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Abstract: An extended (2+1)-dimensional shallow water wave (SWW) model which can describe the
evolution of nonlinear shallow water wave propagation in two spatial and temporal coordinates, is
systematically studied. The multi-linear variable separation approach is addressed to the extended
(2+1)-dimensional SWW equation. The variable separation solution consisting of two arbitrary
functions is obtained, by assumption, from a specific ansatz. By selecting these two arbitrary
functions as the exponential and trigonometric forms, resonant dromion, lump, and solitoff solutions
are derived. Meanwhile, some novel fission and fusion phenomena including the semifoldons,
peakons, lump, dromions, and periodic waves are studied with graphical and analytical methods.
The results can be used to enhance the variety of the dynamics of the nonlinear wave fields related by
engineering and mathematical physics.

Keywords: extended shallow water wave equation; multi-linear variable separation approach;
fission; fusion

1. Introduction

The study of integrable systems has developed into a mature theory because they
reveal essential features in the diversity of engineering fields [1]. Many scholars have
been seeking to expand and influence innovative techniques for solving integrable systems.
Various effective methods have been presented to discuss and categorize the dynamical
properties of the derived models [2–10]. The different types of nonlinear localized waves
are often challenged by using traditional methods. An exact solution of the Liouville
equation is given by introducing the variable separation from [11]. The multi-linear variable
separation approach (MLVSA) for the higher-order dimensional nonlinear systems has been
successfully established firstly to the Davey-Stewartsen equation [12] and confirmed in
many nonlinear systems [13–15]. Numerous direct approaches based on various mapping
equations such as the extended tanh function method, the enhanced projective approach,
the projective Ricatti equation method and the q-deformed hyperbolic functions approach
are selected to achieve the variable separation procedure [16–23]. The universal formula, in
which exists the quite rich localized excitations, is revealed by means of the MLVSA. By
selecting appropriate arbitrary functions of the universal formula, the rich exact solution
including the interacting solutions can be obtained. Recently, the general variable separation
solution including three independent functions is constructed based on another ansatz
form [24]. A doubly periodic wave and a ring soliton, a four-humped dromion or lump,
and a doubly periodic wave are obtained by using the general MLVSA.
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On the other hand, an extended (2+1)-dimensional shallow water wave (SWW) equa-
tion is constructed based on the P-polynomials and the Dp̄-operators. The extended
(2+1)-dimensional SWW model reads as [25]

uyt + α1(3uxxxy − 3uxxuy − 3uxuxy) + α2uxy = 0, (1)

where α1 and α2 are free arbitrary constants. This nonlinear model in two spatial and
temporal coordinates describes the development of nonlinear propagation shallow water
waves. The phenomena of solitons and nonlinear waves for a Riemann wave moving along
the y-axis and a long-wavelength propagating along the x-axis in fluid dynamics, plasma
physics and almost non-dispersive media are widely studied for the SWW model [26].
The multiple lump and diverse varieties of interactions have been observed by the results
obtained through numerical simulation [27]. The multi-kink solitons accompanied by the
fission and fusion are presented by using the Hirota bilinear technique [28]. The fusion
and fission phenomena consisting of semifoldons, peakons, lump, dromions and periodic
waves for the extended (2+1)-dimensional SWW Equation (1) have been not discussed. In
this paper, we consider the semifoldons’ fission and fusion phenomena, and lump, peakons,
dromions and periodic wave fusion phenomena for the (2+1)-dimensional SWW equation
by the MLVSA. One bell-like semifoldon divides into two bell-like semifoldons with a time
evolution. Diverse types that are localized, such as two peakons and two dromions, as well
as two peakons, one lump and one dromion will be fused to one dromion. Two peakons,
one lump, one dromion and periodic waves merge together with one dromion and periodic
waves by adding a periodic wave in an arbitrary function.

The remainder of this paper is arranged as follows. In Section 2, the solution with
two arbitrary variable and separated functions of the SWW equation is constructed by a
special variable separation approach. In Section 3, the resonant dromion, lump, and solitoff
solutions are given by restricting the exponential forms as the arbitrary functions. The bright
and dark dromion, different types of lump waves and solitoff solutions can be constructed
by selecting appropriate parameters. Some novel solutions, such as semifoldon fission
and fusion situations, lump, peakons, dromions and periodic wave fusion phenomena
are given by restricting exponential and trigonometric forms in arbitrary functions. Other
nonlinear excitations and interaction behaviors can be explored by selecting different types
of arbitrary functions. Section 4 is dedicated to the discussion and conclusion.

2. Materials and Methods

In order to apply the MLVSA, the auto-Bäcklund transformation is introduced by the
truncated Painlevé analysis

u =
u0

f
+ u1, (2)

where f = f (x, y, t) is a function of the indicated variable. By substituting (2) into (1) and
balancing the coefficient f−5, we obtain the solution of u0

u0 = −2 fx. (3)

Here, u1 = u1(x, t) is the indeterminate seed solution of the equation. Replacing (2) into (1),
the trilinear form reads as

[α1(3u1x fxy − fxxxy)x − α2 fxxy − ftxy] f 2 + [( fx fy)t + fxy ft − 3α1 fy(u1x fx)x
−6α1u1x fxy fx + α1 fxxxx fy + α2 fxx fy + 4α1 fx fxxxy − 2α1 fxy fxxx + 2α2 fx fxy] f
+2 fx[3α1u1x fx fy − α1 fy fxxx − α2 fx fy − 3α1 fx fxxy + 3α1 fxy fxx − fy ft] = 0.

(4)



Symmetry 2024, 16, 82 3 of 10

The solution of (4) takes the following ansatz from

f = a0 + a1 p + a2q + a3 pq, (5)

where a0, a1, a2 and a3 are arbitrary constants; p = p(x, t) and q = q(y, t) are functions
depending on the mentioned arguments. Replacing (5) into (4), one obtains(

a1 + a3q − f ∂x
2px

)
(pt + α1 pxxx + α2 px) + (a1 + a3q)(qt − 3α1u1x px)

+ 3α1 f
2 (u1xx +

u1x pxx
px

) + (a2 + a3 p)qt − f qty
2qy

= 0.
(6)

The equation mentioned above can be split into two separate equations. Two independent
equations contain the functions as p and q, respectively

pt + α1 pxxx + α2 px − 3α1u1x px − (a0a3 − a1a2)[c1(t)p2 + c2(t)p + c3(t)] = 0, (7)

qt − c1(t)(a0 + a2q)2 + c2(t)(a1 + qa3)(a0 + a2q)− c3(t)(a1 + a3q)2 = 0, (8)

where ci, i = 1, 2, 3 are unrestricted functions of t. Due to u1 and p being the arbitrary
functions of x and t, we select the form of u1 to identify (7). The function of u1x reads as

u1x =
1

3α1 px
[pt + α1 pxxx + α2 px − (a0a3 − a1a2)

(
c1(t)p2 + c2(t)p + c3(t)

)
]. (9)

As for (7), the general solution takes the type

q =
A1(t)

A3(t) + F(y)
+ A2(t), (10)

where F(y) is an unspecified function of the indicated variable and Ai, (i = 1, 2, 3) are
arbitrary functions of t. By substituting (10) into (7), A1, A2 and A3 are related to c1, c2 and
c3, as follows

c1(t) = 1
(a0a3−a1a2)2 [a2

3 A2t − a3 A1t(a3 A2 + a1)− A3t(a3 A2 + a1)
2],

c2(t) = 1
(a0a3−a1a2)2 [2a2a3 A2t − (2a2a3 A2 + a0a3 + a1a2)

A1t
A1

− 2(A2a3 + a1)(a2 A2 + a0)
A3t
A1

,

c3(t) = 1
(a0a3−a1a2)2 [a2

2 A2t − a2(A2a2 + a0)
A1t
A1

− (A2a2 + a0)
2 A3t

A1
].

(11)

By the above in detail calculations, a quite general solution of the SWW equation is

u = u1(x, t)− 2px(qa3 + a1)

a3 pq + a1 p + a2q + a0
, (12)

where p can take any form with respect to x and t, q is decided by (10) and u1 is fixed
by Equation (9).

MLVSA theorem. If p and q are solutions of arbitrary functions of {x, t} and {y, t}, re-
spectively, the universal formula is constructed as the following form by differentiating (12),
with respect to y once

w = uy =
2pxqy(a0a3 − a1a2)

(a3 pq + a1 p + a2q + a0)2 . (13)

The expression of (13) was validated in some physical equation including the Darvey-
Stewartson equation [13], the Broer-Kaup-Kupershmidt system [16], the asymmetric Nizhnik-
Novikov-Veselov system [17] and so on [18–21]. We can obtain some types of specific
solutions due to the flexibility of the functions p and q for the MLVSA theorem.
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3. Results and Discussion
3.1. Special Localized Solutions of SWW Equation

In order to obtain resonant dromion, lump and solitoff solutions, we impose restric-
tions on the functions p and q as

p =
N

∑
i=1

exp(kix + ωit + x0i), q =
J

∑
h=1

exp(Ki + Hiy)
L

∑
j=1

exp(Mjt), (14)

where ki, ωi, x0i, Ki, Hi and Mj are the arbitrary constants, and N, J and L are arbitrary
and positive no-negative integers. Resonant dromion solution, lump and multiple solitoff
solutions are given by selecting different parameters. Here, we select N = J = L = 2 and
t = 0 to explain these phenomena.

A single resonant dromion solution is given by the parameters as

k1 = 1, ω1 = 2, x01 = 1, k2 = 2, ω2 = 1
2 , x02 = 3,

K1 = 1, H1 = 2, M1 = 3, K2 = 2, H2 = 2, M2 = 1
2 .

(15)

The type of the bright and dark dromion is shown with a0 = 15, a1 = 1, a2 = 4, a3 = 2,
(a0a3 − a1a2 > 0) and a0 = 3, a1 = 1, a2 = 40, a3 = 2, (a0a3 − a1a2 < 0) in Figure 1a,b,
respectively.
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Figure 1. The type of the bright and dark dromion is plotted in (a,b), respectively.

Above the single resonant dromion solution, the same sign of the coefficients of the
spaces x, y, i.e., (k1k2 > 0 and H1H2 > 0), is given. The dromion solution will transform
the lump wave with the opposite sign, i.e., (k1k2 < 0 and H1H2 < 0). Two types of the
lump waves are plotted in Figure 2, with parameters such as a0 = 15, a1 = 1, a2 = 4, a3 = 2,
k1 = 1, ω1 = 2, x01 = 1, k2 = 2, ω2 = 1

2 , x02 = 3, K1 = 1, H1 = 2, M1 = 3, K2 = 2, H2 = −2,
M2 = 1

2 . And, other parameters for k2 and M1 are k2 = 2, M1 = 3 and k2 = −4, M1 = −3
in Figure 2a,b, respectively. The amplitudes of the peak and valley are the symmetry and
asymmetry in Figure 2a,b, respectively.
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Figure 2. Two types of the lump wave are plotted in (a,b), respectively.
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Another type of single dromion solution is given with a0 = 35, a1 = 1, a2 = 4,
a3 = 2, k1 = 1, ω1 = 2, x01 = 1, k2 = −2, ω2 = 1

2 , x02 = 3, K1 = 1, H1 = −2,
M1 = −3, K2 = 2, H2 = 2, M2 = 1

2 in Figure 3.
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Figure 3. Anothertype of single dromion solution is plotted in (a). The corresponding density plot is
shown in (b).

The solitoff solutions are presented under the selections as a0 = 3, a1 = 1, a2 = 3,
a3 = 0, k1 = −1, ω1 = 1, x01 = 1, k2 = − 1

3 , ω2 = 1
2 , x02 = 3, K1 = 1, H1 = 2,

M1 = 1, K2 = − 1
3 , H2 = 2, M2 = 1

2 . Different types of solitoff solutions are obtained
by different values of the coefficients of the spaces x, y. Other parameters for k1, k2 and H1
are k1 = −1, k2 = − 1

3 , H1 = 2; k1 = −1, k2 = 1
3 , H1 = 2; k1 = −1, k2 = − 1

3 , H1 = −2 and
k1 = −1, k2 = − 1

3 , H1 = −2 in Figure 4a–d, respectively.
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Figure 4. A single solitoff solution, two solitoff solutions, three solitoff solutions and four solitoff
solutions are shown in (a–d), respectively.

3.2. Special Fission and Fusion Phenomena of SWW Equation

In this part, we list certain specific forms of stable localized excitations for the quantity
of w expressed by (13) for a suitable selecting of the arbitrary functions. Several innovative
fission and fusion phenomena, such as the semifoldons, peakons, lump, dromions and
periodic waves, are constructed both in analytical and graphical ways.
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Semifoldon fission. In order to obtain a variety of the fission solitary wave solution for
the formulation w, we restrict the functions p and q as

p = 1 + 2 exp(x − 2t) +
{ exp(x + t), x + t ≤ 0,

2 − exp(−x − t), x + t > 0,
qy = Asech2(ζ), y = ζ − 2 tanh(ζ), q =

∫ ζ qyyζdζ,
(16)

where A is an arbitrary constant. A variety of the fission solitary wave solution can be
achieved by choosing p and q as (16). One provides the bell-like semifoldon fission and
the anti-bell-like semifoldon by using A < 0 and A > 0, respectively. Here, we select
A = −1, (A < 0) to explain the phenomena of the bell-like semifoldon fission in Figure 5.
From Figure 5a–c, it shows that a bell-like semifoldon split into two bell-like semifoldons
with time evolution. The bell-like semifoldons run in opposite directions along with the
x-axis. The bell-like semifoldon with the smaller amplitude propagates in the forward
direction of the x-axis, while the other one moves along the negative direction.

a

–24
–20–16

–12
–8

x

–1
–0.5

0
0.5

1

y
0

0.05

0.1

0.15

0.2

0.25

w

b

–20
–10

0
10

20

x

–1
–0.5

0
0.5

1

y
0

0.05

0.1

0.15

0.2

w

c

–20–100102030

x

–1
–0.5

0
0.5

1

y
0

0.05

0.1

0.15

0.2

0.25

w

Figure 5. The fission phenomena of the bell-like semifoldons are shown in Figure 1a–c with different
times: (a) t = −8; (b) t = 1; (c) t = 10.

Semifoldon fusion. By choosing the arbitrary functions of p and q as

p = 2 + 2 exp(2x + 2t) + exp(2x−2t)
1+exp(2x−2t) , (17)

qy = Bsech2(ζ), y = ζ − 1.5 tanh(ζ), q =
∫ ζ qyyζ dζ,

with the arbitrary constant B, a kind of semifoldon fusion solitary wave solution can
be obtained by selecting p and q as (17). The bell-like semifoldon and the anti-bell-
like semifoldon fusions are given with B < 0 and B > 0, respectively. One selects
B = 1, (B > 0) to explain the phenomena of the anti-bell-like semifoldon fusion in Figure 6.
From Figure 6a–c, two anti-bell-like semifoldons fuse to the single anti-bell-like semifoldon
with a time evolution.
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Figure 6. The fusion phenomena of the anti-bell-like semifoldon are plotted in Figure 2a–c with
different times: (a) t = −8; (b) t = −1; (c) t = 15.
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Peakons’ and dromions’ fusion. By using the indeterminate functions of p and q as

p = exp(1 + x + 2t) + exp(3 + 2x + t
2 ) + 1 +

{ − ln{tanh[ 1
3 (1 − x + t)]}, x ≤ t,

ln{tanh[ 1
3 (1 + x − t)]} − 2 ln[tanh( 1

3 )], x > t,

+
{ − ln{tanh[ 1

3 (1 − x − 2t)]}, x ≤ −2t,
P ln{tanh[ 1

3 (1 + x + 2t)]} − 2 ln[tanh( 1
3 )], x > −2t,

,

q = [exp(1 + 2y) + exp(2 + 2y)][exp(3t) + exp( t
2 )] +

{ − ln{tanh[ 1
3 (1 − y)]}, y ≤ 0,

ln{tanh[ 1
3 (1 + y)]} − 2 ln[tanh( 1

3 )], y > 0,

(18)

the interaction between two peakons and two dromions can be obtained with parameters
as a0 = 15, a1 = 1, a2 = 4, a3 = 2 in Figure 7. Two peakons and two dromions are in a time
evolution. These two peakons and two dromions will fuse to one dromion around t = −2.

Figure 7. The fusion phenomena of two peakons and two dromions are plotted in Figure 3a–c with
different times: (a) t = −12; (b) t = −2; (c) t = 1.

Peakons, lump and dromions’ fusion. The lump wave is the rational function solution
which can be localized in all directions of spaces. There has been a growing interest in
investigating the lump wave [29,30]. Interactions among peakons, lump and dromions
have a crucial role in the study of the nonlinear wave. By using the unconstrained functions
of p and q as

p = exp(1 + x + 4t) + 2
3+(x−6t)2 + 1 +

{ − ln{tanh[ 1
2 (1 − x + t)]}, x ≤ t,

ln{tanh[ 1
2 (1 + x − t)]} − 2 ln[tanh( 1

2 )], x > t,

+
{ − ln{tanh[ 1

2 (1 − x − 2t)]}, x ≤ −2t,
ln{tanh[ 1

2 (1 + x + 2t)]} − 2 ln[tanh( 1
2 )], x > −2t,

, (19)

q =
{ − ln{tanh[ 1

2 (1 − y)]}, y ≤ 0,
ln{tanh[ 1

2 (1 + y)]} − 2 ln[tanh( 1
2 )], y > 0,

the interaction among two peakons, one lump and one dromion can be obtained with
parameters such as a0 = 1, a1 = 1, a2 = 1, a3 = 2 in Figure 8. With a time evolution,
two peakons, one lump and one dromion will fuse to one dromion around t = −1.

Figure 8. The fusion phenomena of two peakons, one lump and one dromion are plotted in
Figure 4a–c with different times: (a) t = −5; (b) t = −1; (c) t = 3.
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Peakons, lump, dromions and periodic waves fusion. By adding a periodic function
1

cos(y−5t)+3 based on the form (19) of q, the interaction among two peakons, one lump,
one dromion and periodic waves is shown with parameters as a0 = 2, a1 = 1, a2 = 1, a3 = 2
in Figure 9. One novel fusion phenomenon is derived with a time evolution. These solu-
tions fuse to one dromion and the periodic wave around t = −2.

Figure 9. The fusion phenomena of two peakons, one lump, one dromion and periodic waves are
plotted in Figure 5a–c with different times: (a) t = −5; (b) t = −1; (c) t = 5.

4. Conclusions

In summary, the MLVSA is successfully applied to the (2+1)-dimensional SWW equa-
tion. The solution with two arbitrary variable-separated functions is constructed. Taking
into account the specified quantity, (13), and selecting suitable functions as p and q, the
resonant dromion solution, lump, multiple solitoff solutions, semifoldons’ fission, semi-
foldons, peakons, lump, dromions and periodic waves’ fusion phenomena are investigated.
Based on the parameters in (15), the type of the bright and dark dromion can be derived
by selecting different parameters a0, a1, a2 and a3. By using other parameters, the dromion
solution will translate into a lump wave. The amplitudes of the peak and valley for lump
waves are symmetric and asymmetrical in Figure 2. Four types of solitoff solutions are
constructed by selecting different parameters. Soliton phenomena with a fission and fusion
have been observed in many real physical models, such as optic fibers [31] and photonic
fibers [32]. The experimental results for the type of semifoldons’ fission, and semifoldons,
peakons, lump, dromions and periodic waves’ fusion phenomena, are a significant area
of research. We analyzed these phenomena both in analytical and graphical ways. One
bell-like semifoldon splits into two bell-like semifoldons by means of (16). By selecting the
arbitrary functions p and q as the form (17), two anti-bell-like semifoldons integrate to the
single anti-bell-like semifoldon with a time evolution. Two peakons and two dromions, as
well as two peakons, one lump and one dromion can be blended as one dromion by using
different functions. Two peakons, one lump, one dromion and periodic waves become
similar to dromion and periodic waves by introducing a periodic wave in the arbitrary
function of q. Moreover, some other types of localized excitations, such as instantons, ring
solitons, chaotic and fractal patterns are analyzed by selecting the corresponding arbitrary
functions. By combining the velocity resonance mechanism, dromion molecules of the
(3+1)-dimensional nonlinear systems are discussed [33,34]. Folded solitary waves and the
corresponding superimposed structures of an extended (3+1)-dimensional KP-Boussinesq
equation are systematically studied by exploring suitable multi-valued functions [35]. In
our future work, these properties of the (2+1)-dimensional SWW equation will study the
combination of the velocity of the resonance mechanism.
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