds of equations, such as differential equations and
integral equations, including fractional order.
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