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Abstract: Movements on surfaces of centered Euclidean spheres and changes between those with
different radii mean complex multiplication in R3. Here, the Euclidean norm, which generates the
spheres, is replaced with an inhomogeneous functional and a product is introduced in a geometric
analogy. Because a change in the radius now leads to a change in the shape of the sphere, a three-
dimensional dynamic complex structure is created. Statements about invariant probability densities,
generalized uniform distributions on generalized spheres, geometric measure representations, and
dynamic ball numbers associated with this structure are also presented.
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1. Introduction

Ordinary complex multiplication has geometric visualization as a superposition of a
movement on a circle and the alternation between two concentric circles. In the analogous
three-dimensional complex structure, circles are replaced with Euclidean spheres. The
resulting complex structure is called static in the context of this work because a change
in the radius variable does not lead to a change in the shape of the sphere. In this sense,
concentric spheres can be viewed as parallel. If, however, the Euclidean norm that generates
the spherical surfaces is replaced by an inhomogeneous functional, a dynamic three-
dimensional complex structure will be achieved.

Multiplication in three-dimensional generalized complex structures, as studied in [1,2],
can be interpreted as changing two radius variables and one angle variable. But, in
these papers, the product is not primarily defined in a geometric way by distinguishing
generalized spheres in the entire space, but by determining the value of the product for the
so-called basis elements. In contrast, here, in the spirit of [3], we used generalized spheres
to define multiplication by changes in one radius variable and two angle variables.

To become more specific, let p = (p1, p2, p3) denote three positive real numbers and

||x|| = |x|p1

p1
+

|y|p2

p2
+

|z|p3

p3
, x =

 x
y
z

 ∈ R3

is a functional that plays a fundamental role in defining the density of the three-dimensional
p-generalized Gaussian probability law. With regard to the large variety of multivariate
probability distributions, which could justify the introduction of numerous other function-
als and in turn other complex number systems, we refer to [4–19]. We call

B(r) = {x ∈ R3 : ||x|| ≤ r}

the p-ball, which is a star-shaped set with respect to the origin o = (0, 0, 0)T , its boundary

S(r) = {x ∈ R3 : ||x|| = r}
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the p-sphere of p-radius r > 0, and B(1) = B and S(1) = S the unit p-ball and unit
p-sphere, respectively.

If p1 = p2 = p3, then the functional x → ||x|| is positively homogeneous of degree
p1, that is ||λx|| = |λ|p1 · ||x||, λ ∈ R. In other words: S and r · S are “parallel”, meaning
that a change in p-radius r does not change the “shape” of the sphere. This situation is
a static structure. If, in particular, p1 ≥ 1, then the p-ball B is convex and its generating
functional ||.|| is a norm, but if 0 < p1 ≤ 1, then B is radially concave in every sector of a
suitably defined fan and ||.|| is an antinorm according to [20]. Three complex numbers in
case p1 > 0 are dealt with in [3].

Throughout this paper, however, we always consider the case

pl ̸= pm, l ̸= m. (1)

This situation is a dynamic structure because S(r1) and S(r2) have different “shapes” if
r1 ̸= r2. The functional ||.|| is not homogeneous in any degree with respect to scalars, but it
is matrix homogeneous in the sense

S(r) = D(r)S

where D(r) = diag(r
1

p1 , r
1

p2 , r
1

p3 ) is a diagonal matrix. A two-dimensional dynamic struc-
ture was studied in [21].

From the author’s perspective of probability theory, a natural application of the num-
ber system can be constructed here for the analysis of certain invariant probability densities
where generalized uniform distributions on generalized spheres, geometric measure repre-
sentations and dynamic ball numbers play a role. For the convenience of the reader, several
of these statements are provided from various sources to complete the picture. The reader
may have their own application of dynamic structures in mind.

The rest of the paper is organized as follows. The new (p1, p2, p3)-complex structure
including the corresponding trigonometric Euler-type formulae is introduced in Section 2,
invariant probability densities are considered in Section 3, Section 4 deals with generalized
uniform distributions on generalized spheres and dynamic measure disintegration before
Section 5 looks at dynamic ball numbers, and a discussion in Section 6 finishes the paper.
In the Appendix A, we quote some functions from the literature that could be used as a
starting point for the construction of alternative generalized complex number systems.

2. The (p1, p2, p3)-Complex Structure
2.1. Geometric Approach

In this section, we first introduce coordinates that will allow us to describe a group
G of movements on the manifold S. The Lie group (S, G) forms the basis of the complex
structure constructed here. Different geometric approaches to complex numbers and
various coordinate systems were considered in [19,22–29].

Let p = p1 p2 p3 be a positive real parameter. We recall that p-generalized trigonometric
functions are defined in [28] as

cosp ϕ =
cos ϕ

N(ϕ)
and sinp ϕ =

sin ϕ

N(ϕ)
where N(ϕ) = (| cos ϕ|p + | sin ϕ|p)

1
p .

Definition 1. Let M = (0, ∞)× [0, π]× [0, 2π). The (p1, p2, p3)-spherical coordinate transfor-
mation Pol : M → R3 \ {(0, 0, 0)T} is defined

x = Pol(r, φ, ϑ) =

 (p1r)
1

p1 sign(cosp φ)| cosp φ|
p
p1

(p2r)
1

p2 sign(cosp ϑ)(sinp φ| cosp ϑ|)
p
p2

(p3r)
1

p3 sign(sinp ϑ)(sinp φ| sinp ϑ|)
p
p3

.
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These coordinates allow the manifold S to be described in the very simple form
S = {Pol(1, φ, ϑ), (φ, ϑ) ∈ [0, π]× [0, 2π)}, or simply by equation r = 1.

Lemma 1. Except in a set of measure zero, which contains x = 0 and y = 0, the inverse of map
Pol is given by r = r(x) = |x|p1

p1
+ |y|p2

p2
+ |z|p3

p3
,

φ = φ(x) = arctan(δ(x)) where δ(x) =

sign(x)

 |y|p2

p2
+ |z|p3

p3

|x|p1

p1

1/p


and

ϑ = ϑ(x) = arctan(Θ(x)) where Θ(x) = sign(yz)
(

p2

p3

) 1
p
(
|z|p3

|y|p2

) 1
p

.

Proof. The first equation follows on using | sinp t|p + | cosp t|p = 1. Notice that sign(y) =
sign(cos ϑ) and sign(z) = sign(sin ϑ). The third equation now follows by

|z|
p3
p

|y|
p2
p

(
p2

p3

) 1
p

sign(tan ϑ) = tan ϑ

and the second equation is proven similarly. For more details and a slight modification, we
refer to [19].

A general definition of what we mean by a vector-valued product was given in [30].
Here, we first used it in the language of (p1, p2, p3)-spherical coordinates and only later in
the language of Cartesian coordinates. The following definition is analogous to one given
in [21], where a two-dimensional case was considered.

Definition 2. The three-complex (p1, p2, p3)-spherical coordinate product of the vectors xl =
Pol(rl , φl , ϑl), l = 1, 2 is defined

x1 ⊗ x2 = Pol(r1r2, φ1 ⋄ φ2, ϑ1 ▷ ϑ2)

where

φ1 ⋄ φ2 = (φ1 + φ2)I[0,π](φ1 + φ2) + (φ1 + φ2 − π)I(π,2π)(φ1 + φ2)

+ (φ1 + φ2 − 2π)I{2π}(φ1 + φ2)

and

ϑ1 ▷ ϑ2 = (ϑ1 + ϑ2)I[0,2π)(ϑ1 + ϑ2) + (ϑ1 + ϑ2 − 2π)I[2π,4π)(ϑ1 + ϑ2).

Remark 1. (a) We first mention that the vector e = Pol(1, 0, 0) satisfies the equation

e⊗ x = Pol(1, 0, 0)⊗ Pol(r, φ, ϑ) = Pol(r, φ, ϑ) = x

and is therefore called a multiplicative neutral element.
(b) Moreover, if x ∈ S(r) and y ∈ S, then x⊗ y ∈ S(r). Thus multiplications by elements of S

build a group G and (S, G) is a Lie group.

Definition 3. Vector-valued vector (p1, p2, p3)-powers are defined as

x⊗0 = e, x⊗k = x⊗(k−1) ⊗ x, k = 1, 2, . . .
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Example 1. The following basic elements of R3 are frequently used:

Pol(1, 0, 0) =

 p
1

p1
1
0
0

 = e, Pol(1,
π

2
, 0) =

 0

p
1

p2
2
0

 = i,

Pol(1,
π

2
,

π

2
) =

 0
0

p
1

p3
3

 = j, Pol(1, π, 0) = −e.

Remark 2. The multiple ambiguities that occur in the present coordinate system remain here
without further comment.

Example 2. Let

x =

 0
y
z

 = Pol(r,
π

2
, ϑ) with r =

|y|p2

p2
+

|z|p3

p3
and suitably chosen ϑ

then
x⊗2 = Pol(r2, π, 2ϑ(mod(2π))) = −r

2
p1 e.

Example 3. Because of the following equations and for historical reasons, i and j are called the
imaginary units of the complex structure considered here:

i⊗ i = Pol(1, π, 0) = −e, j⊗ j = Pol(1, π, π) = −e,

i⊗ j = Pol(1, π,
π

2
) = −e.

The next example serves as a preparation for Euler’s formula.

Example 4. For x as in Example 2,

x⊗(2k) = (−1)kr
2k
p1 e, x⊗(2k+1) = (−1)kr

2k
p1 x, k = 0, 1, 2, . . .

Definition 4. Let ⊕ denote usual component-wise vector addition, o the additive neutral element
and · multiplication by a scalar. We call (R3,⊕,⊗, ·, o, e, i, j) the algebraic structure of (p1, p2, p3)-
complex numbers or (p1, p2, p3)-complex vectors and ||.|| its generating functional.

Remark 3. Complex numbers are often considered synonymously as points in the plane or elements
of the two-dimensional vector space R2. In the same sense, we use the terms (p1, p2, p3)-complex
number and (p1, p2, p3)-complex vector synonymously in this paper.

2.2. Analytical Reformulation

Let IA denote the indicator of set A.

Definition 5. The three-complex Cartesian coordinate (p1, p2, p3)-product of vectors x1 =

 x1
y1
z1


and x2 =

 x2
y2
z2

 is defined by
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x1 ⊙ x2 =



(p1r1r2)
1

p1 sign(δ1 − δ2)I(x1, x2)
|1−δ1δ2|

p
p1

(|δ1+δ2|p+|1−δ1δ2|p)
1

p1

(p2r1r2)
1

p2 sign(1 − Θ1Θ2)
|(δ1+δ2)(1−Θ1Θ2)|

p
p2

(|δ1+δ2|p+|1−δ1δ2|p)
1

p2 (|Θ1+Θ2|p+|1−Θ1Θ2|p)
1

p2

(p3r1r2)
1

p3 sign(Θ1 + Θ2)
|(δ1+δ2)(Θ1+Θ2)|

p
p3

(|δ1+δ2|p+|1−δ1δ2|p)
1

p3 (|Θ1+Θ2|p+|1−Θ1Θ2|p)
1

p3


where the indicator function I(x1, x2) is

I(x1, x2) = I[0,π](arctan δ1 + arctan δ2)− I(π,2π)(arctan δ1 + arctan δ2)

and, for l = 1, 2,

δl = sign(xl)

 |yl |p2

p2
+ |zl |p3

p3

|xl |p1

p1

 1
p

, Θl = sign(ylzl)

(
p2

p3

) 1
p |zl |

p3
p

|yl |
p2
p

as well as rl = ||xl ||.

Theorem 1. The three-complex Cartesian coordinate (p1, p2, p3)-product of the three-dimensional
(p1, p2, p3)-complex vectors xl = Pol(rl , φl , ϑl), l = 1, 2 coincides with their three-complex
(p1, p2, p3)-spherical coordinate product.

Proof. We first remark that

sign(cos φ1 ⋄ φ2) = sign(cos(φ1 + φ2))(I1 − I2)

where
I1 = I[0,π](φ1 + φ2), I2 = I(π,2π)(φ1 + φ2).

It follows, therefore, from the definition of the generalized trigonometric functions and the
2π-periodicity of the sine and cosine functions that

x1 ⊗ x2 = Pol(r1r2, φ1 ⋄ φ2, ϑ1 ▷ ϑ2)

=

 (p1r1r2)
1

p1 (I1 − I2)(sign cos(φ1 + φ2))| cosp(φ1 + φ2)|
p
p1

(p2r1r2)
1

p2 sign(cos(ϑ1 + ϑ2))(sinp φ1 ⋄ φ2| cosp(ϑ1 + ϑ2)|)
p
p2

(p3r1r2)
1

p3 sign(sin(ϑ1 + ϑ2))(sinp φ1 ⋄ φ2| sinp(ϑ1 + ϑ2)|)
p
p3

.

For Lemma 1,

cos φ(xl) =
1√

1 + δ2
l

, sin φ(xl) =
δl√

1 + δ2
l

, l = 1, 2.

Thus,

sin(φ1 + φ2) =
δ1 + δ2√

(1 + δ2
1)(1 + δ2

2)
, cos(φ1 + φ2) =

1 − δ1δ2√
(1 + δ2

1)(1 + δ2
2)

and

N(φ1 + φ2) =
(|δ1 + δ2|p + |1 − δ1δ2|p)

1
p√

(1 + δ2
1)(1 + δ2

2)
.

With similar representations for sin(ϑ1 + ϑ2), cos(ϑ1 + ϑ2) and Np(θ1 + θ2), the proof will
be finished.
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Remark 4. The summary of the results of this section shows that (R3,⊕,⊙, ·, o, e, i, j) is an
analytical reformulation of the algebraic structure of (p1, p2, p3)-complex numbers. This is why we
simply write (p1, p2 p3)-powers as xk instead of x⊗k.

2.3. Euler Type Formulae

Definition 6. The vector-valued, or three-complex, (p1, p2, p3)-exponential function is defined

exp(x) =
∞

∑
k=0

xk

k!
, x ∈ R3.

The formulas in the next theorems are based on Euler’s [31] (1748) famous representa-
tion of trigonometric functions using an imaginary unit.

Theorem 2. The following vector equations are true:

exp(yi) = (cos y)e+ (sin y)i,

exp(zj) = (cos z)e+ (sin z)j.

Proof. These two statements are proven by straightforward vector series expansions and
appropriate rearrangements of terms.

It follows immediately from this theorem that two well-known formulas about trigono-
metric functions and the values of the exponential function in imaginary arguments, see (9)
below, can be extended to the three-dimensional case as follows:

1
2
(exp(yi) + exp(−yi)) = (cos y)e,

1
2
(exp(yi)− exp(−yi)) = (sin y)i

and
1
2
(exp(zj) + exp(−zj)) = (cos z)e,

1
2
(exp(zj)− exp(−zj)) = (sin z)j.

The following formula is closely related to the Euler type formula (19) in [3].

Theorem 3. For x and r, as in Example 2,

exp

 0
y
z

 = cos(r
1

p1 )

 p
1

p1
1
0
0

+
sin(r

1
p1 )

r
1

p1

 0
y
z

.

Proof. It follows from Example 4 that

exp(x) = e+ x− 1
2!

r
2

p1 e− r
2

p1

3!
x+

r
4

p1

4!
e+

r
4

p1

5!
x− r

6
p1

6!
e+− . . . .

Rearranging the terms provides

exp(x) = (1 − r
2

p1

2!
+

r
4

p1

4!
− r

6
p1

6!
+−)e+ (1 − r

2
p1

3!
+

r
4

p1

5!
− r

6
p1

7!
+−)x
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It follows immediately from this theorem that

1
2

exp

 0
y
z

+ exp

 0
−y
−z

 = cos(r
1

p1 )

 p
1

p1
1
0
0

,

1
2

exp

 0
y
z

− exp

 0
−y
−z

 =
sin(r

1
p1 )

r
1

p1

 0
y
z


and

1
2

exp

 0
y
z

+ exp

 0
y
−z

 = cos(r
1

p1 )

 p
1

p1
1
0
0

+
sin(r

1
p1 )

r
1

p1

 0
y
0

,

1
2

exp

 0
y
z

− exp

 0
y
−z

 =
sin(r

1
p1 )

r
1

p1

 0
0
z


as well as

1
2

exp

 0
y
z

+ exp

 0
−y
z

 = cos(r
1

p1 )

 p
1

p1
1
0
0

+
sin(r

1
p1 )

r
1

p1

 0
0
z

,

1
2

exp

 0
y
z

− exp

 0
−y
z

 =
sin(r

1
p1 )

r
1

p1

 0
y
0

.

Remark 5. Imagine we apply the results of this section to the vector
(

y
z

)
=

(
y(t)
z(t)

)
and

the variable r = r(t), t ∈ T where T is a time interval. An application-oriented interpretation of
Theorems 2 and 3 could then state that points from the space R3 are transformed into fixed values of
oscillating quantities or functions at any time through complex (p1, p2, p3)-exponentiation.

3. Invariant Probability Densities

It is well-known that a function ϕ that is defined in R3 is said to be invariant with
respect to transformation T : R3 → R3 if it satisfies the equation

ϕ(T(x, y, z)) = ϕ(x, y, z) for all (x, y, z)T ∈ R3.

Definition 7. A probability density ϕ = ϕg;[p1,p2,p3]
defined in R3 is called [p1, p2, p3]-spherical if

it is of the form

ϕg;[p1,p2,p3]
(x, y, z) = C(g; [p1, p2, p3])g(||(x, y, z)T ||), (x, y, z)T ∈ R3

where the function g : [0, ∞) → [0, ∞) is a density generating function satisfying

0 <

∞∫
0

r
1

p1
+ 1

p2
+ 1

p3
−1g(r)dr < ∞

and C(g; [p1, p2, p3]) is a normalizing constant.
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Proposition 1. If ϕ is a [p1, p2, p3]-spherical probability density then it has in accordance with
Remark 1 the invariance property which says that, for every (x1, y1, z1)

T ∈ S,

ϕ((x1, y1, z1)
T ⊙ (x2, y2, z2)

T) = ϕ((x2, y2, z2)
T) for all (x2, y2, z2)

T ∈ R3.

Remark 6. This property of [p1, p2, p3]-spherical probability densities may be the basis for testing
a statistical hypothesis on the [p1, p2, p3]-sphericity of a probability density because it does not refer
in any way to whether the tails of this distribution are heavy or light. To this end, let us be provide
a disjoint partitioning P of size N of the sphere S and the relative frequency distribution over P,
which comes from a sample of values z/||z||, where the elements z follow the density function ϕ.
Then, a first rough test for the spherical distribution of z consists of visually comparing the relative
frequency distributions of the values z/||z|| before and after multiplicative transformation of all
sample elements z with a fixed element from S. A wide range of mathematical statistic techniques
can be applied to refine this test and to equip it with sophisticated mathematical properties.

Example 5. The Kotz-type density generating function with parameters of β and γ from (0, ∞)
and M > 1 − 1

p1
− 1

p2
− 1

p3
is

g(r) = rM−1e−βrγ
I(0,∞)(r)

and the corresponding (p1, p2, p3)-spherical probability density is

ϕ
(p1,p2,p3)
Kt;M,β,γ (x, y, z) = C(p1,p2,p3)

Kt;M,β,γ (
|x|p1

p1
+

|y|p2

p2
+

|z|p3

p3
)M−1e−β( |x|

p1
p1

+
|y|p2

p2
+ |z|p3

p3
)γ

with

C(p1,p2,p3)
Kt;M,β,γ =

γβ
(M−1+ 1

p1
+ 1

p2
+ 1

p3
)/γ

Γ((M − 1 + 1
p1

+ 1
p2

+ 1
p3
)/γ)8B( 1

p1
, 1

p2
, 1

p3
)

3
∏
i=1

p1/pi−1
i

.

Elements from the corresponding class of probability distributions are considered
light-tailed distributions and the following ones are considered heavy-tailed distributions.
In this and the next example, the calculation of the constant is achieved by integrating the
density generating function g.

Example 6. The Pearson Type VII density generating function with parameters of ν > 0 and
M > max{1, 1

p1
+ 1

p2
+ 1

p3
} is

g(r) = (1 +
r
ν
)−M I(0,∞)(r)

and the corresponding (p1, p2, p3)-spherical probability density is

φ
(p1,p2,p3)
PT7;M,ν (x, y, z) = C(p1,p2,pk)

PT7;M,ν (1 +
1
ν
(
|x|p1

p1
+

|y|p2

p2
+

|z|p3

p3
))−M. (2)

where

C(p1,p2,p3)
PT7;M,ν =

Γ(M)
3

∏
i=1

p1−1/pi
i

8ν
1

p1
+ 1

p2
+ 1

p3 · Γ(M − 1
p1

− 1
p2

− 1
p3
)Γ( 1

p1
)Γ( 1

p2
)Γ( 1

p3
)

.
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4. Generalized Uniform Distribution on the Sphere S and Dynamic Geometric
Disintegration of the Lebesgue Measure in R3

Let B denote the Borel-σ field in R3, µ is the Lebesgue measure on B, (Ω,A, P) is a
probability space and X : Ω → B is a random vector, that is a (A,B)-measurable function.
We assume that the random vector X is uniformly distributed on B,

P(X ∈ M) =
µ(M)

µ(B)
, M ∈ B∩ B,

and define a non-negative random variable and a random vector taking values in S by

R = ||X|| and U = D(
1
R
)X,

respectively. For A ∈ B(S) = B∩ S, we call

CPC(A) = {D(r)x : x ∈ A, r > 0}

a D(.)-transformed central projection cone and

Se(A, r) = CPC(A) ∩ B(r)

the corresponding D(.)-transformed ball sector generated by A, respectively. We denote
the volume of such a sector

fA(r) = µ(Se(A, r))

and define the (p1, p2, p3)-spherical or functional ||.||-related surface content of D(r)A as

O(D(r)A) = f ′A(r), r > 0.

In the case p1 = p2 = p3 = 2 not being under consideration here, this notion coincides
with the Euclidean surface content measure. Note that

µ(Se(A, r)) =
p2 p

1
p1
−1

1 p
1

p2
−1

2 p
1

p3
−1

3
1
p1

+ 1
p2

+ 1
p3

r
1

p1
+ 1

p2
+ 1

p3

∫
Pol∗−1(A)

F1(φ)F2(ϑ)
dφdϑ

N2
p(φ)N2

p(ϑ)

with Nq(t) = (| sin t|q + | cos t|q)
1
q , Pol∗(φ, ϑ) = Pol(1, φ, ϑ) and

F1(φ) = | cosp(φ)|
p
p1
−1| sinp(φ)|

p
p2
+ p

p3
−1, F2(ϑ) = | cosp(ϑ)|

p
p2
−1| sinp(ϑ)|

p
p3
−1.

Example 7. The volume of the p-ball B(r) satisfies

µ(B(r)) =
8

1
p1

+ 1
p2

+ 1
p3

B(
1
p1

,
1
p2

,
1
p3

)p
1

p1
−1

1 p
1

p2
−1

2 p
1

p3
−1

3 r
1

p1
+ 1

p2
+ 1

p3 . (3)

Example 8. The dual surface content measure of the generalized sphere S satisfies

O(S) = 8B(
1
p1

,
1
p2

,
1
p3

)p
1

p1
−1

1 p
1

p2
−1

2 p
1

p3
−1

3

where B(a, b, c) = Γ(a)Γ(b)Γ(c)/Γ(a + b + c) means the multi Beta function.

Definition 8. The probability law

ω(A) =
O(A)

O(S)
, A ∈ B(S)
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is called the functional ||.||-related or (p1, p2, p3)-spherical uniform distribution on B(S).

Note that the random vector U follow this distribution, U ∼ ω, is stochastically
independent of the random variable R, and the probability density of R is

f (r) = (
1
p1

+
1
p2

+
1
p3

)r
1

p1
+ 1

p2
+ 1

p3
−1, r ∈ (0, 1). (4)

Moreover, if any random variable R̃ follows density f in (4) and any random vector Ũ
satisfies Ũ ∼ ω, then X̃ = R̃ · Ũ is uniformly distributed on the unit p-ball B. The following
theorem is proven analogously to Theorem 1 in [21] and using (7) in [19].

Theorem 4. If h is integrable over a Borel set A, then

∫
A

h(x)dx =

∞∫
0

(r
1

p1
+ 1

p2
+ 1

p3
−1

∫
A∗(r)

h(Pol(r, φ, ϑ)))J∗(φ, ϑ)dφdϑdr

where
A∗(r) = {φ ∈ M∗

n : Pol(1, φ) ∈ [D(r−1)A] ∩ S}

and

J∗(φ, ϑ) = p2 p
1

p1
−1

1 p
1

p2
−1

2 p
1

p3
−1

3
F1(φ)F2(ϑ)

N2
p(φ)N2

p(ϑ)
.

The following result extends formula (7) in [21] to being three-dimensional.

Corollary 1. If A has finite volume, then the Lebesgue measure of A satisfies the dynamic geometric
disintegration formula

µ(A) = O(S)
∞∫

0

r
1

p1
+ 1

p2
+ 1

p3
−1

F(A, r)dr

where

F(A, r) =
O([D(r−1)A] ∩ S)

O(S)

is the (p1, p2, p3)-spherical dynamical intersection proportion function (ipf) of the set A.

Note that the shape of S(r) changes if the p-radius r changes (unless p has exclusively
equal components). The representation of µ(A) given in this corollary may be understood as
a generalization of Cavalieri’s and Torricelli’s method of indivisibles, where the indivisibles
are the sets

[Dp(r−1)A] ∩ Sp, r > 0.

For more details on the generalized methods of indivisibles, we refer to [32–34]. In [32],
the classical method of Cavalieri and Torricelli has been generalized to a multidimensional
situation in which the measure is not the ordinary volume or Gaussian measure. For
so-called moderate or large deviation areas whose distance from the origin approaches
infinity, it is shown how their Gaussian content essentially depends on their properties in
the neighborhood of the point on the surface of the area that is closest to the origin. The
surface content of subsets of spheres plays a crucial role in describing these properties and is
essentially expressed by the properties of a function that later received the name intersection
percentage function or intersection proportion function. The latter function is, in turn,
closely linked to another function that was later called the sector function. The application
of the classic method of Cavalieri and Toricelli was often very successful, but in certain
cases it was also fraught with contradictions. The constructive role of Fubini’s theorem
in this regard was discussed and the resulting geometric measure representation of the
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generalized method of indivisibles was subsequently applied to various probabilistic and
statistical problems. For example, statements that applied to Gaussian populations were
extended to general spherical populations in [33], analogies about exponentially distributed
populations were derived, and exact distribution statements in non-linear models were
made possible. A geometric-measure theoretic approach to the so-called skew normal
distribution in [34] allowed to unify several known representations of this distribution
from a geometric point of view and to generalize these results for spherically distributed
sample vectors. An extension of such results to general norm contoured two-dimensional
populations is possible on the basis of some later results.

5. The (p1, p2, p3)-Ball and Sector Number Functions

If density level sets of probability laws are p-spheres, that is spheres with respect to
the functional ||.||, then a factorial component of normalizing constants is the so-called
ball numbers. The general connection between measure theory and geometry behind this
statement was developed in several steps. In [15], it is said that the ratios µ(Ba,p(r))/rn and
Oa,p,q(Ea,p(r))/(nrn−1) did not depend on the radius r and their constant values agreed,
where Ea,p(r) denotes a p-generalized n-dimensional ellipsoid, Ba,p(r) is the elliptic ball of
the elliptic radius r enclosed by it, and Oa,p,q is the suitably defined non-Euclidean surface
content. In several papers, it was shown what influence generalized circle numbers had
on the normalization constants of general norm contoured distributions in R2. Because
the ball number function agreed with the suitably defined non-Euclidean surface content
divided by dimension n, the primary influence of the surface content on the normalizing
constant is shown as an alternative. This is the case, for example, in [16,19,35]. The dynamic,
matrix-homogeneous situation was treated for the first time in a two-dimensional case
in [21].

Remark 7. It follows from the above results that

µ(B(r))

r
1

p1
+ 1

p2
+ 1

p3

= π(S) =
O(S(r))

( 1
p1

+ 1
p2

+ 1
p3
)r

1
p1
+ 1

p2
+ 1

p3
−1

where

π(S) =
8B( 1

p1
, 1

p2
, 1

p3
)p

1
p1
−1

1 p
1

p2
−1

2 p
1

p3
−1

3
1
p1

+ 1
p2

+ 1
p3

.

Obviously, these equations generalize the well-known properties of the circle number π, both in
terms of the dimension of the circle or sphere and its generalized shape.

Definition 9. The number π(S) is called the ball number of the p-sphere S and the function
S → π(S) is called the p-ball number function in R3.

Remark 8. Let A ∈ B(S) and π(A) = π∗(A)
1

p1
+ 1

p2
+ 1

p3

where π∗(A) =
∫

Pol∗−1(A)

J∗(φ, ϑ)dφdϑ.

Because the equations

µ(Se(A, r))

r
1

p1
+ 1

p2
+ 1

p3

= π(A) =
O(D(r)A)

( 1
p1

+ 1
p2

+ 1
p3
)r

1
p1
+ 1

p2
+ 1

p3
−1

hold true for every fixed p, the function A → π(A) is called the S-sector number function.

6. Discussion and Conclusions

The geometric method used in the present work is a further development of the
geometric method established in [3]. The latter should therefore be additionally illustrated
here in order to subsequently deepen our understanding of the present approach. The
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vector-valued product introduced in [3], formula (12), for the homogeneous Euclidean case
can be rewritten in the notation as

x1 ⊙ x2 = S(x1, x2)||x1|| · ||x2||
(

c
sε

)
.

The real numbers c = x1x2−ξ1ξ2
||x1||·||x2||

and s = x1ξ2+ξ2ξ1
||x1||·||x2||

satisfied the equation c2 + s2 = 1 and
could therefore be interpreted as the cosine and sine of an angle φ, respectively. With the

rotation matrix D =

( y2
ξ2

−z2
ξ2z2

ξ2

y2
ξ2

)
and the unit vector ϵ∗ =

( y1
ξ1z1
ξ1

)
, the vector ε = Dϵ∗

also had the structure of a unit vector and could therefore be written with an angle ϑ as

ε =

(
cos ϑ
sin ϑ

)
. With r = ||x1|| · ||x2||, this resulted in the representation

x1 ⊙ x2 = S(x1, x2)r

 cos φ
sin φ cos ϑ
sin φ sin ϑ

, (5)

which in turn is reminiscent of the use of ordinary spherical coordinates.
Using p-generalized spherical coordinates from [28],

SPH(r, φ, ϑ) = r

 cosp φ
sinp φ cosp ϑ
sin φp sinp ϑ

,

representation (5) was generalized appropriately to introduce p-generalized three-dimensional
complex numbers in [3]. While the latter coordinates are particularly suitable for describing
points on lp-spheres, the coordinate system introduced in Definition 1 is aimed at describing
points on (p1, p2, p3)-spheres. A dynamic complex structure of the type considered here was
introduced for the first time in [36] for the two-dimensional case.

Finally, the importance of the vector representation of complex numbers rather than the
pretty unclear representation of z = x + iy should be emphasized against the background
of the formulas developed here.

When complex numbers are introduced, one of the things that is usually said is that

they are definitely not real numbers, (6)

i2 = −1 (7)

and
they can be interpreted as points in Gauss’s number plane. (8)

It is clear that a maximum satisfactory mathematical rigor is only achieved when an
interpretation has been replaced with an axiom and the unsatisfiable Equation (7) has been
replaced by a well-defined one, as in [37].

If the Euler number e = 2.71828 . . . and the usual exponential function x → ex, x ∈ R
are given, one can ask whether there is an abstract quantity or so called imaginary number
i that satisfies (6)–(8) and also the equations

1
2
(eit + e−it) = cos t and

1
2
(eit − e−it) = i sin t, (9)

which are stated to be valid in many mathematical sources. For a science like mathematics,
which is based, among other things, on the completely exact and pedantically precise
derivation of all its statements, it is astonishing that there does not seem to be a derivation
of Equation (9) that does not use a so-called artifice, such as equating the number 1 with the
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vector (1, 0)T or something similar, contrary to all mathematical rules. But, if we interpret
the expression on the right side of Euler’s well-known formula

eit = cos t + i sin t, t ∈ R

in terms of points in the plane, or vectors,

eit =

(
cos t
sin t

)
∈ R2,

then Equation (9) becomes

1
2
(eit + e−it) =

(
cos t

0

)
and

1
2
(eit + e−it) =

(
0

sin t

)
(10)

through a simple vector calculation. Gauss’s interpretation of complex numbers as points
on the plane was transformed into the status of an axiom in [37], thereby probably defining
complex numbers completely precisely for the first time. Some initial consequences that
arise from the vector representation of complex numbers for the characteristic functions of
probability distributions were presented elsewhere.

Complex numbers are used in numerous areas of science and technology. Similarly,
dynamic models of the type presented here can find wide application. However, due to the
variety of practical tasks, the development of numerous other dynamic models generated
by a functional other than ||.|| may also be desirable. This can then be realized following
the central themes of the present work. This concerns both the creation of new number
structures and the probabilistic treatment of them in the sense of the present work. Some
functionals that may be of interest from the perspective of probability distributions are
presented in Appendix A. In addition, it can be useful to develop stochastic representations
and simulation techniques in the newly created number structures.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The following explanations show examples of functions that occur, for example, in
connection with the definition of probability densities, and for which one could develop
one’s own complex structures. This is intended to support ideas about the development
of problem-oriented or individual complex structures. The functions given below and the
associated probability densities have also often been considered in higher dimensions in
the original papers mentioned here and elsewhere.

The function
s(x, y) = (xy)λ−1e−

αx x+αyy
1−ρ

considered in [38] is the density-generating function of the joint probability distribution
of two positively correlated random gamma variables and its level lines describe eccen-
tric ellipses.

When examining a mixture of two bivariate normal distributions with different corre-
lation coefficients, the following function was set to zero in [39] in order to consider the
contour lines of the resulting two-dimensional density function:

s(x, y) =
exp(− x2−2ρ1xy+y2

2(1−ρ2
1)

)

(1 − ρ2
1)

1/2
+

exp(− x2−2ρ2xy+y2

2(1−ρ2
2)

)

(1 − ρ2
2)

1/2
.
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The corresponding figures are presented in [40].
In [10], multivariate so called g- and h-distributions are introduced. In the two-

dimensional case, contour lines of such distributions can be, for example, concentric
Euclidean circles or concentric squares, which could be called static models. But dynamic
models are also possible in which eccentric rectangles, that is parallel rectangles that
propagate at different speeds in different directions when a generalized radius is increased.

While contour lines in the latter work are generated by fitting to the data, the contour
lines in [41] are eccentric ellipses that are generated by setting the following function to zero

s(x, y) = b2(γ)(x cos α(γ)− y sin α(γ)− x0(γ))
2 + a2(γ)(y cos α(γ) + x sin α(γ)− y0(γ))

2 − a2(γ)b2(γ).

The same authors’ more general approach in [12] contains, among other things, the follow-
ing Gumbel type function

s(x, y) = exp(−e−x − αe−x−y − e−y − x − y).

The following function, which can generate, in part, boomerang-like contour lines, is
presented here as an example from the overview work in [42]:

s(x, y) = exp (1, x, x2)

 m00 m01 m02
m10 m11 m12
m20 m21 m22

 1
y
y2

.

A cascade of Lp-norms was used in [43] to construct a function that can be used to
describe the density contour sets of the so-called Lp-nested symmetric distributions:

s(x, y, z) =
(
|x|p1 + (|y|p2 + |z|p2)

p1
p2

) 1
p1

.

The functional introduced at the beginning of the present article,

||x|| = |x|p1

p1
+

|y|p2

p2
+

|z|p3

p3
, x =

 x
y
z

 ∈ R3,

was used in [17,19] for studying p-spherical distributions.
All of these functions and their contour lines or surfaces can also occur in contexts other

than the probabilistic ones suggested here. The more application contexts that arise, the
more it becomes advisable to build individual number systems based on them, analogous
to the approach here. In any case of such a ”system on demand”, the necessary basis for it
may be the creation of a suitable coordinate system and the Lie group of transformations
based on them. It is clear that a ’suitable coordinate system’ does not necessarily mean
generalized polar or spherical coordinates.
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