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Abstract: The calculation of conformal mapping for irregular domains is a crucial step in deriving
analytical and semi-analytical solutions for irregularly shaped tunnels in rock masses using complex
theory. The optimization methods, iteration methods, and the extended Melentiev’s method have
been developed and adopted to calculate the conformal mapping function in tunnel engineering.
According to the strict definition and theorems of conformal mapping, it is proven that these three
methods only map boundaries and do not guarantee the mapping’s conformal properties due to
inherent limitations. Notably, there are other challenges in applying conformal mapping to tunnel
engineering. To tackle these issues, a practical procedure is proposed for the conformal mapping of
common tunnels in rock masses. The procedure is based on the extended SC transformation formulas
and corresponding numerical methods. The discretization codes for polygonal, multi-arc, smooth
curve, and mixed boundaries are programmed and embedded into the procedure, catering to both
simply and multiply connected domains. Six cases of conformal mapping for typical tunnel cross
sections, including rectangular tunnels, multi-arc tunnels, horseshoe-shaped tunnels, and symmetric
and asymmetric multiple tunnels at depth, are performed and illustrated. Furthermore, this article
also illustrates the use of the conformal mapping method for shallow tunnels, which aligns with the
symmetry principle of conformal mapping. Finally, the discussion highlights the use of an explicit
power function as an approximation method for symmetric tunnels, outlining its key points.

Keywords: conformal mapping; tunnel engineering; complex analysis; Schwarz–Christoffel mapping;
existence and uniqueness theorem; boundary correspondence theorem

1. Introduction

The complex variable approach establishes a connection between harmonic boundary-
value problems and the theory of Cauchy contour integrals, serving as an effective and
powerful tool for solving plane elastic problems [1,2]. It is used to analyze the mechanical
behavior of circular tunnels excavated in rock masses [3,4]. Conformal mapping is used to
expand the applicability of this method to a wider range of tunnels with complex shapes.
This is achieved by transforming the harmonic boundary-value problem in the general
domain into an equivalent boundary-value problem in the circular domain. The latter can
be easily solved using the integral method, power series method, or other methods [5].

Kantorovich and Krylov [6] translated the Russian Melentiev’s (Meлeнтьeв) method [7],
a graphical technique for conformal mapping, into English and further developed the
method. Setiawan and Zimmerman [8,9] utilized Melentiev’s method to perform a mechan-
ical analysis of a cavity with an arbitrary shape and to study the evolution of a wellbore
breakout. Chen [3] introduced Melentiev’s method in Chinese for the mechanical analysis
of tunnels. Zhang et al. [10] presented an extended Meлeнтьeв method to separately map
the lining and surrounding rock separately in order to analytically investigate the elastic
mechanical behavior of the lined tunnel.

Chen [3] also introduced an iteration method of trigonometric interpolation for confor-
mal mapping. Exadaktylos et al. [11], Huangfu et al. [12], Zhu et al. [13], Zhou et al. [14], Xu
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et al. [15], He et al. [16], and Bu et al. [17] proposed similar iteration methods for mapping
circular boundaries to tunnel boundaries and performed the mechanical analysis for the
irregularly shaped tunnels in rock masses. Tan et al. [18,19] used Zhu’s method [13] to
calculate the stress around openings in rock masses. Tong et al. [20] derived the complex
variable solution for a shallow rectangular tunnel using Zhou’s method [14]. Lu et al. [21]
and Zhang et al. [22] proposed alternative calculation methods for mapping functions that
depend solely on the corresponding relationship between a specific number of control
points on boundaries, eliminating the need for iteration.

Lu et al. [23–26] proposed a new mapping method based on an optimization algorithm,
complex optimization algorithm, and mixed penalty function algorithm. Qi et al. [27] used
the firefly optimization algorithm, a global optimization method inspired by the flashing
behavior of fireflies in nature, to map arbitrary stope configurations into unit circles. Li and
Liu [28] combined the odd–even point interpolation method with the genetic optimization
and a sequential quadratic programming algorithm to map the exterior of the arbitrary
excavation cross section in the half-plane to the unit annulus.

These optimization algorithms are widely recognized as methods for implementing
conformal mapping and are applied to the study of the analytic analysis of tunnels with
complex shapes excavated in rock masses. They are used in research on the mechanical
properties and behaviors of rock masses with noncircular cavities [29–31], stress analysis
for arbitrarily shaped tunnels in orthotropic rock masses [32], analytic solutions for stress
and displacement of noncircular lined tunnels [33–36], analytical solutions for circular
tunnels subjected to non-hydrostatic stress considering the elastoplastic interface in rock
masses [37,38], analytical solutions for noncircular lined tunnels considering the grouting
reinforced area and the frost heaving zone [39–41], analytical stress solutions for an infinite
plate with two noncircular holes [42], viscoelastic analysis for stresses and displacements
of noncircular sequential excavation [43], and analytical solutions for shallow tunnels with
arbitrary shapes in semi-infinite ground [43–45]. Many research papers still present the
analytical solution of the noncircular tunnel directly displaying the calculation results
without specifying the conformal mapping methods they used [46–53].

However, in the above extended Melentiev’s method, iteration methods and optimiza-
tion methods are developed only based on the point-to-point and boundary-to-boundary
correspondence relationships between the circular boundaries and the irregular boundaries,
which is inconsistent with the conformal mapping theories (e.g., boundary correspondence
principle and existence and uniqueness theorem). And there is no research that can rigor-
ously prove or validate the mapping conformality of these methods.

This paper deeply analyzes and examines the mapping principles and procedures of
the extended Melentiev’s method, iteration methods, and optimization methods in light
of the above contradiction. It also elaborates on their theoretical and graphical problems.
Based on the definition of conformal mapping and related theorems and lemmas, the inad-
equacies of these methods are deduced and demonstrated through reductio ad absurdum
and logic inference. To address these challenges in tunnel engineering research, this paper
examines and surveys the research on conformal mapping in the field of complex analy-
sis and explores a precise conformal mapping theory with significant practical potential.
An exact and practical conformal mapping procedure based on the extended Schwarz–
Christoffel transformation is proposed for the mechanical analysis of tunnel engineering.
This procedure is applicable to both simply connected domains and multiply connected
domains with smooth boundaries, polygon boundaries, polycircular arc boundaries, and
mixed boundaries. The proposed procedure performs and presents graphical representa-
tions of the conformal mappings of several typical tunnel sections, including the typical
symmetric tunnel and the asymmetric tunnel. In the end, the accuracy and practicality of
the approximate conformal mapping function expressed by the power series is discussed
and verified.
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2. Materials and Methods

To provide a clear and understandable explanation, several fundamental theorems
about conformal mapping in complex analysis are presented first. The conformal mapping
in this paper refers to the mapping between canonical circular domains, where the bound-
aries consist of a group of circles and other domains with the same order of connectivity.

2.1. Fundamental Theorems for Conformal Mapping

The mapping function is defined as conformal on domain D if it can preserve the
angles between any two curves. The formal geometric definition of conformal mapping
is expressed as follows [54]. If there is an angle ϕ and a scale p > 0, the function f (z) is
conformal at z0 if the map f rotates the tangent vector at z0 by ϕ and scales it by p or any
smooth curve γ(t) through z0. If f (z) is defined on a domain D and is conformal at each
point in D, it is a conformal map on D. The fundamental theorems for conformal mapping
are presented in the following subsubsections.

2.1.1. Existence and Uniqueness Theorem

1. Theorem for simply connected domains

The mapping function is defined as conformal on domain D if it can preserve the
angles between any two curves. The formal geometric definition of conformal mapping
is expressed as follows [55]. Supposing there is an angle ϕ and a scale p > 0, the function
f (z) is conformal at z0 if the map f rotates the tangent vector at z0 by ϕ and scales it by p
or any smooth curve γ(t) through z0. If f (z) is defined on a domain D and is conformal
at each point in D, it is a conformal map on D. The fundamental theorems for conformal
mapping are presented in the following subsubsections.

The classical existence and uniqueness theorem, the Riemann mapping theorem [54]
states that there exists a unique analytical function ω = f (z) defined on any simply
connected non-degenerate domain D that maps D conformally and univalently onto the
open unit disk |ω| < 1 when f (z0) = 0 and f ′(z0) > 0 where z0 ∈ D.

Here is another statement of the existence and uniqueness theorem for conformal
mapping from a bounded simply connected domain D onto a disk |ω| < 1 [56]. Suppose D
is a bounded domain whose boundary is a Jordan curve Γ; z1, z2, and z3 are three points
on Γ; ω1, ω2, and ω3 are three points on the circle |ω| < 1; and both sets are arranged in
the direction of the positive orientation. Then, there exists a unique function ω = f (z) that
satisfies the following conditions:

(i) ω = f (z) is univalent and analytic in D and maps D onto the disk.
(ii) ω = f (z) maps z1, z2, and z3 into ω1, ω2, and ω3, respectively.

In Figure 1, the elliptical domain D is conformally mapped into the circular domains
G1 and G2 by ω = f1(z) and ω = f2(z), respectively, while z1, z2, and z3 on the boundary
of the ellipse are mapped to ω1, ω2, and ω3 on the circle |ω| = 1 and ω∗

1 , ω∗
2 , and ω∗

3 on
the circle |ω| = r (r is an arbitrary positive real number). The conformal functions, both
ω = f1(z) and ω∗ = f2(z), exist and are unique, respectively. G1 and G2 belong to one
circular domain class, which can be mutually mapped by scaling, translation, rotation,
and symmetric transformation of the fractional linear function. Therefore, two corollaries
can be derived. There are two main properties of conformal mapping: first, there are
numerous functions that can conformally map a bounded simply connected domain into a
circular disk domain, and second, only one conformal mapping function exists for a certain
circular domain.
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Figure 1. Illustration of the existence and uniqueness theorem for a simply connected domain.

2. Theorem for doubly connected domains

According to Wen [54], any doubly connected domain can be conformally mapped
onto an annulus ρ1 < |ω| < ρ2. The necessary and sufficient condition for the existence
of a univalent analytic function that maps the annulus r1 < |z| < r2 onto the annulus
ρ1 < |ω| < ρ2 is ρ2r1 = ρ1r2.

The conformal mapping between these two annuli is unique if a point z0 on the
boundary of the annulus r1 < |z| < r2 corresponds to a point ω0 on the boundary of the
annulus ρ1 < |ω| < ρ2. In Figure 2, z0 is one point on the outer boundary of one doubly
connected domain, and ω0 is one point on the outer boundary of an annulus r < |ω| < 1.
There exists a unique conformal function for the doubly connected domain that can map z0
into ω0.
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3. Theorem for domains with a higher connectivity

The existence and uniqueness theorem for domains with a higher connectivity is stated
as follows [56,57]. Suppose D is an n-connected domain on the z-plane containing infinity.
Then, there exists only one univalent meromorphic function ω = f (z) that can conformally
map D onto an n-connected circular domain in the ω-plane. More detailed information is
provided by Wen [56], but it is not utilized in this paper.

2.1.2. Boundary Correspondence Principle

The general statement of the boundary correspondence principle in this paper can be
summarized as follows [55]. The bounded simply connected domains D and G are enclosed
by piecewise smooth, analytic closed curves Γ and L, respectively. One sufficient condition
for the univalence and the conformality of an analytic function, meaning that ω = f (z) is
univalent in D and conformally maps D onto G, is that ω = f (z) is analytic inside D and
continuous on D = D ∪ Γ and maps Γ bijectively onto L.

2.1.3. Functional Properties of the Current Mapping Methods Used in Tunnel Engineering

Conformal mapping functions mapping domains with complex boundaries into circu-
lar domains are necessary for obtaining the analytical solution of irregular tunnels. Due
to the one-to-one correspondence relation between two domains, the inverse mapping is
also conformal. The existence and uniqueness theorem and the boundary correspondence
principle are applicable to its inverse mapping.
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Numerous explanations and illustrations of mapping methods are found in current
tunnel mechanics research [4,13,16,25,27,58]. The functional properties and theoretical
defects of these iteration methods and optimization methods are analyzed and inferred in
this subsection using conformal mapping from the disk |ω| < 1 onto one ellipse domain.

The conformal mapping function and its inverse function are expressed in finite terms
of the Laurent series, as shown in Equations (1) and (2).

z = g(ξ) = b0 +
l

∑
k=1

bkξk + b−kξ−k, (1)

ξ = f (z) = c0 +
l

∑
k=1

ckξk + c−kξ−k, (2)

First, set the initial value of the coefficient vector C1 = [c−k · · · c−1 c0 c1 · · · c−k]. As
shown in Figure 3, Choose m points ξ1, ξ2, · · · ξm anticlockwise on the boundary of the
unit circle |ξ| < 1 in the ξ-plane. ξ1, ξ2, · · · ξm are mapped sequentially into z1

1, z1
2, · · · z1

m in
the Z-plane by the coefficient vector C1. Then, z1

1, z1
2, · · · z1

m and the coefficient vector C1
are updated into z2

1, z2
2, · · · z2

m and C2 through trigonometric interpolation or other ways
to decrease the distance between the mapping points and the elliptic boundary. Repeat
updating until the distances between zn

1 , zn
2 , · · · zn

m and the elliptic boundary are small
enough after n iterations.

1 
 

 
(a) Original boundary (b) First iteration 

 
(c) Second iteration (d) n-th iteration 

 
Figure 3. Illustration of iteration method for boundary mapping.

From the above illustration, the functional property of these iteration methods can
be understood as obtaining a function that maps points on circular boundaries to points
on target boundaries without altering their sequences. The objective of the extended
Melentiev’s method is similar to that of the iteration methods. These optimization methods
aim to minimize the distance between mapping points and the target boundary. They
use the points’ sequence as a constrained condition and then search for an appropriate
optimization method. Specifically, the purpose and function of these methods are to realize
the mapping between two boundaries.

2.2. Inadequacies of Current Mapping Methods in Tunnel Engineering

This subsection theoretically examines whether the extended Melentiev’s method,
iteration methods, and optimization methods can realize the conformal mapping between
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the bounded simply connected domain D with boundary Γ and disk domain G with circle
boundary L. According to the boundary correspondence principle, the mapping function
g(ξ) conformally maps G onto D if g(ξ) is analytic inside G and continuous on G = G ∪ L
and maps L bijectively onto Γ. Thus, we only need to check if the mapping function
obtained using these methods can guarantee the bijectivity (one-to-one correspondence)
and analyticity.

2.2.1. Inadequacies in Satisfying Bijectivity

The mapping function g(ξ) is obtained according to the corresponding relationship
between m pairs of points or by minimizing the distance between m pairs of points and
the target boundary. Additional points can be used to calculate the mapping function.
However, there is no evidence to support the claim that all points on the boundaries can be
bijectively mapped onto the target boundary.

The function expressed In Laurent series limit terms may be analytic in simply con-
nected domains, but it does not possess the inherent bijectivity property. For example, the
simple power series function g1(ξ) = ξ + ξ2 + ξ3 + ξ4 maps the radial red lines and the
blue circular lines in the unit disk |ξ| ≤ 1 shown in Figure 4a. into the red curves and the
blue curves shown in Figure 4b. For g2(ξ) = (1 + i)ξ + (1 − i)ξ2 + (1 + i)ξ3 + (1 − i)ξ4,
these radial red lines and the blue circular lines are mapped into the red curves and the
blue curves in Figure 4c. Obviously, these are not bijective.
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2.2.2. Inadequacies in Satisfying Analyticity

Meanwhile, the mapping functions g(ξ) may not be analytical in the mapping domain
because there are no restrictive conditions to guarantee analyticity in the calculation process
of the iteration and optimization methods. A more rigorous proof is presented as follows.

As shown in Figures 5 and 6, there is one simply connected domain D1 bounded by
Γ1 and four doubly connected domains D2, D3, D4, and D5 with the same outer boundary
Γ1 and inner boundaries Γ2, Γ3, Γ4, and Γ5. According to the existence and uniqueness
theorem for the simply connected domain, one unique conformal mapping function g1(ξ)
maps D1 into the disk |z| ≤ R. According to the existence and uniqueness theorem for
the doubly connected domain, there exist unique functions g2(ξ), g3(ξ), g4(ξ), and g5(ξ)
that can conformally map D2, D3, D4, and D5 into the annulus r1 < |z| < R, r2 < |z| < R,
r3 < |z| < R, and r4 < |z| < R, respectively. Definitely, g1(ξ), g2(ξ), g3(ξ), g4(ξ), and g5(ξ)
can bijectively map the boundary Γ1 and L1. It is deduced by reductio ad absurdum that
these different functions g2(ξ), g3(ξ), g4(ξ), and g5(ξ) are not analytic in D1.
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In summary, there must be numerous functions that can map Γ1 and L1 bijectively,
injectively, or not. Even if a function is bijective, it might not be a conformal function for
the whole domain due to the absence of analyticity. Thus, the function obtained using the
iteration and optimization method is just one of many functions, and its conformity for the
entire domain is uncertain.

2.2.3. Problems of Applied Range

The classical SC formula was independently discovered by Christoffel in 1867 and
Schwarz in 1869. The familiar SC formula is expressed as follows. Suppose D is a
bounded domain with a polygonal boundary having vertices v1, · · · , vn and interior an-
gles α1π, · · · , αnπ in counterclockwise order. The formula given in Equation (3) is one
conformal mapping function from the unit disk G to D.

f (z) = A + C
∫ n

∏
k=1

(
1 − ξ

zk

)αk−1

dξ, (3)

where A and C are complex constants, and vn = f (zk) for k = 1, · · · , n.
However, a few studies on tunnel mechanics [25,59,60] erroneously apply this SC formula

to the conformal mapping of the infinite doubly connected domain (deeply buried tunnels in
rock masses) and the finite doubly connected domain (linings or other supporting structures).
The correct SC formulas for the conformal mapping of the multiply connected domains are
more complex and can be found in the works of Crowdy [61,62] and Delillo et al. [63].

Moreover, some research [33,34,36,40,41,53,64] even uses the same mapping function
to map domains that share a single boundary, such as the rock domain, the reinforcement
domain, and the lining domain. The root cause of these problems is a common misconcep-
tion that the mapping is conformal if it can map one domain into a circular domain. For
example, the conformal mapping functions of the doubly connected domains in Figure 6
and the infinite domain with one elliptic hole bounded by Γ1 are definitely different.

3. Rigorous Conformal Mapping Theory in Complex Analysis Field
3.1. Evolution of the Conformal Mapping Method and Procedure

Given the limitations of conformal mapping in tunnel engineering, we look to the
advancements in conformal mapping research in the field of complex analysis to find
potential solutions. Conformal mapping has been studied for centuries and is carried out
using analytical and numerical techniques. The conformal mapping functions between
certain domains with simple and regular boundaries can be explicitly expressed, such as the
linear function, bilinear function, power function, Joukowski function, exponential and log-
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arithmic functions, and trigonometric functions. Numerous conformal mapping functions
are provided by Lavrik and Savenkov [65], Nehari [66], and Ivanov and Trubetskov [57].

When there is no appropriate explicit function for certain complex conformal map-
pings, numerical calculation is the only option. With the development of computers, fast
mapping methods such as Wegmann’s method [67,68] have emerged. Although some
classical books on numerical conformal mapping [69–73] have been edited and published,
the content is relatively abstract and obscure for tunnel engineers. Among the vast amount
of literature on conformal mapping, we find a class of methods that is more comprehensible
and accessible for tunnel engineering researchers.

Originally, the classical SC formula can only realize the conformal mapping from the
unit disk onto a bounded polygonal domain [72]. Then, DeLillo et al. [74] and DeLillo [75]
used the reflection principle, while Crowdy [61,62,76,77] used Schottky–Klein prime func-
tions to extend the SC formulas for conformal mappings from circular domains onto un-
bounded and bounded polygonal domains, respectively. Bauer [78] made some significant
contributions to the parameter problem of the SC transformation of conformal mappings
from the unit disk onto polygonal domains bounded by circular arcs. Kythe [79] introduced
three types of equivalent definitions for SC transformations and discussed several integral
equation methods including numerical computation of the Lichtenstein-Gershgorin equa-
tion, Theodorsen’s integral equation, Symm’s integral equation, and Mikhlin’s integral
equation. The following will present how to implement conformal mapping for tunnel
engineering research using the above SC transformation theory.

3.2. Construction and Solving of the Boundary Integral Equation

For the conformal mapping of bounded or unbounded multiply connected domains,
the boundary integral equation with the generalized Neumann kernel is constructed firstly
based on the parameters of all the boundaries. Then, the integral equation is discretized
and solved in the form of linear systems using a common coefficient matrix. The major
contents regarding the construction and solving of boundary integral equations for bounded
multiply connected domains are presented concisely as follows.

As shown in Figure 7, G is an m-multiply connected domain in a complex plane,

and α is a given point in G. G’s boundary is denoted as ∂G =
m
∪

j=1
Γj, where Γj is the j-th

closed Jordan curve. Let Jk be the disjoint union [0, 2π]. The parametrization of the whole
boundary Γ is defined on J as shown in Equation (4).

ηk(s) :=


η0(s), s ∈ J0
η1(s), s ∈ J1
.
.
ηm(s), s ∈ Jm

, (4)

Let θ0, θ1, . . . , θm be real constants, and the piecewise constant function θ(t) is defined
as (θ0, θ1, . . . , θm), t ∈ Jm. The complex function A(t) and its conjugate A(t) are defined on
Γ as shown in Equations (5) and (6).

A(t) = ei(π/2−θ(t))(η(t)− α), (5)

A(t) =
η′(t)
A(t)

, (6)

The generalized Neumann kernel formed with A(t) and η is defined on J × J as shown
in Equations (7) and (8).

N(s, t) :=
1
π

Im
(

A(s)
A(t)

η′(t)
η(t)− η(s)

)
, (7)
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M(s, t) :=
1
π

Re
(

A(s)
A(t)

η′(t)
η(t)− η(s)

)
, (8)

Let H be the space of all real-valued Hölder continuous functions on the boundary Γ.
The following operators are defined on H as shown in Equations (9)–(11).

Nµ(s) :=
∫

J
N(s, t)µ(t)dt, s ∈ J, (9)

Mµ(s) :=
∫

J
M(s, t)µ(t)dt, s ∈ J, (10)

Jµ(s) :=
∫

J
δ(s, t)µ(t)dt, s ∈ J, (11)

More detailed properties of the generalized Neumann kernel function and integral
operator can be found in refs. [80–83]. The boundary integral equation for the boundary
of the multiply connected finite domain is expressed as shown in Equation (12) with the
generalized Neumann kernel functions M and N.

(I − N)µ = −Mγ, (12)

Since
∫

J N(s, t)dt = −1 and
∫

J M(s, t)dt = 0, Equation (12) can be written as Equa-
tion (13):

2µ(s)−
∫

J N(s, t)[µ(t)− µ(s)]dt = −ϕ(s), (13)

where ϕ(s) =
∫

J M(s, t)[γ(t)− γ(s)]dt.
Let vector t = (t1, t2, . . . , t(m+1)n)

T and the integral equation Equation (13) be dis-
cretized as Equation (14).

2µ(ti)−
2π
n

(m+1)n

∑
j=1

N(ti, tj)[µ(tj)− µ(ti)] = −ϕ(ti), (14)

where i = 1, 2, . . . , (m + 1)n.
Set x = µ(t) and y = ϕ(t). Let B be the (m+ 1)n× (m+ 1)n matrix with the following

elements:

(B)ij =

{
0 i f i = j
2π
n N

(
ti, tj

)
i f i ̸= j

, (15)

where i, j = 1, 2, . . . , (m + 1)n.
The boundary integral equation is transformed by the following (m + 1)n × (m + 1)n

linear system.
(2I + diag(B)− B)x = −y, (16)
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where ( ) ( ) ( )3(1 / 1 / 2) 1 / π / π 1 / 1 / 2v t p t t p∗ ∗= − − + − + , [0,2π]t∈ , take the grading pa-

rameter p
∗

 equal to 3 in this paper. 
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3.3. Discretization of Piecewise Smooth Boundary

In tunnel engineering research, the boundaries of common tunnels in rock, such as
rectangular tunnels and horseshoe-shaped tunnels, are piecewise smooth with vertices.
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Therefore, this paper focuses on the conformal mapping of domains with piecewise smooth
boundaries. The following describes the processing method for the boundary at the vertex.

There are pj vertices ηj

(
cj,k

)
on boundary Γj. Then, suppose that γ(t) is smooth in

each interval Jj except at pj ≥ 1 points:

cj,k = (k − 1)
2π
pj

∈ Jj, (17)

where k = 1, 2, . . . , pj, j = 0, 1, . . . , m.
The bijective, strictly monotonically increasing and infinitely differentiable function

ω(t) is defined as shown in Equation (18):

ω(t) = 2π
[v(t)]p

∗

[v(t)]p
∗
+ [v(2π− t)]p

∗ , (18)

where v(t) = (1/p∗ − 1/2)(1 − t/π)3 + (t/π− 1)/p∗ + 1/2 , t ∈ [0, 2π], take the grading
parameter p∗ equal to 3 in this paper.

Set the function δj(t) = ω
(

pj

(
t − cj,k

))
/pj + cj,k, t ∈ [cj,k, cj,k+1], and δj satisfies the

following:
δ′j

(
cj,k

)
= 0, k = 1, 2, . . . , pj,

δ′j

(
cj,k

)
̸= 0, t ∈ Jj −

{
cj,1, cj,2, . . . , cj,pj

} , (19)

Substituting t = δ(τ) into the integral
∫

J γ(t)dt and set
∧
γ(τ) = γ(δ(τ))δ′(τ), thus

∧
γ(0) =

∧
γ(2π) = 0 and

∫
J γ(t)dt =

∫
J γ(δ(τ))δ′(τ)dτ =

∫
J
∧
γ(τ)dτ. Using the trapezoidal

rule, the integral function is transformed into the following:

∫
J

γ(t)dt ≈ 2π
n

m

∑
k=0

n

∑
p=1

∧
γ
(

sk,p

)
=

2π
n

(m+1)n

∑
j=1

∧
γ
(
tj
)
=

2π
n

(m+1)n

∑
j=1

∧
γ
(
δ
(
tj
))

δ′
(
tj
)
. (20)

4. Proposed Conformal Mapping Procedure and Application Cases

Nasser [84–89], Delillo and Kropf [90], Al-Hatemi et al. [88], and Yunus et al. [91]
developed the corresponding numerical methods for solving these established integra-
tion equations. More numerical methods for conformal mapping are presented by Luo
et al. [92], Liesen et al. [93], Gopal and Trefethen [94], and Trefethen [95]. On the basis of
SC transformation, Trefethen [96,97] developed one SC transformation procedure Fortran
package SCPACK, while Driscoll [72,98–100] created SC Toolbox, a MATLAB package that
can compute the conformal mapping from the unit disk onto a given polygonal simply
connected domain. Additionally, Nasser [101] developed the MATLAB toolbox PlgCirMap
for implementing the conformal mapping from a given polygonal multiply connected
domain onto a circular multiply connected domain and its inverse mapping.

Due to the complex shape of the tunnel boundary and the need for explicit conformal
mapping in analytical calculations of tunnels in rock masses, the above procedures cannot
be directly applied. A mechanical analysis of tunnels in rock masses based on complex
function theory requires obtaining the conformal mapping functions for the following three
main categories of conformal mapping and their inverse mappings: (i) from the concentric
circle domain to the doubly connected polygonal domain, polycircular arc domain, and
other domains with piecewise smooth boundaries; (ii) from the infinite circular domain
with two or more connectivity numbers to the infinite multiply connected domain with
piecewise smooth boundaries; (iii) from the unit disk domain to the bounded simply
connected domain with piecewise smooth boundaries.

This section refers to the following materials: the mathematical framework includes
function theory, the construction of the SC mapping formulas for bounded and unbounded
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multiply connected domains, Cauchy transforms, etc. [61,62,74,75,77]; the construction and
solving of the integral equation employ the generalized Neumann kernel [84,86–89,102,103]
and the discretization of the parametrization of the piecewise smooth boundary with
the vertices including the trapezoidal rule and the Nyström method [104–106]; and the
procedure framework and the MATLAB functions include CIRMAPB, CIRMAPU, EVALU,
EVALUD, etc. [84,85,87,101]. We propose a new procedure, the flow diagram of which is
shown in Figure 8, involving a series of integration, extension, and upgrading steps.
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This procedure can handle the process of conformal mapping for three typical types
of tunnels. If the rock domain is semi-infinite, it should first be extended into the infinite
domain according to the symmetry principle of conformal mapping [57]. For domains with
smooth boundaries, the conformal mapping functions EVALU and the inverse mapping
functions EVALUD can be obtained using the CIRMAPB function for bounded domains
and the CIRMAPU function for unbounded domains. If any boundary of the domain is
piecewise smooth, the boundary with vertices should be discretized using the discretization
function. As an innovation of this article, we provide three discretization functions to han-
dle polygon boundaries, polycircular arc boundaries, and mixed boundaries, respectively,
based on the theory provided in Section 3.3. This approach has a broader range of applica-
tions compared to previous procedures. In the plotting module, images of canonical circular
domains and original domains with rectangular orthogonal curves or polar orthogonal
curves are plotted first. Then, images conformally mapped from these curves are plotted.
More details can be found in Supplementary Materials, which provide Main procedure
codes of conformal mapping for the lining domain in Case 4.

In order to demonstrate the usefulness and practicality of the procedure in tunnel
engineering, six typical domains of deeply buried tunnels are mapped using conformal
mapping, and the mapping of a shallow tunnel is also conducted. The following seven
cases are illustrated. The blue curves and red curves before mapping are orthogonal. Firstly,
this mapping should maintain the shape and size of the original domain and the circularity
of the circular domain. The conformal mapping can be tested based on two other criteria
which satisfy the angle preservation property and bijectivity. The first criterion satisfying
conformality is that the blue curves and red curves after mapping are also orthogonal. The



Symmetry 2024, 16, 86 12 of 28

second criterion satisfying bijectivity is that any two different points will not overlap after
mapping. It is obvious that the proposed procedure works well based on the mapping
figures shown in Case 1–Case 7.

Case 1: rectangular tunnel

The first type consists of an infinite rock domain with a rectangular hole and a lining
domain with a rectangular ring shape. The physical dimensions are indicated in Figure 9.
Figures 10 and 11 depict the conformal mapping and its inverse conformal mapping,
respectively, illustrating the curves in the rock domain before mapping and after mapping.
Figures 12 and 13 depict the conformal mapping and its inverse conformal mapping,
respectively, illustrating the curves in the lining domain before mapping and after mapping.
The curves depicted in this paper are represented by closely spaced dots.
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Figure 10. Conformal mapping of the rock domain in Case 1.
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Figure 13. Inverse conformal mapping of the lining domain in Case 1.

Case 2: rectangular tunnels with reinforcement

The arch crown of rock masses in Case 1 is reinforced as for the second type, with a
fan-shaped reinforced area and polygonal lining. The physical dimensions of Case 2 are in-
dicated in Figure 14. Figures 15 and 16 depict the curves mapped conformally and inversely
in an infinite rock domain with mixed boundaries of arcs and lines. Figures 17 and 18 de-
pict the curves mapped conformally and inversely in a finite reinforcement domain with
mixed boundaries. Figures 19 and 20 depict the curves mapped conformally and inversely
in a finite lining domain.
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Figure 14. Tunnel sectional drawing of Case 2.
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Figure 15. Conformal mapping of the rock domain in Case 2.
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Figure 16. Inverse conformal mapping of the rock domain in Case 2.
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Figure 17. Conformal mapping of the reinforcement domain in Case 2.
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Figure 18. Inverse conformal mapping of the reinforcement domain in Case 2.
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Figure 19. Conformal mapping of the lining domain in Case 2.
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Case 3: multiarc tunnel

The third case is one typical railway tunnel. The physical dimensions of this multiarc
tunnel cross section are indicated in Figure 21. Figures 22–24 depict the conformal mapping
and inverse conformal mapping of finite and infinite doubly connected domains with
polycircular arc boundaries. The curves mapped conformally and inversely are the same
because of the geometrical similarity of the curves in the lining domain.
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Figure 21. Tunnel sectional drawing of Case 3.
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Figure 22. Conformal mapping of the rock domain in Case 3.
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Figure 23. Inverse conformal mapping of the rock domain in Case 3.

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 31 
 

 

(a) Curves before mapping (b) Curves after mapping 

Figure 22. Conformal mapping of the rock domain in Case 3. 

(a) Curves before mapping (b) Curves after mapping 

Figure 23. Inverse conformal mapping of the rock domain in Case 3. 

(a) Curves before mapping (b) Curves after mapping 

Figure 24. Conformal mapping and inverse mapping of the lining domain in Case 3. 

Case 4: horseshoe-shaped tunnel 
The fourth case is a typical horseshoe-shaped tunnel. The physical dimensions of this 

tunnel cross section are indicated in Figure 25. Figures 26 and 27 depict the conformal 
mapping and inverse conformal mapping of the infinite rock domain with mixed bound-
aries of arcs and lines. Figures 28 and 29 depict the conformal mapping and inverse con-
formal mapping of the finite lining domain with mixed boundaries of arcs and lines. 

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

−10 −5 0 5 10
−10
−8
−6
−4
−2
0
2
4
6
8

10

−1 −0.5 0 0.5 1
−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

−8 −6 −4 −2 0 2 4 6 8

−4

−2

0

2

4

6

8

Figure 24. Conformal mapping and inverse mapping of the lining domain in Case 3.

Case 4: horseshoe-shaped tunnel

The fourth case is a typical horseshoe-shaped tunnel. The physical dimensions of this
tunnel cross section are indicated in Figure 25. Figures 26 and 27 depict the conformal map-
ping and inverse conformal mapping of the infinite rock domain with mixed boundaries
of arcs and lines. Figures 28 and 29 depict the conformal mapping and inverse conformal
mapping of the finite lining domain with mixed boundaries of arcs and lines.
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Figure 27. Inverse conformal mapping of the rock domain in Case 4.
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Figure 28. Inverse conformal mapping of the rock domain in Case 4.
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Figure 29. Conformal mapping of the lining domain in Case 4.

Case 5: multiple holes in rock masses

The fifth case is an infinite rock with multiple holes, of which the boundaries are
smooth. The functions of the boundaries in Figure 30 can be expressed in the complex
plane as follows.

Boundary 1:
z1 = cos(t)− 0.4i sin(t), t ∈ [0, 2π], (21)

Boundary 2:

z2 = 2.5 + cos(t) + 0.5 cos(2t)− 0.4i sin(t), t ∈ [0, 2π], (22)

Boundary 3:

z3 = −1 + 2i + r(t) cos(t)− ir(t) sin(t), t ∈ [0, 2π], (23a)

r(t) = 1 + 0.05 cos(t) + 0.1 cos(2t) + 0.075 sin(t) + 0.4 sin(2t), t ∈ [0, 2π], (23b)

Boundary 4:
z4 = −2i + 0.5 cos(t)− i sin(t), t ∈ [0, 2π], (24)
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Figure 30. Sectional drawing of Case 5.

Given the complexity of the boundaries, only the curves in the rock domain that are
mapped inversely conformally are depicted in Figure 31.
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Case 6: twin tunnels with a service tunnel

There are two parallel main tunnels and one service tunnel at great depths in Case 6.
The physical dimensions of this cross section are indicated in Figure 32. The curves in the
infinite rock domain with several mixed boundaries are mapped inversely conformally, as
depicted in Figure 33.
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Case 7: shallow tunnels

This procedure is also applicable to shallow tunnels. First, the half plane is expanded
into one infinite plane symmetrically and then is mapped conformally. Based on the
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symmetry principle of conformal mapping [57], conformal mapping from the half plane
with multiple holes into the half plane with circular holes can be obtained. For conformal
mapping from the ring domain onto the half plane with one circular hole, as shown in
Figure 34, the appropriate conformal mapping function is expressed as follows [107,108]:

z = g(ξ) = −ih
1 − α2

1 + α2
1 + ξ

1 − ξ
, (25)

From the definition of conformal mapping, it is obvious that the composite function
of two conformal mapping functions is still a conformal mapping function. Thus, this
transformation can satisfy the computing requirements for the mechanical analysis of
multiple shallow cavities [109–114].
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Figure 34. Conformal mapping for a shallow circular tunnel.

For example, there is one rectangular tunnel close to the circular tunnel in the half
plane, as shown in Figure 35. The half plane is expanded symmetrically by taking the
ground level as the axis of symmetry. Then, this infinite plane with four irregular holes is
mapped into one with four circular holes, and its inverse mapping is obtained. The curves
in the rock domain are depicted in Figures 36 and 37. The axis of symmetry, the curve of
the ground level, remains in its middle location during conformal mapping and inverse
conformal mapping.
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Figure 37. Conformal mapping of the rock domain in Case 7.

5. Discussion and Verification of the Application of the Proposed Procedure

The proposed conformal mapping procedure uses a discrete numerical integration
method and can conformally map curves in one domain into curves in a circular domain.
This can satisfy the demand for calculating the stress functions that only need the points’
locations before and after mapping [115]. However, it is still essential to obtain the explicit
form of the conformal mapping function for the frequently used integral method and series
expansion method [116–120].

Generally, the conformal mapping is approximated by a finite number of items of
the power series, as shown in Equation (1). The coefficients of the series function can be
calculated according to the corresponding relationship between numerous pairs of points
before and after conformal mapping. Obviously, the points not only on the boundary
but also in the inner domain should be used to calculate the coefficients with enough
accuracy to approximate the conformal mapping of the whole domain. Meanwhile, the
approximation quality is greatly affected by the item number of the Laurent series. For the
approximation mapping of the rock domain in Case 3, 520 pairs of points on the circular
domain and rock domain are selected to calculate the coefficients of the mapping function
using the least square method. The approximation conformal mapping function when
l = 20 is listed as shown in Equation (26), where items for which the module value of the
coefficients is less than 10−4 are omitted. The points mapped using Equation (9) from 13,
600 points on the annulus domain 1 ≤ |r| ≤ 2 in Figure 38a are plotted in Figure 38b.

z = g(ξ) = 7.0030ξ − 0.7729 − 0.5812ξ−1 − 0.3629ξ−2 − 0.1747ξ−3 − 0.0502ξ−4

+0.0082ξ−5 + 0.0208ξ−6 + 0.0138ξ−7 + 0.0055ξ−8 + 0.0020ξ−9 + 0.0015ξ−10 − 0.0015ξ−12

−0.0031ξ−13 − 0.0029ξ−14 − 0.0010ξ−15 + 0.0016ξ−17 + 0.0012iξ−18
, (26)
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Figure 38. Illustration of approximate conformal mapping of the rock domain in Case 3.
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The distance between the points mapped using the procedure and the series function
separately is used to evaluate the approximation error. In Figure 39, the mean (M1) and the
variation coefficient (COV1) of the distances between 13, 600 pairs of points are plotted. The
approximation error significantly reduces with the increase in the item number. When the
item number of the series function is up to 40, the magnitude orders of M1 and COV1 are
10−4 and 10−8, respectively, which are small and accurate enough for the approximation.
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Some researchers think that only a few items of the series function can approximate
the conformal mapping well [25,35,117]. For the horseshoe-shaped tunnel section in Case 4,
Lu et al. [33,34] proposed the mapping function given in Equation (27) to map the lining
domain and the rock domain.

z = g(ξ) = 7.54561
(
ξ − 0.07499 + 0.12076ξ−1+0.04536ξ−2 − 0.06513ξ−3

+0.02083ξ−4 + 0.00118ξ−5 −0.00285ξ−6 − 0.00096ξ−7 − 0.00221ξ−8) , (27)

Likewise, we use the Laurent series to approximate the conformal mapping of the
rock domain in Case 4 performed using the procedure. A total of 520 pairs of points on
the circular domain and the rock domain are selected to calculate the coefficients of the
mapping function using the least square method. The approximate conformal mapping
function when l = 20 is listed as shown in Equation (28).

z = g(ξ) = 7.7437ξ + 0.7590 + 0.9653ξ−1 − 0.5406ξ−2 − 0.7765ξ−3 − 0.3026ξ−4

+0.0225ξ−5 + 0.0582ξ−6 + 0.0458ξ−7 + 0.0498ξ−8 + 0.0190ξ−9 − 0.0179ξ−10

−0.0211ξ−11 − 0.0121ξ−12 − 0.0080ξ−13 + 0.0010ξ−14 + 0.0104ξ−15 + 0.0089ξ−16

+0.0027ξ−17 − 0.0003ξ−18 − 0.0032ξ−19

(28)

Figure 40b,c show 8000 points mapped using approximate conformal mapping func-
tions with l = 8 and l = 20 from 13, 600 points on the annulus domain 1 ≤ |r| ≤ 2 in
Figure 40a. Figure 40d shows the points mapped using Lu’s function in Equation (10).
The accuracy of the approximate conformal mapping based on the proposed procedure is
intuitively higher than the previous method.

In Figure 41, the approximation error from 8000 pairs of points drops dramatically
with the increment of the item number. When the item number of the series function is
up to 40, the magnitude orders of M2 and COV2 are 10−3 and 10−6, respectively, which
also are small and accurate enough for the approximation. The approximate error can be
further decreased by selecting more pairs of points to calculate the coefficients.
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6. Conclusions

Initially, this paper reviews the literature on conformal mapping methods in the re-
search of mechanical analysis in tunnel engineering. Three methods have been developed
or adopted in these studies: optimization, iteration, and the extended Melentiev’s method-
ology. These methods are erroneously thought to be effective in conformally mapping
noncircular tunnel sections conformally. Through a detailed analysis and scrutiny, these
methods turn out to be only the ordinary transformation function between the boundaries.
More importantly, it is proven that these methods cannot guarantee the conformality of
the mapping between rock cavity sections and circular domains according to the defi-
nition of conformal mapping, the existence and uniqueness theorem, and the boundary
correspondence principle.

Consequently, the evolution of conformal mapping research in the complex analysis
field is investigated thoroughly. The advanced SC formulas for multiply connected domains
and related numerical methods are identified and chosen to develop the new procedure.
By extending the discretization function for boundaries, the conformal mapping procedure
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for tunnels with polygonal boundaries, multi-arc boundaries, smooth curve boundaries,
and mixed boundaries is proposed and programmed. Then, conformal mapping and
inverse mapping of six typical tunnel cross sections buried at depth including rectangular
holes, multiarc tunnels, horseshoe-shaped tunnels, and multiple holes are performed and
illustrated in Case 1 to Case 6. The conformal mapping of the shallow cavities can be
implemented using the symmetry principle of conformal mapping, as illustrated in Case 7.

Finally, tips on applying this procedure to the mechanical analysis study of irregularly
shaped cavities are presented. The approximate conformal mappings of the rock domains
in Case 3 and Case 4 are performed. The approximation error is significantly reduced by
increasing the item number when approximating the conformal mapping based on a finite
number of items of the power series. The contribution of this paper will be used not only in
deriving analytical solutions of tunnels but also in the back analysis of tunnel mechanical
behavior, which will be of great use for increasing the safety of tunnel engineering [121,122].

Supplementary Materials: Partial code is provided. The data that support the findings of this study
are openly available in the main procedure of conformal mapping of lining in Case 4 at: https://
drive.google.com/file/d/1fBJxl0kZoCIoO2wZZqCdiB6FLeVCuenD/view?usp=drive_link (accessed
on 9 January 2024).
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