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Abstract: Hellwig’s method is a multi-criteria decision-making technique designed to facilitate
the ranking of alternatives based on their proximity to the ideal solution. Typically, this approach
calculates distances using the Euclidean norm, assuming implicitly that the considered criteria are
independent. However, in real-world situations, the assumption of criteria independence is rarely
met. The paper aims to propose an extension of Hellwig’s method by incorporating the Mahalanobis
distance. Substituting the Euclidean distance with the Mahalanobis distance has proven to be effective
in handling correlations among criteria, especially in the context of asymmetrical relationships
between criteria. Subsequently, we investigate the impact of the Euclidean and Mahalanobis distance
measures on the several variants of Hellwig procedures, analyzing examples based on various
illustrative data with 10 alternatives and 4 criteria. Additionally, we examine the influence of three
normalization formulas in Hellwig’s aggregation procedures. The investigation results indicate that
both the distance measure and normalization formulas have some impact on the final rankings.
The evaluation and ranking of alternatives using the Euclidean distance measure are influenced by
the normalization formula, albeit to a limited extent. In contrast, the Mahalanobis distance-based
Hellwig’s method remains unaffected by the choice of normalization formulas. The study concludes
that the ranking of alternatives is strongly dependent on the distance measure employed, whether it
is Euclidean or Mahalanobis. The Mahalanobis distance-based Hellwig method is deemed a valuable
tool for decision-makers in real-life situations. It enables the evaluation of alternatives by considering
interactions between criteria, providing a more comprehensive perspective for decision-making.

Keywords: multi-criteria decision making; Hellwig’s method; Euclidean distance; Mahalanobis
distance; normalization; dependence among criteria

1. Introduction

Multi-criteria decision-making (MCDM) methods are a collection of techniques de-
signed to address complex problems that involve the evaluation and ranking of alternatives
based on multiple criteria, which may sometimes conflict with each other [1,2]. These
methods are widely used in various fields [3], including business [4], engineering [5],
environmental science [6], sustainability [7], and public policy [8], among others. The
goal is to provide decision-makers with a systematic and structured approach to making
choices when faced with a range of alternatives. Among them, there is a class of techniques
based on aggregation formulas incorporating reference solutions, such as TOPSIS (Tech-
nique for Ordering Preferences by Similarity to Ideal Solution) [9], Hellwig’s method [10],
VIKOR (VlseKriterijuska Optimizacija I Komoromisno Resenje) [11], DAPR [12], BWM (the
Best-Worst Method) [13], or BIPOLAR [14].

MCDM methods typically involve several steps to determine the overall preference
value for each alternative, as follows:

• Normalization: This step involves transforming performance ratings into a standard-
ized unit scale.
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• Weights determination: This process involves assigning weights to the criteria based
on their relative importance in the decision-making process.

• Distance Measure: This step calculates the distance between the alternatives and
reference points, providing a measure of their dissimilarity or similarity.

• Aggregation Formula: Aggregation involves combining the normalized values, weights,
and distance measures to obtain an overall preference value for each alternative.

The paper focuses on Hellwig’s method [10] based on the measurement distances
from the alternative to the ideal solution. Two critical aspects of this method have been
scrutinized: the distance measure and normalization formula.

The aims of the paper are twofold. Firstly, it introduces an extension of Hellwig’s method,
namely the Mahalanobis distance-based Hellwig method (HM). The classical Hellwig method
(H) relies on Euclidean distance, assuming implicitly that the criteria are independent. How-
ever, real-life situations may not always align with this assumption. Therefore, it is necessary
to adapt the technique to the new situation. The Mahalanobis distance is employed to measure
the distance between the ideal and alternatives, taking into consideration the dependence
among criteria. While the Euclidean distance presupposes independence among variables,
the Mahalanobis distance considers the covariance structure, making it more appropriate for
datasets with correlated or asymmetrically distributed variables.

Secondly, we specifically investigate the impact of the distance measure (Euclidean vs.
Mahalanobis) and the normalization formula in Hellwig’s measure. Various normalization
methods have been proposed in the literature [1,9,15] that can be employed within MCDM.
The article by Jahan and Edwards [15] undertakes a comparative analysis of six normalization
techniques within multi-criteria decision-making methods. For our comparative analysis, we
employed three well-known normalization procedures: vector normalization, linear scale
transformation (Max-Min method), and linear scale transformation (Sum method).

Several authors have investigated how alternative normalization procedures can
influence the ranking of alternatives obtained through MCDM methods [16–23]. We analyze
and compare results derived from examples utilizing different variants of Hellwig’s method,
taking into account two distance measures and three normalization formulas. This analysis
is conducted using illustrative data comprising 10 alternatives and 4 criteria.

The rest of the paper is organized as follows: In Section 2, we briefly outline the
concept of Mahalanobis distance and its application in multi-criteria analyses. In Section 3,
the classical and extended Hellwig methods are presented. In Section 4, five illustrative
examples are investigated concerning distance measures (Euclidean and Mahalanobis)
and normalization formulas (vector normalization, min-max method, sum method) with
differences in the dependence between criteria. The paper finishes with a conclusion.

2. Mahalanobis Distance and Multi-Criteria Analyses

The Mahalanobis distance, first proposed by Mahalanobis in 1936 [24], is a statistical
metric for measuring distance with particular applicability in tasks such as classification,
clustering, and multi-criteria decision-making. This distance is based on the separation
between two points within a multi-dimensional space, based on the covariance among
different variables. The covariance matrix incorporated in the distance measure calcula-
tion represents the interrelationships and interdependencies among variables. When the
covariance matrix is equal to the identity matrix, the Mahalanobis distance simplifies to the
Euclidean distance. The more precise description, calculation, and comparison of Euclidean
distance and Mahalanobis distance can be found in [25]. Studies [26–29] are devoted to the
Mahalanobis distance and its properties in the context of multicriteria analysis.

Multi-criteria methods based on Mahalanobis and Euclidean distances find widespread
application in data analysis. The Mahalanobis distance finds utility in several MCDM ap-
proaches, including TOPSIS [26–31], TODIM (an acronym in Portuguese for Interactive
and Multicriteria Decision Making) [32], or other decision-making problems [33–36]. The
Mahalanobis distance, incorporating correlations with diverse criteria, empowers us to
proficiently address the asymmetrical relationships among criteria. It aids decision-makers
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in evaluating alternatives based on their preferences and goals, taking into account the
interaction between criteria.

3. Mahalanobis Distance-Based Hellwig Method
3.1. The Hellwig’s Framework—A Short Literature Review

Hellwig’s method [10], originally proposed by Hellwig in 1968, has undergone several
modifications to address real-life problems. In his pioneering work [10], Hellwig introduced
the concept of the development measure based on the pattern of economic development
based on the most favorable values for each criterion. This method allows for determining
the ranking of objects described in the multidimensional space by calculating the distances
between the pattern of development and the objects. This concept has been applied
to assess differences and similarities among various countries regarding qualified staff,
corresponding to the economic development level of each country.

Hellwig’s method is particularly popular as a linear ordering technique in Polish
literature, especially in the field of economic research. It is worth noting that the number
of citations has been steadily increasing, particularly due to numerous publications in
English. It has also gained recognition among international researchers as a multi-criteria
method based on a reference point. According to Google Scholar (Harzing’s Publish or
Perish 8 software as of 1 January 2024), the paper [10] has been cited 1479 times (26.41 times
per year).

Hellwig’s method has been extended to address different problems with crisp data [10]
and incorporates fuzzy sets [10], intuitionistic fuzzy sets [37–40], interval-valued fuzzy
sets [41], and oriented fuzzy sets [42]. This method has been applied in various practical con-
texts, including the circular economy [43], quality of human capital in the EU countries [44],
socio-economic region development [45–48], sustainable development [49,50], quality of
life [38,39,42], evaluation negotiation offers [40,42], analysis agriculture development [51–54],
competitive balance of the Italian Football League [55], innovation in UE countries [56],
evaluation of theater activity in Poland [57], and selection of locations [58], among others.

3.2. The Hellwig’s Method

Let us assume that we have m alternatives A1, A2, . . . , Am and n decision criteria
C1, C2, . . . , Cn, where xij denote the criteria value of Ai on Cj (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

The Hellwig’s general framework consists of the following steps:
Step 1. Determination of the decision matrix:

D =
[
xij

]
, (1)

where xij is the value of the j-th criterion for i-th alternative i = 1, . . . , m, j = 1, . . . , n.
Step 2. Determination of the vector of weights:

w = [w1, . . . , wn] (2)

where wj > 0 (j = 1, . . . , n) is the weight of the criterion Cj and ∑n
j=1 wj = 1.

In the later analyses, we implemented equal weights. However, it should be noted that
in the literature, various proposals exist for establishing weights [59–64]. Tzeng et al. [65]
classifies weighting methods as objective when weights are computed from outcomes and
subjective when they depend only on the preferences of decision-makers. The third class
is the combination of subjective and objective weighting methods. Da Silva et al. [62]
identified and discussed more than 50 methods, of which 49 are subjective, 7 are objective,
and others are hybrid.

Step 3. Building the ideal solution (pattern of development):

I =
[
x+1 , . . . , x+n

]
(3)
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where:

x+j =

max
i

xij for benefit criterion

min
i

xij for cos t criterion.
(4)

for j = 1, . . . , n.
Step 4. Determination of the normalized matrix:

D =
[
xij

]
(5)

where xij is a normalized value of xij (i = 1, . . . , m, j = 1, . . . , n).
We presented here three well-known and frequently used normalization techniques

that we later applied for comparison studies [9,19,20]:

• Vector normalization, which transforms performance ratings into a normalized vector
as follows:

xij =
xij√

∑m
i=1

(
xij

)2
(6)

• Linear scale transformation (Max-Min method) which involves scaling the performance
ratings linearly based on the minimum and maximum values observed across criteria.

xij =
xij − min

i
xij

max
i

xij − min
i

xij
(7)

• Linear scale transformation (Sum method), where performance ratings are linearly
transformed based on the sum of values across all criteria.

xij =
xij

∑m
i=1 xij

(8)

where xij is the value of the j-th criterion for i-th alternative i = 1, . . . , m, j = 1, . . . , n.
Step 5. Building the weighted normalized matrix:

D̃ =
[
x̃ij

]
, (9)

where
x̃ij = wjxij (10)

Step 6. Calculating the distances of i-th alternative Ai from the ideal I by using
Euclidean or Mahalanobis distance measure

• Euclidean distance measure (dEi) [10]:

dEi(Ai, I) = E
(

Ãi, Ĩ
)
=

√
∑n

j=1

(
x̃ij − x̃+j

)2
(11)

where x̃ij, x̃+j are weighted normalized values xij and x+j , respectively.

• Mahalanobis distance measure (dMi0) [29,31]:

dMi(Ai, I) = M
(

Ai, I
)
=

√(
Ai − I

)
WC−1WT

(
Ai − I

)T , (12)

where C is the variance-covariance matrix of the data matrix D, W = diag(
√

w1, . . . ,
√

wn)
is the diagonal matrix, where w1 , w2, . . . , wn are the weights assigned to the criteria.

In practical terms, the choice of distance measure depends on the data’s characteristics
and the specifics of the multi-criteria analysis. While the Euclidean distance presupposes
independence among variables, the Mahalanobis distance considers the covariance struc-
ture, making it more appropriate for datasets with correlated or asymmetrically distributed
data. The Mahalanobis distance between the alternative and ideal solution is based on the
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normalized data and the estimated covariance matrix, which represents the relationships
and dependencies between criteria.

Step 6. Calculating the Hellwig’s measure Hi or Hellwig’s measure based on Maha-
lanobis distance HMi for the i-th alternative using the formula.

• Classical approach (H measure based on Euclidean distance):

Hi = 1 − dEi
d0

(13)

where d0 = d + 2S, for d = 1
m ∑m

i=1 dEi, S =

√
1
m ∑m

i=1 (dEi − d)
2

.

• Extended approach (HM measure based on Mahalanobis distance):

HMi = 1 − dMi
d0

, (14)

where d0 = d + 2S, for d = 1
m ∑m

i=1 dMi, S =

√
1
m ∑m

i=1 (dMi − d)
2

.

Step 7. Ranking of objects according to descending Hi or HMi values.
A higher value of Hellwig’s measure corresponds to a higher ranking position for the

respective alternative.
In the paper, Wang and Wang [31] showed the following:

Property 1: [31]: The non-singular linear transformation of data doesn’t affect the Mahalanobis
distance measure.

Applying Property 1, and considering normalization Formulas (6)–(8) and Formula
(14), we deduce the following:

Property 2: The Mahalanobis distance-based Hellwig method (HM) is independent of normalization
formulas N1, N2, and N3.

4. Numerical Examples

This section compares the procedures and results obtained from the different Hellwig’s
methods: the Hellwig method with Euclidean distance based on vector normalization (H1),
max-min normalization (H2), and sum normalization (H3), and the Hellwig method with
Mahalanobis distance (HM). Let us note that, from property 2, the results of HM methods
don’t depend on the formalization formulas N1, N2, and N3. This gives us five variants of
Hellwig’s method. The results of variants for Hellwig’s method were compared (a) based
on Euclidean distance for different normalization formulas and (b) based on Euclidean
distance with Mahalanobis distance measure.

The problem under consideration involves assessing ten alternatives with four benefit
criteria. We assumed equal weight for the analyses to concentrate only on the distance
measure and normalization formula incorporated in the algorithm. The examples differ in
the data and correlations between criteria. To validate the HM method and examine the
relationship between the criteria, we utilize the Pearson correlation coefficient. Additionally,
the correlation between results obtained from different variants of Hellwig’s method is
analyzed using both the Spearman and Pearson coefficients. The interpretation absolute
value of the Pearson coefficient or Spearman coefficient is as follows: [0,0.1)—negligible;
[0.1,0.40)—weak; [0.4, 0.7) moderate; [0.7,0.9) strong; [0.9,1] very strong.

Example 1. (negligible or weak correlation between criteria).

Table 1 displays the data and correlation matrix among the criteria in Example 1. In
this case, a negligible or weak correlation is evident between the criteria. The highest
Pearson correlation exists between criterion C3 and C4 (0.116), followed by C3 and C2
(0.103). All other Pearson coefficients are below 0.100.
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Table 1. Data and correlation matrix for Example 1.

Alternative C1 C2 C3 C4 Correlation Matrix
A1 1 18 7 6 C1 C2 C3 C4
A2 3 2 10 10 C1 1.000 0.089 0.003 0.038
A3 5 30 15 30 C2 0.089 1.000 0.103 −0.003
A4 3 1 15 20 C3 0.003 0.103 1.000 0.116
A5 8 10 20 8 C4 0.038 −0.003 0.116 1.000
A6 2 20 10 5
A7 10 4 6 25
A8 12 25 10 2
A9 5 5 15 8
A10 6 2 5 9

Ideal solution 12 30 20 30
Legend: Absolute value of the Pearson coefficient.

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0) 1
negligible weak moderate strong very strong

The ideal based on max and min values (see Formula (3)) has the form:

I+ = [12, 30, 20, 30].

The criteria values are normalized using Formulas (6)–(8), respectively. Following this,
the Euclidean or Mahalanobis distances between the alternative and the ideal object are
calculated using Formulas (11) or (12), respectively.

Finally, the synthetic measure is derived using Formula (13) or (14). The outcomes of
various Hellwig’s measures are presented in Table 1.

From Table 2, we can observe that rankings differ for Hellwig’s measures based on the
Euclidean distance and various normalization formulas, but these differences are not so
evident. Spearman coefficients between Hellwig’s measure based on Euclidean distance
are the following: S(H1, H2) = 0.952, S(H1, H3) = 0.939, and S(H2, H3) = 0.915. The Pearson
coefficient also confirms a very strong correlation: P(H1, H2) = 0.976, P(H1, H3) = 0.994,
and P(H2, H3) = 0.956.

Table 2. The distance values, measure values, and rank-ordering of alternatives obtained by different
variants of Hellwig’s method (Example 1).

Alternative dEH1 Value
H1

Range
H1 dEH2 Value

H2
Range

H2 dEH3 Value
H3

Range
H3 dM Value

HM
Range
HM

A1 0.211 0.168 8 0.408 0.139 9 0.080 0.202 8 2.333 0.096 10
A2 0.218 0.141 10 0.400 0.155 8 0.086 0.140 10 2.177 0.157 8
A3 0.092 0.639 1 0.180 0.620 1 0.034 0.663 1 1.123 0.565 1
A4 0.194 0.235 5 0.345 0.270 6 0.078 0.222 7 1.872 0.275 5
A5 0.161 0.366 2 0.277 0.415 2 0.064 0.355 3 1.584 0.387 2
A6 0.197 0.225 7 0.370 0.219 7 0.075 0.252 5 2.116 0.180 7
A7 0.165 0.352 4 0.330 0.303 4 0.065 0.349 4 1.819 0.296 4
A8 0.162 0.363 3 0.304 0.358 3 0.062 0.380 2 1.741 0.326 3
A9 0.195 0.234 6 0.342 0.276 5 0.077 0.226 6 1.880 0.272 6

A10 0.217 0.144 9 0.418 0.117 10 0.085 0.148 9 2.277 0.118 9

do 0.254 0.473 0.100 2.582

In all variants of Hellwig’s method, the rankings converge for alternatives A3 and A7.
For the remaining alternatives, the disparity ranges only from 1 to 2 positions. Additionally,
Spearman coefficients between the measure HM and other measures are very high: S(H1,
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HM) = 0.952, S(H2, HM) = 0.976, or high S(H3, HM) = 0.891. Similarly, a very strong
correlation was observed when comparing those measures using the Pearson coefficient:
P(H1, HM) = 0.956, P(H2, HM) = 0.991, and P(H3, HM) = 0.923. The highest concordance
for HM is achieved with H2. The graphical representation results of Hellwig’s measures
are illustrated in the accompanying Figure 1.
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Figure 1. Graphical representation ranking of alternatives obtained by different variants of Hellwig’s
methods in Example 1.

We can observe that in this case, disparities between all variants of Hellwig’s methods
are marginal.

Example 2. (from weak to very strong correlation between criteria).

Table 3 presents the data and correlation matrix for the criteria in Example 2. In
this instance, discrepancies in the correlation coefficients range from 0.136 to 0.992. The
strongest Pearson correlation is observed between criterion C3 and C2 (0.992), followed by
C3 and C1 (0.881), and C1 and C2 (0.708). Meanwhile, the lowest Pearson coefficients are
found between C1 and C4 (0.136).

Table 3. Data and correlation matrix for Example 2.

Alternative C1 C2 C3 C4 Correlation Matrix
A1 1 4 3 5 C1 C2 C3 C4
A2 4 10 12 10 C1 1.000 0.708 0.881 0.136
A3 5 20 13 33 C2 0.708 1.000 0.922 0.350
A4 3 12 9 20 C3 0.881 0.922 1.000 0.200
A5 2 2 2 8 C4 0.136 0.350 0.200 1.000
A6 2 8 6 5
A7 10 16 16 25
A8 12 20 20 2
A9 3 12 9 10
A10 6 24 18 9
Ideal 12 20 20 25

Legend: Absolute value of the Pearson coefficient.

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0) 1
negligible weak moderate strong very strong
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The outcomes of various Hellwig’s measures obtained in Example 2 are presented in
Table 4.

Table 4. The distance values, measure values and rank-ordering of alternatives obtained by different
variants of Hellwig’s measure (Example 2).

Alternative dEH1
Value Range

dEH2
Value Range

dEH3
Value Range

dM
Value Range

H1 H1 H2 H2 H3 H3 HM HM

A1 0.255 0.117 10 0.470 0.113 10 0.097 0.119 10 1.959 0.218 8
A2 0.182 0.370 6 0.324 0.388 6 0.070 0.365 6 2.364 0.056 10
A3 0.106 0.632 2 0.192 0.638 2 0.041 0.630 2 1.141 0.544 2
A4 0.168 0.420 5 0.308 0.419 5 0.064 0.421 5 1.510 0.397 3
A5 0.248 0.143 9 0.466 0.121 9 0.093 0.151 9 1.800 0.281 6
A6 0.231 0.201 8 0.417 0.214 8 0.088 0.198 8 1.891 0.245 7
A7 0.070 0.758 1 0.133 0.750 1 0.026 0.762 1 0.855 0.659 1
A8 0.156 0.459 4 0.254 0.521 4 0.062 0.441 4 1.594 0.363 4
A9 0.192 0.334 7 0.344 0.351 7 0.074 0.329 7 1.712 0.316 5

A10 0.145 0.499 3 0.238 0.550 3 0.057 0.483 3 1.972 0.212 9

do 0.289 0.530 0.110 2.504

Table 4 indicates that the rankings obtained through the Hellwig procedure and Euclidean
distance measure are identical, resulting in S(H1, H2) = S(H1, H3) = S(H2, H3) = 1.000.
Also, we observed a very strong correlation between Hi obtained by the Pearson coefficient:
P(H1, H2) = 0.993, P(H1, H3) = 0.999, and P(H2, H3) = 0.988.

Distinctions arise when comparing Hellwig’s methods based on Euclidean distance
and those based on Mahalanobis distance. Nevertheless, in all cases, the rankings converge
for alternatives A3, A7, and A8. Discrepancies for the remaining alternatives range from
1 to 6 positions. The Spearman coefficients between the HM measure reveal moderate
relationships among these measures: S(H1, HM) = S(H2, HM) = S(H3, HM) = 0.552. A
higher Pearson correlation (moderate or strong) was observed when comparing these
measures: P(H1, HM) = 0.709, P(H2, HM) = 0.655, and P(H3, HM) = 0.725. The highest
concordance for HM is achieved with H3 (0.725). The graphical representation of Hellwig’s
measures is depicted in Figure 2.
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Figure 2. Graphical representation ranking of alternatives obtained by different variants of Hellwig’s
methods in Example 2.

Note that Hellwig’s approach, neglecting the interaction between criteria, results in an
overestimation of the values for the top-scoring alternatives A3, A7, A8, and A10 while
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comparing with the HM measure. Conversely, it exhibits an opposite deviation for the
low-scoring alternatives A1 and A5.

Example 3. (from negligible to very strong correlation between criteria).

Table 5 presents the data and correlation matrix for the criteria in Example 3. In
this instance, discrepancies in the correlation coefficients range from 0.088 to 0.907. The
strongest Pearson correlation is observed between criterion C3 and C4 (0.907), followed
by C3 and C2 (0.676), and C4 and C2 (0.575). Meanwhile, the lowest Pearson coefficient is
found between C4 and C1 (0.088).

Table 5. Data and correlation matrix for Example 3.

Alternative C1 C2 C3 C4 Correlation Matrix
A1 1 2 2 5 C1 C2 C3 C4
A2 4 6 10 10 C1 1.000 0.501 0.328 0.088
A3 5 23 24 33 C2 0.501 1.000 0.676 0.575
A4 3 1 6 10 C3 0.328 0.676 1.000 0.907
A5 2 10 4 8 C4 0.088 0.575 0.907 1.000
A6 4 7 8 6
A7 10 6 12 15
A8 12 20 8 6
A9 3 6 7 10
A10 6 8 10 6
Ideal 12 23 24 33

Legend: Absolute value of the Pearson coefficient.

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0) 1
negligible weak moderate strong very strong

The outcomes of various Hellwig’s measures obtained in Example 3 are presented in
Table 6.

Table 6. The distance values, measure values, and rank-ordering of alternatives obtained by different
variants of Hellwig’s measure (Example 3).

Alternative dEHI
Value Range

dEH2
Value Range

dEH3
Value Range

dM
Value Range

H1 H1 H2 H2 H3 H3 HM HM

A1 0.310 0.092 10 0.494 0.084 10 0.120 0.095 10 2.223 0.135 8
A2 0.233 0.318 5 0.371 0.312 5 0.090 0.316 5 2.001 0.221 6
A3 0.092 0.730 1 0.159 0.705 1 0.035 0.735 1 1.360 0.471 2
A4 0.272 0.204 9 0.434 0.196 9 0.105 0.203 9 1.848 0.281 3
A5 0.263 0.231 8 0.418 0.225 8 0.101 0.237 8 2.146 0.165 7
A6 0.251 0.266 7 0.397 0.265 6 0.097 0.266 7 2.239 0.129 9
A7 0.185 0.460 2 0.289 0.464 2 0.072 0.455 2 1.320 0.486 1
A8 0.199 0.419 3 0.304 0.437 3 0.076 0.421 3 1.900 0.261 5
A9 0.250 0.269 6 0.398 0.262 7 0.096 0.271 6 1.857 0.278 4

A10 0.231 0.325 4 0.362 0.329 4 0.089 0.323 4 2.282 0.112 10

do 0.342 0.540 0.132 2.570

Table 6 indicates that the rankings obtained through the Hellwig procedure and Eu-
clidean distance measure are quite similar, resulting in S(H1, H2) = 0.988, S(H1, H3) = 1, and
S(H2, H3) = 0.988. Similarly, the Pearson coefficient shows very strong correlation:
P(H1, H2) = 0.998, P(H1, H3) 0.9998, and P(H2, H3) = 0.997.

More distinctions arise when comparing Hellwig’s methods based on Euclidean
distance and those based on Mahalanobis distance. In all cases, discrepancies for the
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alternatives range from 1 to 6 positions. The Spearman coefficients between the HM
measure reveal week S(H2, HM) = 0.382 or moderate S(H1, HM) = 0.442 and S(H3,
HM) = 0.442 correlation among these measures. A strong Pearson correlation was ob-
served when comparing these measures: P(H1, HM) = 0.755, P(H2, HM) = 0.747, and P(H3,
HM) = 0.751. The highest concordance for HM is achieved with H1 (0.755). The graphical
representation of Hellwig’s measures is depicted in Figure 3.
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Figure 3. Graphical representation ranking of alternatives obtained by different variants of Hellwig’s
methods in Example 3.

Please note that Hellwig’s methods, when utilizing Euclidean distance measurement,
lead to an overestimation of values for high-scoring alternatives A3, A8, and A10 while
comparing with HM measure. Conversely, it exhibits an opposite deviation for lower-
scoring alternatives A1 and A4.

Example 4. (strong or very strong correlation between criteria).

Table 7 presents both the data and the correlation matrix for the criteria outlined in
Example 4. It is noteworthy that we observe high Pearson correlation coefficients ranging
from 0.723 (between C3 and C1 or C4 and C1) to 0.910 (between C4 and C2).

The outcomes of various Hellwig’s measures obtained in Example 4 are presented in
Table 8.

Table 8 highlights discrepancies in rankings for Hellwig’s measures based on Euclidean
distance and various normalization formulas, though these differences are marginal. Spear-
man coefficients between Hellwig’s measures using Euclidean distance are as follows: S(H1,
H2) = 1, S(H1, H3) = 0.987, and S(H2, H3) = 0.987. Similarly, a very strong correlation is
observed for the Pearson coefficient: P(H1, H2) = 0.999, P(H1, H3) = 0.99998, and P(H2,
H3) = 0.999.

For alternatives A5, A7, A8, and A10, rankings consistently converge in all cases.
Disparities for the remaining alternatives range only from 1 to 2 positions. Moreover, the
Spearman coefficients between the HM measure and other classical Hellwig measures are
very strong: S(H1, HM) = 0.921, S(H2, HM) = 0.921, and S(H3, HM) = 0.947. Similarly, a
high Pearson correlation is observed when comparing these measures: P(H1, HM) = 0.827,
P(H2, HM) = 0.829, and P(H3, HM) = 0.827. The highest concordance for HM is achieved
with H2 for the Pearson coefficient and H3 for the Spearman coefficient. The graphical
representation of the results for Hellwig’s measures is depicted in Figure 4.
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Table 7. Data and correlation matrix for Example 4.

Alternative C1 C2 C3 C4 Correlation Matrix
A1 2 4 3 6 C1 C2 C3 C4
A2 5 10 9 10 C1 1.000 0.730 0.723 0.723
A3 7 8 9 9 C2 0.730 1.000 0.801 0.910
A4 3 6 5 10 C3 0.723 0.801 1.000 0.748
A5 6 10 10 13 C4 0.723 0.910 0.748 1.000
A6 3 6 4 6
A7 6 12 6 14
A8 8 12 10 16
A9 3 6 4 6
A10 6 5 3 7
Ideal 8 12 10 16

Legend: Absolute value of the Pearson coefficient.

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0) 1
negligible weak moderate strong very strong

Table 8. The distance values, measure values, and rank-ordering of alternatives obtained by different
variants of Hellwig’s measure (Example 4).

Alternative dEH1
Value Range

dEH2
Value Range

dEH3
Value Range

dM
Value Range

H1 H1 H2 H2 H3 H3 HM HM

A1 0.162 0.157 10 0.500 0.162 10 0.055 0.157 10 1.552 0.289 8
A2 0.068 0.645 4 0.208 0.651 4 0.023 0.647 5 1.446 0.338 6
A3 0.068 0.644 5 0.222 0.628 5 0.023 0.648 4 1.324 0.394 4
A4 0.119 0.378 6 0.365 0.389 6 0.041 0.378 6 1.326 0.392 5
A5 0.042 0.780 2 0.128 0.785 2 0.014 0.781 2 0.810 0.629 2
A6 0.140 0.273 8 0.432 0.275 8 0.047 0.273 8 1.573 0.280 9
A7 0.057 0.703 3 0.173 0.710 3 0.020 0.700 3 1.312 0.399 3
A8 0.000 1.000 1 0.000 1.000 1 0.000 1.000 1 0.000 1.000 1
A9 0.140 0.273 8 0.432 0.275 8 0.047 0.273 8 1.573 0.28 9

A10 0.129 0.331 7 0.410 0.313 7 0.044 0.33 7 1.544 0.293 7

do 0.192 0.597 0.065 2.183

It is worth noting that the alternative in the first position, according to the HM measure,
has a value of 1. Additionally, Hellwig’s approach, neglecting the interaction between
criteria, results in an overestimation of the values for the high-scoring alternatives A2, A3,
A5, and A7 when compared with the HM measure. Conversely, the low-scoring alternative
A1 is underestimated according to the HM measure.

Example 5. (moderate and strong correlation between criteria).

Table 9 presents both the data and the correlation matrix for the criteria outlined in
Example 5. The Pearson coefficient varies from 0.656 (between C4 and C1) to 0.747 (between
C4 and C3).

The outcomes of various Hellwig’s measures obtained in Example 5 are presented in
Table 10.

Table 10 highlights discrepancies in rankings for Hellwig’s measures based on Eu-
clidean distance and various normalization formulas. Spearman coefficients between
Hellwig’s measures using Euclidean distance are identical: S(H1, H2) = S(H1, H3) = S(H2,
H3) = 1, which denotes these same rank ordering alternatives. Also, a very strong correla-
tion is observed for the Pearson coefficient: P(H1, H2) = 0.9996, P(H1, H3) = 0.99997, and
P(H2, H3) = 0.9996, though these differences in rating are minimal.
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For alternatives A1, A5, and A8, rankings consistently converge in all cases. Disparities
for the remaining alternatives range only from 1 to 3 positions. Moreover, the Spearman
coefficients between the HM measure and other classical Hellwig measures are very strong:
S(H1, HM) = 0.842, S(H2, HM) = 0.842, and S(H3, HM) = 0.842. Similarly, a high Pear-
son correlation is observed when comparing these measures: P(H1, HM) = 0.821, P(H2,
HM) = 0.812, and P(H3, HM) = 0.819. The highest concordance for HM is achieved with H1.
The graphical representation of the results for Hellwig’s measures is depicted in Figure 5.

It is worth noting that Hellweg’s methods based on Euclidean distance, neglecting the
interaction between criteria, result in an overestimation of the values for the high-scoring
alternatives A2, A3, A5, A7, and A8. Conversely, the low-scoring alternatives A1 and A9
are underestimated when compared to the HM measure.
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Figure 4. Graphical representation ranking of alternatives obtained by different variants of Hellwig’s
methods in Example 4.

Table 9. Data and correlation matrix for Example 5.

Alternative C1 C2 C3 C4 Correlation Matrix
A1 2 4 3 6 C1 C2 C3 C4
A2 5 10 9 10 C1 1.000 0.720 0.656 0.670
A3 7 8 9 9 C2 0.720 1.000 0.711 0.731
A4 3 6 5 10 C3 0.656 0.711 1.000 0.747
A5 6 9 10 13 C4 0.670 0.731 0.747 1.000
A6 4 6 4 5
A7 6 12 6 9
A8 8 12 8 16
A9 3 6 3 6
A10 6 5 3 7
Ideal 8 12 10 16

Legend: Absolute value of the Pearson coefficient.

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0) 1
negligible weak moderate strong very strong
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Table 10. The distance values, measure values, and rank-ordering of alternatives are obtained by
different variants of Hellwig’s measure (Example 5).

Alternative dEH1
Value Range

dEH2
Value Range

dEH3
Value Range

dM
Value Range

H1 H1 H2 H2 H3 H3 HM HM

A1 0.166 0.135 10 0.489 0.134 10 0.056 0.136 10 1.657 0.184 10
A2 0.070 0.636 3 0.198 0.648 3 0.024 0.638 3 1.303 0.358 4
A3 0.072 0.628 4 0.210 0.629 4 0.024 0.631 4 1.451 0.285 5
A4 0.122 0.366 6 0.359 0.364 6 0.041 0.366 6 1.301 0.359 3
A5 0.048 0.750 2 0.143 0.747 2 0.016 0.752 2 0.889 0.562 2
A6 0.142 0.261 8 0.414 0.267 8 0.048 0.262 8 1.628 0.198 9
A7 0.081 0.581 5 0.229 0.594 5 0.027 0.580 5 1.560 0.231 7
A8 0.024 0.875 1 0.071 0.873 1 0.008 0.872 1 0.588 0.710 1
A9 0.150 0.217 9 0.439 0.223 9 0.051 0.217 9 1.552 0.235 6

A10 0.134 0.303 7 0.399 0.294 7 0.045 0.302 7 1.623 0.200 8
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Figure 5. Graphical representation ranking of alternatives obtained by different variants of Hellwig’s
methods in Example 5.

Table 11 compares the results obtained in the five examples.
The results can be summarized as follows:
Firstly, it should be noted that the normalization formula when the Euclidean distance

is implemented has an impact on the final ranking but is only marginal. However, this does
not occur with Mahalanobis distance, as the results remain the same regardless of the type
of normalization employed.

Secondly, it can be observed that the rankings obtained using classical Hellwig meth-
ods based on Euclidean distance and Hellwig methods based on Mahalanobis distance are
different when there is a certain dependence within the data. Those results are consistent
with other results in the literature [31]. Even in the case of moderate or small relationships
between criteria, the ratings obtained by classical Hellwig’s methods and those of HM do
not coincide. It is also difficult to say which of the normalization formulas, in the case
of the Euclidean-based Hellwig method, gives results more consistent with Mahalanobis
distance-based Hellwig method concerning the Pearson coefficient.

Thirdly, we can observe that Hellwig’s method, neglecting the interaction between
criteria, results usually in an overestimation of the values for the high-scoring alternatives.
Conversely, the low-scoring alternatives are underestimated when compared with their
values in the Mahalanobis distance-based Hellwig’s method. It should be noted that these
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results are consistent with findings in the literature, where TOPSIS methods based on
Euclidean and Mahalanobis distances were compared [31].

Table 11. Comparison results obtained in the examples.

Example Correlation between Criteria Relationships between
Hi Measures

Relationships between
Hi and HM Measure

Example 1 Negligible or week Spearman: very strong Spearman: strong or very strong
Pearson: very strong Pearson: very strong

Example 2 From weak to very strong Spearman: very strong Spearman: moderate
Pearson: very strong Pearson: moderate or strong

Example 3 From negligible to very strong Spearman: very strong Spearman: week or moderate
Pearson: very strong Pearson: strong

Example 4 Strong and very strong Spearman: very strong Spearman: very strong
Pearson: very strong Pearson: strong

Example 5 Moderate and strong Spearman: very strong Spearman: strong
Pearson: very strong Pearson: strong

5. Conclusions

In the paper, we proposed the Mahalanobis distance-based Hellwig method, incor-
porating dependencies among criteria. We also investigated the impact of the distance
measure (Euclidean and Mahalanobis) and normalization (vector normalization, Min-Max
method, Sum method) in the several variants of Hellwig’s procedure. We analyze five
illustrative examples that differ in relationships between criteria.

Summing up, the contributions of the article include the following:

1. Developing a modification of the Hellwig measure by utilizing the Mahalanobis
distance, which considers correlations with different criteria, enables us to effectively
account for the asymmetrical relationships between criteria.

2. Investigating the impact of the distance measure and normalization variants of Hell-
wig procedures for the evaluation and rank ordering of alternatives.

3. Analyzing the impact of the correlation between criteria on the consistency of results
obtained using different variants of Hellwig’s method.

The Mahalanobis distance proves valuable when dealing with asymmetric datasets
or datasets featuring correlated variables. Asymmetric datasets often exhibit varying
degrees of correlation between variables, and the Mahalanobis distance provides a means
to adjust for these correlations. In contrast to the Euclidean distance, which assumes
independence among variables, the Mahalanobis distance considers variable relationships
by incorporating the covariance matrix.

Consequently, this study shows that the multi-criteria HM method, relying on the
Mahalanobis distance, proves effective in addressing correlations between criteria—a
critical aspect in the context of asymmetric data. This methodology enables a more accurate
reflection of the true data structure, mitigating potential errors associated with assuming
criteria independence. At the same time, the Euclidean distance may be less suitable for
datasets with asymmetric dependencies between criteria. It neglects information regarding
correlation and data structure, potentially resulting in inaccuracies when criteria exhibit
strong correlation or asymmetric dependencies.

This work acknowledges certain limitations that will serve as subjects for further
research. In the paper, the focus was limited to a few examples that served as illustrations
of the challenges and consequences associated with the choice of a variant of Hellwig’s
method. Further research could delve into considering different normalization techniques
to better understand and potentially mitigate their impact on rankings, especially when
utilizing Euclidean distance. Future studies may aim to explore and quantify the extent
of criteria interdependence, seeking to establish patterns or criteria characteristics that
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contribute to the divergence in rankings between Hellwig methods based on Euclidean
distance and those based on Mahalanobis distance. Future investigations could focus on the
interaction effects between criteria, examining the nuances that lead to the overestimation
of high-scoring alternatives and the underestimation of low-scoring ones, particularly in
the context of variants of Hellwig’s method. It would be beneficial to extend the study to
different datasets to assess the generalizability of the observed patterns and to identify any
dataset-specific factors that may influence the results. Consideration of comparisons with
alternative methods beyond the TOPSIS approach could provide a broader perspective on
the performance of Hellwig’s methods and their variations. By addressing these aspects
in future research, a more comprehensive understanding of the observed phenomena and
potential strategies for improvement or mitigation can be achieved.
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of Technology and founded by the Ministry of Education and Science.
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Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

H Hellwig’s method based on Euclidean distance
H_M Hellwig’s method based on Mahalanobis distance
H1 Hellwig’s method based on Euclidean distance with vector normalization
H2 Hellwig’s method based on Euclidean distance with min-max normalization
H3 Hellwig’s method based on Euclidean distance with sum normalization
TODIM an acronym in Portuguese for Interactive and Multicriteria Decision-Making
MCDM Multi-criteria decision-making
VIKOR VlseKriterijuska Optimizacija I Komoromisno Resenje
TOPSIS Technique for Ordering Preferences by Similarity to Ideal Solution
DARP Distances to Aspiration Reference Point method
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41. Roszkowska, E.; Jefmański, B. Interval-Valued Intuitionistic Fuzzy Synthetic Measure (I-VIFSM) Based on Hellwig’s Approach in
the Analysis of Survey Data. Mathematics 2021, 9, 201. [CrossRef]

42. Roszkowska, E.; Wachowicz, T.; Filipowicz-Chomko, M.; Łyczkowska-Hanćkowiak, A. The Extended Linguistic Hellwig’s
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60. Ayan, B.; Abacıoğlu, S.; Basilio, M.P. A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-

Making. Information 2023, 14, 285. [CrossRef]
61. Choo, E.U.; Schoner, B.; Wedley, W.C. Interpretation of Criteria Weights in Multicriteria Decision Making. Comput. Ind. Eng. 1999,

37, 527–541. [CrossRef]
62. Da Silva, F.F.; Souza, C.L.M.; Silva, F.F.; Costa, H.G.; da Hora, H.R.M.; Erthal, M., Jr. Elicitation of Criteria Weights for Multicriteria

Models: Bibliometrics, Typologies, Characteristics and Applications. Braz. J. Oper. Prod. Manag. 2021, 18, 1–28. [CrossRef]
63. Roszkowska, E. Rank Ordering Criteria Weighting Methods—A Comparative Overview. Optim. Econ. Stud. 2013, 5, 14–33.

[CrossRef]

https://doi.org/10.3390/math9030201
https://doi.org/10.3390/e24111617
https://www.ncbi.nlm.nih.gov/pubmed/36359707
https://doi.org/10.3390/resources10050049
https://doi.org/10.14254/2071-789X.2016/9-2/1
https://doi.org/10.24917/20801653.302.1
https://doi.org/10.3390/su141610319
https://doi.org/10.14207/ejsd.2019.v8n5p222
https://doi.org/10.14254/2071-8330.2016/9-3/5
https://doi.org/10.22630/MIBE.2019.20.3.16
https://doi.org/10.15290/oes.2018.02.92.04
https://doi.org/10.18778/0208-6018.338.05
https://doi.org/10.1016/j.cor.2006.09.026
https://doi.org/10.3390/info14050285
https://doi.org/10.1016/S0360-8352(00)00019-X
https://doi.org/10.14488/BJOPM.2021.014
https://doi.org/10.15290/ose.2013.05.65.02


Symmetry 2024, 16, 77 18 of 18

64. Zardari, N.H.; Ahmed, K.; Shirazi, S.M.; Yusop, Z.B. Weighting Methods and Their Effects on Multi-Criteria Decision Making Model
Outcomes in Water Resources Management; Springer: Berlin/Heidelberg, Germany, 2015.

65. Tzeng, G.-H.; Chen, T.-Y.; Wang, J.-C. A Weight-Assessing Method with Habitual Domains. Eur. J. Oper. Res. 1998, 110, 342–367.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0377-2217(97)00246-4

	Introduction 
	Mahalanobis Distance and Multi-Criteria Analyses 
	Mahalanobis Distance-Based Hellwig Method 
	The Hellwig’s Framework—A Short Literature Review 
	The Hellwig’s Method 

	Numerical Examples 
	Conclusions 
	References

