
Citation: Kim, S.; Kim, D.

Data-Tracking in Blockchain Utilizing

Hash Chain: A Study of Structured

and Adaptive Process. Symmetry 2024,

16, 62. https://doi.org/10.3390/

sym16010062

Academic Editor: Chin-Ling Chen

Received: 18 November 2023

Revised: 23 December 2023

Accepted: 25 December 2023

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Data-Tracking in Blockchain Utilizing Hash Chain: A Study of
Structured and Adaptive Process
Sungbeen Kim and Dohoon Kim *

Department of Computer Science, Kyonggi University, Suwon-si 16227, Republic of Korea; beensk@kyonggi.ac.kr
* Correspondence: karmy01@kyonggi.ac.kr

Abstract: This study presents a series of structured and adaptive processes aimed at tracking and
verifying transactions recorded on the blockchain. Permissioned blockchains are employed across
diverse enterprises for various purposes, including data recording, management, the utilization of
blockchain services, and authentication. However, the processes of data tracking and transactions
incur substantial resource and time expenditure. Furthermore, there is potential for information
asymmetry within the blockchain ledger due to data breach attacks. Consequently, we propose a
contract structured as a hash chain to mitigate resource and time consumption in the tracking and
verification processes by organizing transaction hash values and content in a hash chain format based
on cryptography. We generate a hash chain for the recorded transactions along the process line and
expedite the tracking and verification process by navigating the relevant hash chain. This approach
achieves faster and more accurate tracking procedures compared to conventional transaction tracking
processes, simultaneously maintaining data symmetry within the blockchain ledger. We conduct a
comparative analysis of a contract-based hash-chain-employing structure and two contracts related
to tracking in terms of tracking time, CPU usage, and network traffic, among other metrics. The
findings suggest that structuring transaction data in the form of a hash chain significantly enhances
the efficiency and integrity of the data-tracking and verification processes. Consequently, in this
study, we advocate for the adoption of contracts based on the hash chain format when leveraging the
blockchain for tracking and verification purposes across various institutions.

Keywords: blockchain; contract; efficiency; hash chain; process line; data tracking; transaction;
verification

1. Introduction

The blockchain functions as an immutable ledger within networks dedicated to han-
dling business transactions by recording the data associated with transactions and uni-
formly sharing them across different nodes [1–3]. As the network scales (with an increase
in the number of participating nodes), the counts of recorded transactions and block sizes
increase. Consequently, a comprehensive examination of the ledger to track and verify data
and transactions recorded on the blockchain can introduce time delays and consume sub-
stantial computing resources [4,5]. Moreover, the configuration of a blockchain network is
influenced by the characteristics of the participating nodes [6]. For example, permissioned
blockchains are predominantly adopted when the objective is to record sensitive data for
secure storage [7,8]. In a permissioned blockchain, only authorized nodes can participate in
the blockchain network, and the data that can be accessed are carefully managed to ensure
confidentiality and controlled accessibility based on this structural environment. In this
study, we propose the introduction of a hash chain [9,10] as an advantageous means of
facilitating the tracking and verification of data recorded on the blockchain.

Given the challenges related to maintaining confidentiality, speed, and efficient re-
source utilization while tracking transactions recorded in existing blockchain networks and
ensuring integrity during the process, this study proposes a blockchain-based data-tracking

Symmetry 2024, 16, 62. https://doi.org/10.3390/sym16010062 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16010062
https://doi.org/10.3390/sym16010062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5960-5499
https://orcid.org/0000-0001-6370-9744
https://doi.org/10.3390/sym16010062
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16010062?type=check_update&version=1

Symmetry 2024, 16, 62 2 of 30

management process utilizing a hash chain as a scalable solution [11,12]. In a blockchain,
transactions are organized into blocks, and these generated blocks form a chain based on
the hash value present in the block header [13]. Consequently, as the blocks are continu-
ously linked, the integrity of the previous blocks can be robustly ensured [14]. This study
maintains this structure, forming a blockchain and leveraging the hash chain structure
within the transactions and contracts that occur internally [15,16].

This study primarily designs and validates a process based on the Hyperledger Fabric,
a permissioned blockchain commonly used in business environments [17]. Additionally,
we enhance confidentiality by encrypting the data recorded on the blockchain using a
hash function. In this process, a structurally connected set of transactions forming a hash
chain is assigned a process line number, and chained data and transaction tracking are
conducted based on this line. We streamline the existing blockchain transaction-tracking
process and implement the structure of hash chains through contracts to save tracking time
and computing resources. Thus, we aim to provide scalability for tracking transactions
and verifying the integrity of existing blockchains. The strengths and contributions of this
study are enumerated as follows:

• The enhanced security of data using the hash function;
• The assessment of quantitative and qualitative efficiency through performance

evaluation;
• The reduction in data-tracking time and resource consumption through the utilization

of a hash chain structure;
• Ensuring data symmetry in the blockchain ledger through a hash chain structure.

In Section 2, we discuss the existing tracking processes and hash graphs [18]. In
Section 3, we briefly examine the blockchain platform and encryption algorithms used
in this study. In Section 4, we describe the actual tracking process for hash-chain-based
data recorded on the blockchain. Section 5 describes the experiments and analyzes the
results. Finally, in Sections 6 and 7, we conclude the paper with discussions and conclusions
regarding our research.

2. Related Work

In Section 2, we investigate prior studies that explored tracking processes utilizing
existing blockchain platforms. We specifically focus on delineating the differences and
proposing solutions for the tracking process utilized in this research. Additionally, we
conduct a comparative analysis between the proposed tracking process based on hash
chains and the existing research on hash graphs. This section highlights the distinctions
and investigates the relevant aspects of the hash-chain-based tracking process proposed in
this study compared with hash-graph-based approaches and existing tracking applications.

2.1. Tracking Process

Montaser proposed the potential of a tracking process based on the blockchain [19]. In
this study, a series of flows involving data processing, tracking, and security are elucidated
by leveraging the characteristics of transactions and blocks recorded on the blockchain,
namely, integrity. The proposed blockchain-based data-tracking process utilizing a hash
chain in this study references the potential proposed by Montaser and seeks to examine
its applicability in specific domains (cargo distribution tracking, personal information
verification). In addition, Liu proposed a contract structure that generates information
about drugs produced by each manufacturer, recording data on the process of distribution
to consumers on the blockchain, thereby monitoring and tracking the total production
process of the drug [20]. However, their study provided ambiguous details regarding the
tracking process and lacked a clear specification of the lifecycle of transactions. Koyama
proposed a tracking system for COVID-19 vaccines using blockchain technology [21].
Mendi proposed a food (grocery)-tracking process using the blockchain to track the extent
of price increases caused by food crises [22]. Attia proposed a healthcare-monitoring and
tracking application using blockchain technology [23]. Marbouh reviewed the potential

Symmetry 2024, 16, 62 3 of 30

application of the blockchain in various fields, such as medical supply, close contacts,
donations, and treatments, in the context of COVID-19 [24]. Leng conducted a comparative
analysis of the process of uploading hospital medical records and medical-related data to
the blockchain ledger for monitoring and management [25].

All the above-mentioned literature introduced tracking processes and applications
based on the blockchain. However, the authors proposed processes that leveraged the
inherent characteristics of the blockchain; hence, a thorough examination of transactions
may be necessary during the tracking process. Furthermore, while discussing the potential
applications of blockchain technology in various domains, some studies lacked adequate
content regarding data encryption. Table 1 compares the proposed data-tracking process
based on hash chains with traditional blockchain-based tracking applications. Existing
applications did not typically mention data security and relied on transactions for tracking
purposes. Thus, in this study, we propose the application of hash chains to facilitate
transaction tracking, enhance efficiency, and improve security and trust by utilizing hash
functions [26] for encrypted data transmission.

Table 1. Comparison of related works and proposed process.

Ref. Application
Domain

Blockchain
Platform Structure Consensus

Algorithm
Data

Security
Performance
Evaluation

Tracking
Usability

Liu [20] Drug
Tracking

Hyperledger
Fabric

On–Off
Chain pBFT Not

Considered Considered
Depending

on
Transaction

Koyama [21] Vaccine
Tracking Substrate On–Off

Chain
Proof of

Stake
Not

Considered
Not

Considered

Depending
on

Transaction

Mendi [22] Healthcare
Monitoring

Hyperledger
Fabric On Chain Not Specified Not

Considered
Not

Considered

Depending
on

Transaction

Attia [23] Food
Tracking

Hyperledger
Fabric

On–Off
Chain Not Specified Not

Considered Considered
Depending

on
Transaction

Marbouh [24] COVID-19
Application Ethereum On–Off

Chain
Proof of

Stake Considered Considered
Depending

on
Transaction

Leng [25] Hospital
Monitoring

Hyperledger
Fabric

On–Off
Chain Not Specified Considered Not

Considered

Depending
on

Transaction

Proposed
Process

Private Data
Tracking

Hyperledger
Fabric

On–Off
Chain Raft Considered Considered

Depending
on Hash

Chain

2.2. Hash Graph

The hash graph, a novel approach for achieving a consensus algorithm [27] in a
distributed network, utilizes a directed acyclic graph (DAG) to record transactions and
establish consensus among participating nodes in the network [28,29]. A crucial element
in constructing a hash graph is the gossip protocol that allows nodes to exchange infor-
mation regarding transactions and events [30–32]. The nodes participating in the network
determine the order of the transactions through a voting process, with each participant
allocating weights to the other nodes based on the received information. Because of these
characteristics, blockchains and hash graphs differ in how they connect blocks and trans-
actions. In Figure 1, the structure of a traditional blockchain connects blocks based on
sequentially agreed-upon blocks, whereas a hash graph chooses to connect verified data
nodes in the graph regardless of the order of creation. Nodes A, B, C, and D, participating
in the hash graph, arbitrarily validate and connect data to the graph. Consequently, the

Symmetry 2024, 16, 62 4 of 30

connected data nodes are linked in the order verified by the participating nodes, and all
validated data are recorded in the form of a DAG.

Symmetry 2024, 16, x FOR PEER REVIEW 4 of 31

in the hash graph, arbitrarily validate and connect data to the graph. Consequently, the
connected data nodes are linked in the order verified by the participating nodes, and all
validated data are recorded in the form of a DAG.

Figure 1. Comparison of hash graph and traditional blockchain structures.

In this study, we model contracts through a branching pattern similar to a hash
graph, but based on process lines rather than validating nodes. Consequently, the lifecycle
of transactions can be more clearly verified, and multiple other transactions related to a
single transaction can be easily tracked and verified by connecting them, like branches on
a tree. This connection pattern of transactions is applied to the hash chain intended for use
in this study, where contracts are executed, and the process involves linking and tracking.
A detailed description of this process is provided in Section 4.

3. Background
In Section 3, we analyze the blockchain platform and encryption algorithms used in

this study. Our experiment focuses on a specific target: permissioned blockchains. We an-
alyze the characteristics of permissioned blockchains by comparing them with public
blockchains in terms of their advantages, disadvantages, and distinctions. Furthermore,
in the subsequent section, we elucidate the encryption algorithms necessary for construct-
ing the data-tracking process based on hash chains, with the aim of facilitating compre-
hension.

3.1. Blockchain Platform
In the current landscape of blockchain technology, two main categories are widely

recognized: public blockchains [33] and permissioned blockchains [7,8]. A public block-
chain is characterized by its openness and distributed network, allowing anyone to access
the network. Consequently, it maintains transparency, where all participating nodes can
read and verify the recorded transactions. In contrast, a permissioned blockchain follows
a controlled-access approach, making it more suitable for industrial applications with fea-
tures such as privacy preservation. In other words, only the authorized nodes can generate
transactions and validate their legitimacy. The industrial sector is witnessing an increas-
ing demand for permissioned blockchains owing to these network characteristics.

Permissioned blockchains provide some advantages in the industrial domain. First,
their permissioned nature reduces malicious activities by allowing only validated partic-
ipants into the network, thereby enhancing security. Second, a permissioned blockchain
can encrypt sensitive data or restrict access to specific participating nodes. In addition,
compared to public blockchains, permissioned blockchains offer faster transaction-pro-
cessing speeds and higher scalability, making them especially applicable to industrial ap-
plications where efficiency, performance, and security are paramount.

In this study, we chose Hyperledger Fabric, a permissioned-blockchain platform, to
ensure efficiency in data recording, tracking, and verification when utilizing blockchain
in the industrial sector. Fabric enables members to access the network and provides secure
communication in an environment that ensures confidentiality through the introduction

Figure 1. Comparison of hash graph and traditional blockchain structures.

In this study, we model contracts through a branching pattern similar to a hash graph,
but based on process lines rather than validating nodes. Consequently, the lifecycle of
transactions can be more clearly verified, and multiple other transactions related to a single
transaction can be easily tracked and verified by connecting them, like branches on a tree.
This connection pattern of transactions is applied to the hash chain intended for use in
this study, where contracts are executed, and the process involves linking and tracking. A
detailed description of this process is provided in Section 4.

3. Background

In Section 3, we analyze the blockchain platform and encryption algorithms used in
this study. Our experiment focuses on a specific target: permissioned blockchains. We
analyze the characteristics of permissioned blockchains by comparing them with public
blockchains in terms of their advantages, disadvantages, and distinctions. Furthermore, in
the subsequent section, we elucidate the encryption algorithms necessary for constructing
the data-tracking process based on hash chains, with the aim of facilitating comprehension.

3.1. Blockchain Platform

In the current landscape of blockchain technology, two main categories are widely rec-
ognized: public blockchains [33] and permissioned blockchains [7,8]. A public blockchain
is characterized by its openness and distributed network, allowing anyone to access the
network. Consequently, it maintains transparency, where all participating nodes can read
and verify the recorded transactions. In contrast, a permissioned blockchain follows a
controlled-access approach, making it more suitable for industrial applications with fea-
tures such as privacy preservation. In other words, only the authorized nodes can generate
transactions and validate their legitimacy. The industrial sector is witnessing an increasing
demand for permissioned blockchains owing to these network characteristics.

Permissioned blockchains provide some advantages in the industrial domain. First,
their permissioned nature reduces malicious activities by allowing only validated partici-
pants into the network, thereby enhancing security. Second, a permissioned blockchain can
encrypt sensitive data or restrict access to specific participating nodes. In addition, com-
pared to public blockchains, permissioned blockchains offer faster transaction-processing
speeds and higher scalability, making them especially applicable to industrial applications
where efficiency, performance, and security are paramount.

In this study, we chose Hyperledger Fabric, a permissioned-blockchain platform, to
ensure efficiency in data recording, tracking, and verification when utilizing blockchain in
the industrial sector. Fabric enables members to access the network and provides secure
communication in an environment that ensures confidentiality through the introduction of
private channels. Moreover, it ensures high throughput, low latency, and fault tolerance
using consensus algorithms such as Raft [34,35].

Symmetry 2024, 16, 62 5 of 30

3.2. Cryptographic Algorithms
3.2.1. Hash Function

In addition to blockchain technology, hash functions are widely used as fundamental
encryption tools in various research, development, and application programs [36]. Hash
functions output a fixed-size value regardless of the input length—a characteristic that
this study aims to leverage. During the data-tracking process, exposing the actual values
of the data poses a threat to security. Hence, this study applies the preimage resistance,
collision resistance, and avalanche effect of hash functions. Furthermore, hash functions
are advantageous for the rapid processing and validity verification of data in resource-
constrained environments, preventing tampering with the original data. Therefore, in this
study, the characteristics of hash functions are utilized to encrypt data and record them in
the form of a hash chain.

3.2.2. Hash Chain

In this study, we structure the original transaction data as the input to a hash function
and the unique hash value of the transaction itself in the form of a chain. A hash chain
comprises a series of hash values that are sequentially arranged, with each hash value
derived from the previous value [9,10]. In addition, a hash chain has the advantage of
verifying the integrity of data items and easily detecting unauthorized modifications and
tampering. In the context of a blockchain, the hash chain plays a pivotal role in constructing
the block structure. Although a blockchain is constructed by applying the principles
of a hash chain, the continuous linking of hash values (blocks) poses a challenge when
retracking transactions, which consumes considerable time and resources. To address this
issue, we construct an additional hash chain.

We configure a separate hash chain as a contract, branching out like a tree from the
central blockchain. This additional hash chain facilitates transaction and data tracking
and record management. It addresses the challenge of significant time and resource
consumption when tracking transactions within the blockchain, owing to the continuous
linking of hash values (blocks).

4. Data-Tracking Management Process

In blockchain-based applications, particularly within industries, the primary focus
is often the development of systems for tracking data history, maintaining integrity, and
enhancing security. In this study, we design a process to improve performance and effi-
ciency by emphasizing the tracking of data history. The industries in which the tracking of
data history is crucial typically include manufacturing, distribution, and trade [37]. The
methods used to track data history generally involve backtracking transactions based on
the order that they were created in the existing blockchain or recalling and searching for
specific transaction data. The latter approach can be considered as a more efficient tracking
process. However, with this method, transactions must be specified and searched for while
tracking another linked process. In this process, data must be recorded somewhere, and
data recorded in the system may compromise integrity and security [38]. Moreover, as a
series of processes unfolds, resource and time consumption inevitably increase.

For example, in Figure 2, in a blockchain environment where data are continuously
accumulated in blocks, the number of transactions to be traversed increases when searching
for and tracking a specific transaction. In the traditional blockchain transaction-tracking
process, to track the data for TX 4, the information of the specific transaction may be sepa-
rately stored, followed by the search or the data, which may be tracked in reverse, starting
from TX 12. However, by employing the hash-chain-based tracking process proposed in
this study, a chain of related transactions may be constructed along a series of process
lines. After recalling the specific initial value of the constructed chain, data tracking can be
performed. This enables the tracking of only the target transaction data (TX 4, TX 5, TX 7,
and TX 10) by searching Line 1, which is identified by the process line number, as opposed

Symmetry 2024, 16, 62 6 of 30

to tracking all the transaction data from TX 12 to TX 1, as in the traditional blockchain
transaction-tracking process.

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 31

process lines. After recalling the specific initial value of the constructed chain, data track-
ing can be performed. This enables the tracking of only the target transaction data (TX 4,
TX 5, TX 7, and TX 10) by searching Line 1, which is identified by the process line number,
as opposed to tracking all the transaction data from TX 12 to TX 1, as in the traditional
blockchain transaction-tracking process.

Figure 2. Traditional and proposed transaction-data-tracking processes on blockchain.

Table 2 presents a comparison between the traditional transaction-data-tracking pro-
cess and the hash-chain-based transaction-data-tracking process shown in Figure 2. In the
case of the hash-chain-based process, it ensures data confidentiality while reducing the
time required for verification and the tracking of interconnected data through the hash
chain structure. Conversely, in the traditional transaction-data-tracking process, there is a
high likelihood of data confidentiality not being guaranteed. Additionally, due to the se-
quential recording of transactions within conventional blocks and their interconnected
structure, tracing specific transaction data entails tracking a substantial number of trans-
actions, resulting in significant resource consumption and time required for verification
and tracking. Accordingly, as the blockchain lengthens, the traditional process necessi-
tates tracking unrelated transactions. However, the hash-chain-based process proposed in
this study structures related transaction data as a single process line. Consequently, only
the desired data set is separately verified and tracked, streamlining the tracking process.
To address the drawback of tracking all recorded transactions, this study proposes a data-
tracking process based on a hash chain.

Table 2. Comparison of traditional and hash-chain-based transaction-data-tracking processes.

Category
Traditional

Transaction-Data-Tracking Process
Hash-Chain-Based

Transaction-Data-Tracking Process

Property

• The possibility of exposing and tracking
even confidential data.

• The process of tracking data recorded in
transactions involves a significant number
of transactions.

• Verification and tracking of data integrity
through a hash-chain-based structure and
hash function.

• A reduced number of transactions to be
traversed during the transaction-tracking
process.

Data Confidentiality Not ensured Ensured
Linking Structure Depending on transaction in block Depending on hash chain structure

Linked Transactions TX 4 TX 5 TX 6 TX 7
 TX 8 TX 9 TX 10

TX 4 TX 5 TX 7 TX 10

Figure 2. Traditional and proposed transaction-data-tracking processes on blockchain.

Table 2 presents a comparison between the traditional transaction-data-tracking pro-
cess and the hash-chain-based transaction-data-tracking process shown in Figure 2. In the
case of the hash-chain-based process, it ensures data confidentiality while reducing the time
required for verification and the tracking of interconnected data through the hash chain
structure. Conversely, in the traditional transaction-data-tracking process, there is a high
likelihood of data confidentiality not being guaranteed. Additionally, due to the sequential
recording of transactions within conventional blocks and their interconnected structure,
tracing specific transaction data entails tracking a substantial number of transactions, re-
sulting in significant resource consumption and time required for verification and tracking.
Accordingly, as the blockchain lengthens, the traditional process necessitates tracking
unrelated transactions. However, the hash-chain-based process proposed in this study
structures related transaction data as a single process line. Consequently, only the desired
data set is separately verified and tracked, streamlining the tracking process. To address
the drawback of tracking all recorded transactions, this study proposes a data-tracking
process based on a hash chain.

Table 2. Comparison of traditional and hash-chain-based transaction-data-tracking processes.

Category
Traditional

Transaction-Data-Tracking
Process

Hash-Chain-Based
Transaction-Data-Tracking Process

Property

• The possibility of
exposing and tracking
even confidential data.

• The process of tracking
data recorded in
transactions involves a
significant number of
transactions.

• Verification and tracking of data
integrity through a
hash-chain-based structure and
hash function.

• A reduced number of
transactions to be traversed
during the transaction-tracking
process.

Data Confidentiality Not ensured Ensured

Linking Structure Depending on transaction in
block Depending on hash chain structure

Linked Transactions TX 4 → TX 5 → TX 6 → TX
7→ TX 8 → TX 9 → TX 10 TX 4 → TX 5 → TX 7 → TX 10

Symmetry 2024, 16, 62 7 of 30

4.1. Structure of Data-Tracking Management Process

The flow of the data-tracking process based on the hash chain is illustrated in Figure 3.
In this study, data are recorded and tracked on a blockchain using three main algorithms.
Algorithm 1 utilizes public key infrastructure (PKI) [39] not only to protect data transfers
among blockchain nodes but also to establish a foundation for trust and integrity in the
network. This is crucial in business areas where data confidentiality must be ensured, and
only authorized participants should access confidential data. Algorithm 2 conducts a key
role in classifying and processing data. It categorizes data into public and private segments,
hashing private data for blockchain recording. This approach balances privacy and open-
ness in blockchain applications, ensuring the integrity of data through the structure of the
hash chain during transaction generation. Algorithm 3, focusing on tracking and verifi-
cation, emphasizes the practicality of blockchain technology in applications like supply
chain management and customs clearance, where data verification and tracking are vital.
These algorithms demonstrate a comprehensive approach to data security, classification,
and tracking in blockchain systems, addressing challenges like data privacy, integrity, and
transparency. Section 5 details the experiments demonstrating the implementation and
efficacy of these algorithms.

Symmetry 2024, 16, x FOR PEER REVIEW 7 of 31

4.1. Structure of Data-Tracking Management Process
The flow of the data-tracking process based on the hash chain is illustrated in Figure

3. In this study, data are recorded and tracked on a blockchain using three main algo-
rithms. Algorithm 1 utilizes public key infrastructure (PKI) [39] not only to protect data
transfers among blockchain nodes but also to establish a foundation for trust and integrity
in the network. This is crucial in business areas where data confidentiality must be en-
sured, and only authorized participants should access confidential data. Algorithm 2 con-
ducts a key role in classifying and processing data. It categorizes data into public and
private segments, hashing private data for blockchain recording. This approach balances
privacy and openness in blockchain applications, ensuring the integrity of data through
the structure of the hash chain during transaction generation. Algorithm 3, focusing on
tracking and verification, emphasizes the practicality of blockchain technology in appli-
cations like supply chain management and customs clearance, where data verification and
tracking are vital. These algorithms demonstrate a comprehensive approach to data secu-
rity, classification, and tracking in blockchain systems, addressing challenges like data
privacy, integrity, and transparency. Section 5 details the experiments demonstrating the
implementation and efficacy of these algorithms.

Figure 3. Flowchart of proposed process for tracking data utilizing hash chain and PKI on block-
chain.

4.1.1. Algorithm 1: Public-Key-Based Data Security
A core objective of the data-tracking process based on a hash chain is data confiden-

tiality and security. Nodes participating in the blockchain have the authority to view and
verify the recorded transactions. However, in industry, there exists an environment where
relationships and confidentiality between institutions must be ensured, and data that
should not be exposed externally are recorded. Therefore, in this study, data transmission
to other nodes is performed after the encryption process based on the PKI. The reason for

Figure 3. Flowchart of proposed process for tracking data utilizing hash chain and PKI on blockchain.

4.1.1. Algorithm 1: Public-Key-Based Data Security

A core objective of the data-tracking process based on a hash chain is data confi-
dentiality and security. Nodes participating in the blockchain have the authority to view
and verify the recorded transactions. However, in industry, there exists an environment
where relationships and confidentiality between institutions must be ensured, and data that
should not be exposed externally are recorded. Therefore, in this study, data transmission
to other nodes is performed after the encryption process based on the PKI. The reason

Symmetry 2024, 16, 62 8 of 30

for transmitting data to other nodes is that confirming whether the data recorded in the
permissioned blockchain are appropriate is difficult because all the data recorded in the
permissioned blockchain need to go through a permissioning process for nodes to partic-
ipate in the network. The industry is vulnerable to insider attacks or social-engineering
attack techniques, even for authorized nodes, due to this aspect [40]. Even for authorized
nodes, internal threats may exist, and proper transaction-verification procedures may not
have occurred.

The data encrypted through the PKI in this manner are utilized in the tracking process
of the hash chain, which is intended to verify the integrity of the data recorded in the
transactions in Algorithm 3. Additionally, the original data, which are private before
encryption, are used as the original data to record the hash-chain data in transactions in
Algorithm 2.

4.1.2. Algorithm 2: Linking the Hash Chain

The data-tracking process is performed utilizing a hash chain to establish an environ-
ment that ensures data integrity. The blockchain fundamentally operates on a structure
in which transactions are generated as individual blocks and linked together in a chain.
Through this blockchain structure, the integrity of the data can be ensured. However,
as previously mentioned, some nodes participating in the blockchain may pose internal
threats that can compromise data integrity.

Therefore, in this study, we use a contract to create transactions to be recorded in the
blockchain and structure the hash chain format, which is then recorded in the blockchain.
Unlike the traditional method of recording data in a blockchain, we segregate the data into
public and private categories. Public data are, as the name suggests, openly accessible and
do not cause harm to industries or processes when verified by anyone. However, private
data refers to data that, if exposed, may potentially harm industries and processes. This
type of data is encrypted and recorded in the blockchain. Consequently, public data are
recorded as they are, and private data are encrypted using a hash function to generate
transaction data, which are then recorded in the blockchain. The data recorded and linked
in this manner are tracked using Algorithm 3 and undergo a verification process, during
which the structure of the hash chain is utilized.

4.1.3. Algorithm 3: Tracking

To track the data recorded in a hash chain, understanding the process involved and
identifying the specific hash chain intended for tracking are essential. In this study, we use
public data to explore a particular hash chain. Figure 3 shows two types of data, and the
data necessary for tracking are public data. During the initial creation of the hash chain,
a specific hash value must be obtained. Therefore, we designate the initial value as the
hash value of the public data. Consequently, all the nodes aspiring to track only need to
understand the publicly accessible portion of the data. In other words, private data can be
entirely preserved, with public data playing a crucial role in tracking.

By hashing private and public data, a specific hash chain can be secured based on
the resulting values. Subsequently, we track the data of this hash chain and perform a
verification process to ensure the integrity of the data. Public data are information that
can be made public without any issues. In this study, the hash values recorded in the hash
chain are generated using salt values [41]. Using these generated hash values as references,
we proceed with the tracking and verification processes using Algorithm 3.

4.1.4. Algorithm 3: Verification

After recording the data in the form of a hash chain on the blockchain, hash functions
are employed during the verification process. The same hash function used to encrypt
private data in the encryption process of Algorithm 2 is used. Public and private data are
available when examining transactions recorded on the blockchain. We use public data
for identification to determine which hash chain of the desired data to track. In essence,

Symmetry 2024, 16, 62 9 of 30

private data are the data that need to be verified during the actual tracking process. The
node receiving the data decrypts the encrypted data using its private key through the PKI
and hashes it again using a hash function. The resulting hashed value is compared with the
private data inside the hash chain recorded in the transaction to verify whether the correct
data were transmitted in that process.

In this process, the structure of the hash chain ensures the integrity and reliability
of the data, thereby verifying the ongoing process through the nodes participating in the
blockchain and establishing trust in the data. This process flow allows for the tracking
of data recorded on the blockchain, ensuring the integrity and reliability of the data. The
detailed algorithm for this process is described below.

4.2. Algorithms for Data-Tracking Management Process

Figure 3 provides a structural explanation of the flow of each algorithm. Each algo-
rithm manages and transmits data using PKI, a hash chain, and hash functions. In this
section, we provide detailed explanations of the operational processes of each algorithm.
For all algorithms, we have the initially generated private data, the public and private
keys of each node participating in the blockchain network, and the process line number
for recording and tracking the data. Each algorithm is executed through a contract within
Hyperledger Fabric, during which it generates the structure of the hash chain and utilizes
it to perform data integrity verification and the tracking of recorded data on the blockchain
ledger. Each node participating in Fabric executes the contract, and the contract records
the results of each algorithm’s execution in the ledger. Executing contracts in Fabric incurs
no separate costs, and it ensures high efficiency as it operates based on the commands
of participating nodes. The time complexity for each algorithm is expressed using Big-O
notation [42], as follows: Algorithm 1 has a complexity of O(1), Algorithm 2 also has a
complexity of O(1), and Algorithm 3 has a complexity of O(m), where “m” represents
the number of connected chains. When analyzing these time complexities, it is evident
that Algorithm 3 has the most significant impact on performance and resource consump-
tion. Therefore, this study conducts focused comparative experiments on this particular
algorithm. The time complexity analysis for each algorithm is conducted in detail in
Section 4.3, and, in Section 4.4, we analyze the scalability of future algorithms through an
explanation of abstract data types (ADTs). This section presents the pseudocode for each
algorithm followed by an analysis. Various abbreviations are used in this process, and
detailed explanations of these abbreviations are provided in the Appendix A, specifically
in Table A1.

4.2.1. Algorithm 1

The first algorithm encrypts data using the PKI structure and transmits the data to
other nodes. During this process, the public and private keys utilize the PKI provided
by Fabric CA [43]. Each node performs the process with a PKI in place, and private data
encryption occurs during this process. Private data are encrypted with the public key
of the receiving node and then transmitted to that node. Upon receiving data from the
sending node, the receiving node retrieves the hashed data of the existing blockchain
transaction to verify the data integrity. The previously hashed data are encrypted by the
node that generated the initial data and process using a hash function before being recorded.
The receiving node decrypts the received data with its private key, hashes the data, and
compares them with the H_Data retrieved from the transaction to verify the integrity of
the data.

Algorithm 1 outlines the procedures for securely transmitting data between nodes,
and we use the PKI for this purpose. However, depending on the domain and service
area, alternative encryption algorithms, such as secure sockets layer [44], may be used,
or this step may not be necessary. The decision to encrypt data lies within the domain
of the operating services and platforms of the administrators. Therefore, the execution
of Algorithm 1 falls within the realm of recommendations and is not mandatory. In this

Symmetry 2024, 16, 62 10 of 30

study, we exclude Algorithm 1 while verifying the efficiency and applicability of the
hash-chain-based data-tracking process.

Algorithm 1: Transfer and Verify Private Data to Another Node using PKI

1: Given:
2: - The private data is transmitted to the First Sender after the data is created.
3: - Each node’s public and private keys are issued through Fabric CA.
4: - Line No. is in the blockchain that records the data.
5: Step 0. FabricCA
6: while do
7: X_Pub, X_Priv = fabricCA(X)
8: END
9: Step 1. Node n (Sender n)

10: if the data to be recorded on the blockchain is prepared then
11: n_Priv_Data = privateDataInProcess
12: E = m_Pub(n_Priv_Data)
13: transmit (E, Receiver m)
14: END
15: END
16: Step 2. Node m (Receiver m)
17: if receiving data from Sender n then
18: H_Data = getTransaction(Line No., Key=“H_Data”)
19: E = m_Pub(n_Priv_Data) = receive()
20: m_Priv_Data = m_Priv(E) = m_Priv(m_Pub(n_Priv_Data))
21: m_Data = SHA256(m_Priv_Data)
22: if H_Data == m_Data then
23: return Approval
24: else
25: return Refuse
26: END
27: END
28: END

4.2.2. Algorithm 2

The second algorithm verifies private data utilizing the structure of a hash chain. In
step 1 of Algorithm 2, the node initially performs step 1 of Algorithm 1 to receive the
data. In step 2, the node compares the received data with the data recorded in the existing
blockchain to perform verification. Initially, the node searches for the hash values of the
public and private data of the desired process line in the existing transaction. During
this process, the node needs to receive the values of the two previously recorded data
points before the m-th node, because the current node needs to confirm the accuracy of
the previously recorded data before recording. After saving the values of the n-th and
n-1-th data points, the node uses the data from the current process to generate a hash value,
which is then compared with the previous hash value. If the comparison results are correct,
confirming the integrity of the current process, the node creates a transaction and links it
on the blockchain to proceed to the next stage of the process.

In this process, within Fabric’s contract, data are converted into hash values to link
them to the corresponding process line with a hash chain, and these data are recorded in
the ledger. Specifically, the contract searches for the existing process line recorded in the
ledger using the process line no. and links the next chain based on the last hash value
configured in that process line’s hash chain. If a new process line needs to be formed, the
hash value of the first relevant data is used as the seed value for constructing the hash
chain of that process line. Therefore, data associated with a specific process line are linked
to their own hash chain, and the initial values of each hash chain branch are based on the
hash value of the initially created process, which are recorded in the blockchain ledger.

Symmetry 2024, 16, 62 11 of 30

Algorithm 2 serves as a fundamental part of the hash-chain-based data-tracking
process proposed in this study. It is used to construct a hash chain for tracking the lifecycle
of data and validating whether a node with private data verifies its correctness, thereby
forming an essential process for ensuring data integrity during the proposed hash-chain-
based data-tracking process.

Algorithm 2: Record the Data on Blockchain Utilizing Hash Chain Structure

1: Given:
2: - The private data is transmitted to the First Sender after the data is created.
3: - Each node’s public and private keys are issued through Fabric CA.
4: - Line No. is in the blockchain that records the data.
5: Step 1. Node n (Receiver n || Sender n)
6: Step 1 of algorithm 1
7: END
8: Step 2. Node m (Receiver m)
9: n_Pub_Data, n_Hash Value = getTransaction(Line No., “n”)

10: n-1_Hash Value = getTransaction(Line No., “n-1”)
11: m_Pub_Data = JSON(Line_No, Departures, Arrivals, . . .)
12: m_Hash_Value = Next_Hash = SHA256(n_Hash_Value + m_Pub_Data)
13: prev_Hash_Value = SHA256(n-1_Hash_Value + n_Pub_Data)
14: if n_Hash_Value == prev_Hash_Value then
15: return Approval
16: else
17: return Refuse
18: END
19: execTransaction(H_Data, m_Hash_Value, m_Pub_Data, Line No.)
20: END

4.2.3. Algorithm 3

The third algorithm involves the tracking and verification of recorded data and serves
as a tool in the industrial sector to address errors and anomalies encountered during the
course of a process. It primarily examines tampering with the private and public data. First,
the transaction data and hash chain values related to the corresponding process line are
stored in an array. The stored data are then sequentially examined using a for-loop. For the
first transaction associated with the process, the algorithm checks the data by computing
the hash value of the private data along with the public data because the initial value is
the hash value of the private data. Subsequently, starting from the second transaction, the
algorithm performs the verification process by computing the hash value based on the
previous hash value and public data for the number of transactions recorded in the process
line. After completing the verification, the algorithm compares the number of transactions
in the process and the number of computations performed after the operations to verify
whether any interruptions in the for-loop occurred owing to errors.

In this process, within Fabric’s contract, the verification of data recorded in the cor-
responding process line is performed through the structure of the hash chain. While
Algorithm 2 continuously hashes the data to link the hash chain, Algorithm 3 rapidly
re-verifies the values recorded in this connected hash chain through a hash function within
the contract. This allows for the progression of data-tracking and verification processes.

Symmetry 2024, 16, 62 12 of 30

Algorithm 3: Data-Tracking Process using Hash Chain

1: Given:
2: - The private data is transmitted to the First Sender after the data is created.
3: - Each node’s public and private keys are issued through Fabric CA.
4: - Line No. is in the blockchain that records the data.
5: Step 1. Node n
6: if Node m tracks and verifies the values of the hash chain then
7: n_Pub_Data[], n_Hash Value[] = getTransaction(Line No.)
8: hash = “”
9: for n = 0 to length(Line No.) do

10: if n == 0 then
11: hash = H(SHA256(privateData) + n_Pub_Data[n])
12: if hash == n_Hash Value[n] then
13: continue;
14: else
15: unMatch()
16: break;
17: else
18: hash = H(hash + n_Pub_Data[n])
19: if hash == n_Hash Value[n] then
20: continue;
21: else
22: unMatch()
23: break;
24: END
25: END
26: if n == length(Line No.) then
27: Match()
28: END
29: END
30: END

In this study, a hash chain is constructed for each process line comprising transactions
to execute the integrity-verification and tracking processes. Based on the results of these
processes, we can ascertain whether data breaches or attacks have occurred in the ongoing
process line. Furthermore, this approach streamlines the tracking procedure in terms
of time and resources, as it eliminates the need for a comprehensive examination of all
transactions. Thus, this approach enables efficient data-history management.

4.3. Complexity Analysis of Algorithms

A crucial aspect of algorithmic assessment is understanding the time complexity,
which provides insights into the efficiency and scalability of an algorithm under different
conditions. In this section, we present the complexity analysis for Algorithms 1 through 3,
which are integral to our proposed process.

• Algorithm 1: Algorithm 1 is designed to perform a specific task that requires a constant
amount of time, irrespective of the input size. This is achieved by ensuring that the
operations within the algorithm do not depend on the number of transactions and
chains in the blockchain. As such, the time complexity of Algorithm 1 is O(1), denoting
constant time complexity, meaning that its execution time does not change regardless
of the size of the data set.

• Algorithm 2: Similar to Algorithm 1, Algorithm 2 also exhibits constant time complex-
ity, which is O(1). The operations within this algorithm are designed to be completed
in a fixed number of steps, which do not vary with the size of the input data. In
Algorithm 2, the use of hash functions and the processing of transaction generation are
crucial, which are processes identically performed across all blockchain platforms and

Symmetry 2024, 16, 62 13 of 30

contracts. This constant time performance is crucial for ensuring predictable execution
times, particularly in scenarios where quick response times are essential.

• Algorithm 3: In contrast to Algorithms 1 and 2, Algorithm 3 has a linear time com-
plexity of O(m), where “m” represents the number of chains linked to the hash chain.
The time required to execute this algorithm linearly increases with the number of
chains, as it involves operations that must be individually performed on each chain.
This linear relationship highlights the importance of optimizing the number of chains
to maintain efficient performance, especially in large-scale blockchain applications.
Furthermore, since Algorithm 3 is not affected by the number of transactions recorded
in the blockchain ledger, it is confirmed to be more efficient in ensuring scalability
than the conventional transaction-tracking methods.

The analysis of the time complexity of each algorithm demonstrates the scalability
of the hash-chain-based data-tracking process proposed in this study. Algorithms 1 and
2 are not influenced by the number of transaction data recorded in the blockchain ledger,
while Algorithm 3 is affected by the number of chains linked to the hash chain, rather
than the total number of transactions. This approach can be applied to various blockchain
platforms and contracts and is largely independent of the specific abstract data types (ADTs)
currently employed.

4.4. Abstract Data Types (ADTs) of Algorithms and Advanced ADTs

In this section, we provide a structural explanation of the abstract data types used in
the algorithms proposed in our study, along with an analysis of advanced ADTs. In the
case of the ADTs of algorithms, there is an array of other structures within the structure
itself, which leads to an increase in the number of arrays as the hash chain becomes linked.
A detailed description of these structures is provided in Section 4.4.1, while Section 4.4.2
explains the algorithm complexity in relation to advanced ADTs.

4.4.1. ADTs of Each Algorithm

1. Asset ADTs: In our study’s proposed hash-chain-based data-tracking process, these
represent the overall ADTs constituting a single process line, including the process
line number, the hash value of private data, a pointer value to link the hash chain, a
collection of public data, and a continuously linked chain:

• Process_Line_No: String, a unique identifier for the asset within the process;
• H_Data: String, hashed data relevant to the private data;
• N_Hash_Value: String, the next hash value for maintaining chain integrity;
• Public: Public, a subset of the asset’s data available for public viewing;
• Chain: Array of “Chain”, a sequence of chains to which the asset belongs.

2. Chain ADTs: These are arrays of structures included in the asset, representing each
piece of data linked to the hash chain. They contain the previous chain’s hash value
for using the hash chain structure, the hash value of private data, a pointer value for
linking to the next chain, and a public data set:

• Previous_Hash: String, the hash value of the previous data set that is
N_Hash_Value in the asset and chain;

• H_Data: String, data relevant to the current block’s hash;
• N_Hash_Value: String, the anticipated next hash value for forward integrity;
• Public: Public, a subset of the asset’s data available for public viewing.

3. Public ADTs: Public ADTs are not fixed and vary depending on the business do-
main and the data set intended to be recorded. In essence, the key ADTs for link-
ing the hash chain are the asset and chain, while Public ADTs are composed as a
variable element.

Symmetry 2024, 16, 62 14 of 30

4.4.2. Algorithm Complexity in Relation to Advanced ADTs

In this study, the proposed algorithms utilize conventional ADTs in the form of arrays
of structures. However, the use of advanced ADTs, such as balanced trees, hash tables,
or graph structures, can allow for more efficient data organization and retrieval. These
structures can reduce the operational time and resource consumption as the size of the
blockchain network increases.

• Potential impact on Algorithms 1 and 2: Algorithms 1 and 2, which currently operate
with a constant time complexity (O(1)), may not experience significant changes in time
complexity with the introduction of advanced ADTs due to their inherent constant
time characteristics. However, these advanced ADTs can provide other benefits in
blockchain applications’ research and development, such as reduced space complexity
and improved data integrity.

• Potential impact on Algorithm 3: Algorithm 3, which utilizes linear time complexity
(O(m)), can be optimized through advanced ADTs. For example, instead of using
an array of structures to manage the chains corresponding to a process line, a graph
structure can be considered. By recording edges between the data linked by chains in
the blockchain transactions, the structure in which the data is connected can be altered.
Additionally, combining hash tables with tree structures can allow for recording the
main process lines in hash tables, while the data corresponding to those process lines
can be recorded using tree structures. By more efficiently organizing the data recorded
in the blockchain, the potential to reduce linear complexity is realized. This can lead
to faster processing times and more effectively address scalability issues, especially as
the number of chains increases.

5. Methods and Experiments
5.1. Case Study

In this study, experiments are conducted with the objective of enhancing the efficiency
of resource utilization and reducing the time required to record and track data within
a service platform utilizing blockchain technology. Various methods are available for
recording data on a blockchain. However, we utilize the structure of a hash chain to
enhance efficiency and integrity while tracking the recorded data. To experiment with this,
we design the hash-chain-based data-tracking process proposed in this study using several
cases as a basis. Figure 4 shows a case process related to data movement, encryption, and
node-process execution in the proposed process.

Node 1 generates a process line associated with the data to be recorded on the
blockchain. During this process, the private data are fed into a hash function to derive a
hash value. The derived hash value is designated as the first seed value of the hash chain
for the process line, denoted as H_Data. H_Data serves as the seed value for the process and
is recorded at all process stages to ensure integrity and reliability. Next, Node 1 combines
the public data relevant to Node 1 with H_Data using the + operation (concatenation),
resulting in N1_Hashed_Data when fed into the hash function.

In essence, to ensure integrity, H_Data, n_Hash_Value linked to the hash chain, and
n_Pub_Data corresponding to the process performed at each node are recorded in the
transaction. After the completion of the process at the first node, Node 1, the transaction is
recorded on the blockchain, and the next node continues the process. For example, Node 3
verifies and records data based on the transactions recorded by Node 1. During this process,
N1_Hashed_Data and 1_Pub_Data are retrieved from the transaction. Node 3 then gen-
erates 1_Hash_Value and compares it with the 1_Hash_Value recorded in the transaction,
verifying its integrity. If the integrity of the data is ensured, Node 3 feeds the private data
into the hash function to generate N3_Hashed_Data. Subsequently, H_Data, 3_Hash_Value,
and 3_Pub_Data are recorded in the transaction, and the process is concluded.

Symmetry 2024, 16, 62 15 of 30Symmetry 2024, 16, x FOR PEER REVIEW 15 of 31

Figure 4. Proposed process for ensuring private data utilizing hash chain on blockchain.

Node 1 generates a process line associated with the data to be recorded on the block-
chain. During this process, the private data are fed into a hash function to derive a hash
value. The derived hash value is designated as the first seed value of the hash chain for
the process line, denoted as H_Data. H_Data serves as the seed value for the process and
is recorded at all process stages to ensure integrity and reliability. Next, Node 1 combines
the public data relevant to Node 1 with H_Data using the + operation (concatenation),
resulting in N1_Hashed_Data when fed into the hash function.

In essence, to ensure integrity, H_Data, n_Hash_Value linked to the hash chain, and
n_Pub_Data corresponding to the process performed at each node are recorded in the
transaction. After the completion of the process at the first node, Node 1, the transaction
is recorded on the blockchain, and the next node continues the process. For example, Node
3 verifies and records data based on the transactions recorded by Node 1. During this
process, N1_Hashed_Data and 1_Pub_Data are retrieved from the transaction. Node 3
then generates 1_Hash_Value and compares it with the 1_Hash_Value recorded in the
transaction, verifying its integrity. If the integrity of the data is ensured, Node 3 feeds the
private data into the hash function to generate N3_Hashed_Data. Subsequently, H_Data,
3_Hash_Value, and 3_Pub_Data are recorded in the transaction, and the process is con-
cluded.

Thus, the nodes associated with this process perform consecutive operations to gen-
erate transactions and record data on the blockchain by linking hash chains. Finally, Node
n retrieves H_Data, the hash value of private data, from the blockchain to track and verify
the data for this process, following the verification procedure in Algorithm 3.

5.2. Materials and Methodologies
5.2.1. Experimental Environment

The experimental conditions used in this study are listed in Table 3. The host operat-
ing system runs in a Windows 11 environment, and a virtual blockchain network is estab-
lished by setting up a Hyperledger Fabric network using a CPU, GPU, and Docker [45].
The guest operating system, configured within Docker, is based on Ubuntu 20.04 [46]. The
versions of Fabric and Golang [47] are consistent across all blockchain nodes. Data

Figure 4. Proposed process for ensuring private data utilizing hash chain on blockchain.

Thus, the nodes associated with this process perform consecutive operations to gener-
ate transactions and record data on the blockchain by linking hash chains. Finally, Node n
retrieves H_Data, the hash value of private data, from the blockchain to track and verify
the data for this process, following the verification procedure in Algorithm 3.

5.2. Materials and Methodologies
5.2.1. Experimental Environment

The experimental conditions used in this study are listed in Table 3. The host operating
system runs in a Windows 11 environment, and a virtual blockchain network is established
by setting up a Hyperledger Fabric network using a CPU, GPU, and Docker [45]. The guest
operating system, configured within Docker, is based on Ubuntu 20.04 [46]. The versions
of Fabric and Golang [47] are consistent across all blockchain nodes. Data collection and
monitoring tools such as Cadvisor [48,49], Prometheus [50], and Grafana [51,52] are utilized
for the monitoring and data analysis of all nodes constituting the blockchain network. These
tools enable real-time collection of data on the CPU, network traffic, and other relevant
metrics that are crucial for subsequent result analysis.

Table 3. Experimental environment.

Category Description

OS Windows 11
CPU Intel i5-11400
GPU RTX 3070 Ti
RAM 16 GB

Docker OS Ubuntu 20.04
Blockchain Environment Hyperledger Fabric v2.53

Cadvisor Version v0.47.2
Prometheus Version v2.32.1

Grafana Version V8.3.4
Golang Version v1.20.4
Docker Version v24.0.2

Symmetry 2024, 16, 62 16 of 30

Figure 5 shows the structural environment of the experiments conducted in this study.
Each node constituting the Hyperledger Fabric blockchain network operates in the capacity
of a node, executes the chaincode to initiate the creation of the process line, and executes
the chain configuration and tracking processes. In this process, data are relayed to Grafana
through Prometheus, where the final data to be analyzed (CPU usage and network traffic)
are extracted in the CSV format for further analysis.

Symmetry 2024, 16, x FOR PEER REVIEW 16 of 31

collection and monitoring tools such as Cadvisor [48,49], Prometheus [50], and Grafana
[51,52] are utilized for the monitoring and data analysis of all nodes constituting the block-
chain network. These tools enable real-time collection of data on the CPU, network traffic,
and other relevant metrics that are crucial for subsequent result analysis.

Table 3. Experimental environment.

Category Description
OS Windows 11

CPU Intel i5-11400
GPU RTX 3070 Ti
RAM 16 GB

Docker OS Ubuntu 20.04
Blockchain Environment Hyperledger Fabric v2.53

Cadvisor Version v0.47.2
Prometheus Version v2.32.1

Grafana Version V8.3.4
Golang Version v1.20.4
Docker Version v24.0.2

Figure 5 shows the structural environment of the experiments conducted in this
study. Each node constituting the Hyperledger Fabric blockchain network operates in the
capacity of a node, executes the chaincode to initiate the creation of the process line, and
executes the chain configuration and tracking processes. In this process, data are relayed
to Grafana through Prometheus, where the final data to be analyzed (CPU usage and net-
work traffic) are extracted in the CSV format for further analysis.

Figure 5. Structure of experiment on hash-chain-based data-tracking process.

5.2.2. Experimental Procedure
To conduct experiments on the data-tracking process based on the hash chain, the

environment outlined in Table 3 must be set up, and the contract code should be executed
within the Fabric network environment. In this study, we utilize three different contracts:
(1) hash-chain-based contract, (2) hashed-data-based contract, and (3) hashed-data and
hash-chain-based contract to conduct performance-comparison experiments.

In the proposed algorithm for hash-chain-based contracts, a chain is constructed us-
ing a structure array to link the data. During this process, the hash value of the original
data, H_Data, is recorded. Additionally, to facilitate easy integrity verification within the
connected chain and expedite the tracking process, N_hash_Value, computed by perform-
ing an operation on H_Data and public data, is recorded within the connected chain.

Figure 5. Structure of experiment on hash-chain-based data-tracking process.

5.2.2. Experimental Procedure

To conduct experiments on the data-tracking process based on the hash chain, the
environment outlined in Table 3 must be set up, and the contract code should be executed
within the Fabric network environment. In this study, we utilize three different contracts:
(1) hash-chain-based contract, (2) hashed-data-based contract, and (3) hashed-data and
hash-chain-based contract to conduct performance-comparison experiments.

In the proposed algorithm for hash-chain-based contracts, a chain is constructed using
a structure array to link the data. During this process, the hash value of the original data,
H_Data, is recorded. Additionally, to facilitate easy integrity verification within the con-
nected chain and expedite the tracking process, N_hash_Value, computed by performing
an operation on H_Data and public data, is recorded within the connected chain.

Unlike a hash-chain-based contract, a hashed-data-based contract does not rely on a
connected chain structure. Instead, it uses a traditional transaction-linking structure. In
this process, H_Data is recorded during the transaction to track specific processes. Because
this contract does not have a connected chain structure, a thorough examination of the
transactions recorded on the blockchain is required to extract transactions bearing the same
H_Data for subsequent integrity checks.

Finally, a contract that utilizes the structure of the hashed data and chain does not
employ structure arrays for the chain. Instead, it inserts a transaction number that is
linked to the transaction itself. The key difference from a hash-chain-based contract is the
absence of structural arrays, and the structure of the chain is directly established within the
transactions. However, it cannot simultaneously fetch transactions related to the process
line. Table 4 provides a detailed analysis of this contract.

Symmetry 2024, 16, 62 17 of 30

Table 4. Comparison of contracts’ properties.

Category
Hash Chain on

Structure Hashed Data Hash Chain on
Transaction

(1) (2) (3)

Connection Hash Chain Transaction Transaction
Structure Struct Array Struct Struct
Chained Chained Not Chained Chained

Time Complexity O(m) O(nm) O(m)
CPU Usage Low Middle High

Network Traffic Low High High
Hash Function SHA-256 SHA-256 SHA-256
Tracking Time Fast Middle Slow

Scalability High Middle Low
Connection refers to the basic method of tracking data in each contract. Structure refers to the form in which data
are recorded. Chained indicates whether data are chained in each process line. Time complexity is expressed in a
simple Big-O notation based on the code of each contract. M = number of chains, n = number of transactions,
O = Big-O notation.

5.3. Results

In this section, we present a qualitative performance comparison based on a quantita-
tive comparison of the experimental results of the hash-chain-based data-tracking process
proposed in this study. Using the three contracts described earlier, we measure and analyze
the tracking time, hardware resources, network traffic, and other relevant factors to evaluate
the performance of the proposed algorithm considering external factors. The experiments
are categorized into three main types for result analysis. For each experiment type, we
performed repeated experiments based on the total number of transactions, number of
connected chains, and type of contract. The average value of each metric from the experi-
ments are used for analysis. Tables A2–A6 present the average values of the data used in
the graphs and are included in Appendix B.

5.3.1. Qualitative Analysis

Before performing a quantitative comparative analysis of each contract, we first con-
duct a qualitative analysis of each contract. The time complexity of each contract can be
expressed using Big-O notation as follows: for contract (1), O(m): m = number of chains; for
contract (2), O(nm): n = number of transactions, and m = number of chains; for contract (3),
O(m): m = number of chains. These time complexities are derived from a simple analysis
of the code within the chain. Table 4 provides a qualitative comparison of the experimen-
tal results for each contract, and the specific experimental results for each contract are
graphically represented.

In Table 4, the connection type used for tracking in the contract is divided into hash
chains and transactions. This division is determined by the fundamental elements on
which the tracking process is built during the implementation. For transactions, the
tracking process resembles a traditional transaction-tracking process. However, the key
distinction lies in the utilization of a hash chain in which the structure for recording data
is organized into a separate chain. “Structure” and “Chained” indicate whether each
contract is structured and composed in a chain-like form. For a hash chain on structure,
the connection is established through an array of structures, whereas the hash chain on
transaction links the desired chain data key value within the structure using variables.
However, in the case of hash data, data are recorded through structures but are not linked in
a chain-like structure. Moreover, consistent hashing using the SHA-256 [53] hash function
is maintained across all contracts.

When analyzing the CPU usage and network traffic, we observed that the transaction-
based hash chain contract consumed more resources and traffic. Consequently, in terms of
tracking time, we noted that the CPU and network traffic significantly influenced tracking
time, apart from time complexity. While the time complexity is the same for the hash chain

Symmetry 2024, 16, 62 18 of 30

on structure and hash chain on transaction, the tracking time is faster for the hash chain on
structure owing to lower resource consumption and traffic. A more detailed explanation is
provided below through quantitative analysis and specific descriptions using graphs.

5.3.2. Quantitative Analysis

Figure 6 and Tables A2–A6 present the experimental results for the three contracts,
considering different factors such as the number of chains and transactions, and tracking
time, CPU usage, and network traffic are used as evaluation metrics. Analysis of the
experimental results for each contract is explained below based on the respective graphs.
The units for each experimental metric are as follows: the tracking time is measured in
milliseconds (ms), CPU usage is expressed as a percentage (%), and network traffic is
denoted in kilobytes (KB).

Symmetry 2024, 16, x FOR PEER REVIEW 19 of 31

Figure 6. Comparative analysis of tracking time, CPU usage, and network traffic across three con-
tracts. (a) Tracking Time (ms): TX 10,000, Chains 2500, (b) CPU Usage (%), (c) Network Traffic: Send
(KB), (d) Network Traffic: Receive (KB), (e) Tracking Time (ms): TX 20,000, Chains 5000, (f) Tracking
Time (ms): TX 20,000, Chains 2500.

Figure 6. Cont.

Symmetry 2024, 16, 62 19 of 30

Symmetry 2024, 16, x FOR PEER REVIEW 19 of 31

Figure 6. Comparative analysis of tracking time, CPU usage, and network traffic across three con-
tracts. (a) Tracking Time (ms): TX 10,000, Chains 2500, (b) CPU Usage (%), (c) Network Traffic: Send
(KB), (d) Network Traffic: Receive (KB), (e) Tracking Time (ms): TX 20,000, Chains 5000, (f) Tracking
Time (ms): TX 20,000, Chains 2500.

Figure 6. Comparative analysis of tracking time, CPU usage, and network traffic across three contracts.
(a) Tracking Time (ms): TX 10,000, Chains 2500, (b) CPU Usage (%), (c) Network Traffic: Send (KB),
(d) Network Traffic: Receive (KB), (e) Tracking Time (ms): TX 20,000, Chains 5000, (f) Tracking Time
(ms): TX 20,000, Chains 2500.

(a) Chain Counts—Tracking Time: Referring to Table 4, the hashed data are consid-
ered to have the longest execution time owing to their time complexity. However, the actual
experimental results depicted in Figure 6a show that the hash chain on transaction exhibits
the longest execution time. This highlights the fact that the tracking time is not simply
equivalent to the time complexity of the contract.

(1) The hash chain on structure, the tracking process proposed in this study, constructs
a chain based on a structure. It achieves a faster tracking time than the other two
contracts. During the initial process line formation, the target asset (process) to be
tracked is recorded. Subsequently, when consecutively executing the same process
as the identified process line, the structure is connected in array form to the existing
asset, thus forming a chain. Based on the analysis of the experimental results, the
primary reason for the fastest tracking time in this contract is the utilization of a
structure array.

(2) The hashed data do not show a noticeable increase as the number of chains increases
because they involve an exhaustive inspection of transactions. Surprisingly, even
when the number of chains increases, the tracking time tends to decrease. This finding
indicates that external factors can influence the results. However, we observe that the
tracking time for the hash data is significantly longer than that for the hash chain on
structure. This experimental result suggests that exhaustive inspection of transactions
affects the tracking time. Additionally, the decrease in tracking time suggests that
even with all conditions set to be the same during the experiment, external factors
such as the CPU and network affect the experimental results. This is further detailed
in Figure 6b–d.

(3) Hash chain on transaction exhibits a steep increase in tracking time. As expected, the
time complexity of this contract is O(m), which increases with the number of chains.
This increase is attributed to the execution time of the function retrieving transactions
with the recorded connected chains from the blockchain ledger. Hyperledger Fab-
ric provides application programming interface (API) functions for recording and
retrieving transactions in the ledger. The execution time of this function influences
the increase in tracking time.

(b) Chain Counts—CPU Usage: The CPU usage was used to observe trends with
respect to the number of chains. The Hyperledger Fabric chain code is executed by nodes

Symmetry 2024, 16, 62 20 of 30

participating in the blockchain network by utilizing the CPU when executed on each node.
During this process, as the CPU usage increases, there is potential for interference with the
ability to perform processes outside the Fabric. Additionally, a higher CPU usage consumes
more resources and, consequently, prolongs the tracking time. Therefore, in this study, a
process is proposed to ensure the integrity and security of data recorded on the blockchain,
while reducing resource consumption. The experimental results for this are illustrated in
Figure 6b.

(1) An examination of the CPU usage of the contract utilizing a hash chain on structure
shows that it utilizes approximately 5% of the total usage on one node. In this study,
the proposed contract forms a chain in the form of a structure. Consequently, in the
process of tracking data related to the process line, only one transaction is fetched,
resulting in significantly fewer accesses to the blockchain ledger compared with
the other two contracts. Therefore, a notably low level of CPU usage is observed.
Even with a manifold increase in the number of chains, the CPU usage remains
almost constant.

(2) For hashed data, a nearly consistent time is required, regardless of the number of
chains, as evident in the tracking time graph. Moreover, in Figure 6b, CPU usage
remains relatively stable. This finding suggests that contracts are minimally influenced
by the number of chains. Consequently, it is inferred that the tracking time and CPU
usage for this contract are determined by factors other than the number of chains,
which is further elaborated in Figure 6e,f.

(3) The hash chain on transaction exhibits an upward trend in both tracking time, as seen
in Figure 6a,b, and CPU usage. As previously explained, this can be attributed to an
increase in CPU usage during the process of fetching transactions from the blockchain
ledger. Initially, when the number of chains is three, the CPU usage is similar to that
of the hash chain on structure. However, as the number of chains increases, a similar
upward trend in the CPU usage is observed. Although this contract enhances integrity
and security through the structure of chains, it has a lower code efficiency, resulting
in increased tracking time.

(c) Chain Counts—Network Traffic: The presented experimental results in Figure 6c,d
represent the measurement of network traffic at the node directly involved in tracking
the data. In the data-tracking process, network traffic occurs because of the process of
requesting and receiving the results of transactions recorded in the blockchain ledger.
Therefore, in the proposed data-tracking process, network traffic is an essential factor that
must be considered in addition to tracking time. As explained previously, two cases are
considered: sending and receiving.

(1) In the hash chain on structure, both sending and receiving show remarkably low
results. One of the factors that generate network traffic is the number of data. In this
contract, the process of requesting and receiving data related to a specific process line
is concluded through network traffic, resulting in a minimal amount of traffic to com-
plete the tracking process. In other words, the contract algorithm itself significantly
reduces network traffic.

(2) As previously explained, a contract based on hashed data performs a complete ex-
amination of all transactions recorded in the blockchain. In this contract, network
traffic occurs during an exhaustive examination of all transactions. As observed in
the graph, the network traffic remains constant regardless of the number of chains,
instead of varying with the total number of transactions. This contract examines all
transactions, thereby generating network traffic. As shown in the graph, the network
traffic remained consistent regardless of the number of chains.

(3) A contract utilizing the structure of the hash chain on transaction constructs chains
based on transactions. It is necessary to request and receive all relevant transactions
to track the data on the chains associated with a process line. Consequently, the graph
for this contract shows that the network traffic increases with the number of chains.

Symmetry 2024, 16, 62 21 of 30

However, compared to the hash-data-based contract, it exhibits lower traffic. This is
because this contract requests transactions based on the number of chains but does
not conduct a complete examination of transactions. Thus, while not exhaustively
examining transactions, the network traffic increases with the number of chains.

(d) Transaction Counts—Tracking Time: In this experiment, we analyze graphs to
understand how tracking time varies with the number of transactions. In experiment
(a), we analyze the results based on 10,000 transactions and 2500 chain counts. However,
Figure 6e,f present the results of the experiments conducted with 20,000 transactions and
2500 chains and 20,000 transactions and 5000 chains as the baseline, respectively. In other
words, we analyze the tracking time based on the number of transactions and chain counts
for the three contracts and conduct an analysis of the consistency of the results.

(1) As observed in Figure 6e, the contract based on the hash chain on structure yields
similar experimental results when the number of chains is fixed at 2500, irrespective
of the total transaction count. This can be attributed to the fact that, similar to the
CPU usage and network traffic discussed earlier, it only requires the retrieval of data
associated with a specific process line and related chains that are recorded. Figure 6e,f
indicate that with a fixed transaction count of 20,000, an increase in the number
of chains leads to an increase in the tracking time. Thus, the performance of this
contract varies based on the number of connected chains, with no impact from the
total transaction count.

(2) In the case of the hashed data, the performance varies with the total number of
transactions. As shown in Figure 6a, the tracking time is approximately 200 ms for
10,000 transactions, and, in Figure 6e, it is approximately 500 ms for 20,000 transactions.
This suggests that the tracking time in this contract is directly proportional to the
number of transactions and is unaffected by the number of connected chains. Hence,
as the blockchain network grows and more transactions are recorded, the tracking
time increases.

(3) When comparing Figure 6a,f with the same settings but with a change in transac-
tion count from 10,000 to 20,000, the hash chain on transaction shows that the total
transaction count, much like in (1), does not significantly influence tracking time.
Figure 6e shows that the tracking time increases based on the number of connected
chains. However, with an increase in the number of chains, the slope of the graph
sharply steepens, indicating that, as the number of connected chains increases, the
tracking time significantly increases.

5.3.3. Summary

The experiments conducted in this study compare the performance of three contracts,
including the hash-chain-based data-tracking process, proposed as a means to track the
history of data recorded on the blockchain. To track the recorded data, tracking functions are
implemented within the contracts to measure tracking time, CPU usage, and network traffic.
As previously described, the contract based on the hash chain on Structure demonstrates
the highest performance. To explain this, we refer to each comparative experimental result
as follows:

• CPU Usage: Both contracts based on the hash chain on structure and hash chain
on transaction involve verification processes for the hash values of private data and
verification of chain values using public data. However, in the latter case, when 2500
chains are connected, 2500 transactions must be fetched from the blockchain ledger,
resulting in higher CPU usage. Therefore, analysis of the CPU usage measured in this
experiment reveals a tendency for increased CPU usage during the process of fetching
transactions recorded in the blockchain.

• Network Traffic: Blockchain, a distributed ledger in which multiple nodes form a
network, incurs network traffic during the process of fetching and verifying transac-
tions. In this study, three contracts are tested. The hashed-data-based contract, which

Symmetry 2024, 16, 62 22 of 30

requires comprehensive verification of transactions, exhibits an increase in network
traffic based on the number of transactions. Furthermore, in the case of the hash chain
on transaction, the increase in the number of chains leads to an augmentation of net-
work traffic owing to the process of fetching and verifying the connected transactions
within the blockchain network. In conclusion, the network traffic is significantly influ-
enced by the process of fetching transactions from the blockchain network. Notably,
the hash chain on structure proposed in this study, which verifies connected chains
through a single transaction, exhibits the least network traffic.

• Number of Transactions: One of the metrics used to evaluate the performance of a
blockchain network is transactions per second [54], which highlights the importance
of transaction processing. The experiments conducted in this study aim to compare
contracts to ensure efficiency in tracking the data recorded in transactions. Therefore,
considering metrics such as CPU usage and network traffic, the hash chain on structure
constructs a separate chain within each transaction to minimize the computational load
per transaction and mitigate the impact on the total number of transactions during the
verification process.

• Number of Chains: The structure of the chain represents one of the technical elements
proposed in this study to facilitate and effectively execute the process of tracking data
history. Chains connected to a process line contain data related to the actions, results,
and procedures associated with a specific process. As the number of connected chains
increases, the tracking time logically increases. However, the hash chain on structure
proposed in this study utilizes a structure of arrays to minimize the impact of the
number of connected chains, resulting in the highest efficiency and performance.

• Tracking Time: Connecting the above analysis to the tracking time shows that the hash
chain on structure utilizes the fewest resources during the processes involving CPU
usage, network traffic, and others. It demonstrates the fastest tracking performance by
minimizing the impact of both transaction and chain quantities. In addition, when
considering the tracking time within the blockchain, the contract’s time complexity
and external resource consumption must be accounted for.

5.3.4. Prediction and Comparison of Tracking Time Based on Simple Linear Regression

Additionally, the simple linear regression [55] functions for each contract according
to the number of transactions and chains are represented by the following equations.
Tt,n signifies the tracking time according to the number of transactions and contracts as
represented in Equations (1)–(3), while the simple linear regression function to predict
the changes in the final tracking time based on the number of Chains C in Equation (4) is
represented in Equations (6)–(8). R2, the coefficient of determination, is used as a measure
to indicate the explanatory power of the regression model for Equations (6)–(11). In other
words, a value of R2 close to 1 implies that the regression model explains the variability of
the dependent variable well.

Tt,n = Tracking Time (ms) (1)

t = Number o f Transactions (2)

n = Contract Number (1, 2, 3) (3)

C = Number o f Chains (4)

R2 = r2 =
SSR
SST

=
∑
(
Ŷ − Y

)2

∑
(
Y − Y

)2 : Coe f f icient o f Determination (5)

Equations (6)–(8) are the simple linear regression functions for contracts (1), (2), and
(3) with 10,000 transactions. The predicted tracking time (ms) according to the number of

Symmetry 2024, 16, 62 23 of 30

chains for these simple linear regression functions (6)–(8) is detailed in Table A7, which is
included in Appendix B.

T10000,1 = 0.008350941C + 1.35252795, R2 = 0.9825 (6)

T10000,2 = 0.001543091C + 209.4076746, R2 = 0.2169 (7)

T10000,3 = 0.518595789C + 9.087888095, R2 = 0.9989 (8)

The following Equations (9)–(11) are the simple linear regression functions for contracts
(1), (2), and (3) with 20,000 transactions. The predicted tracking time (ms) according to the
number of chains for these functions is presented in Table A8, as included in Appendix B.

T20000,1 = 0.00837555C + 1.05303041, R2 = 0.9958 (9)

T20000,2 = 0.00218473C + 525.828953, R2 = 0.0569 (10)

T20000,3 = 0.54191816C + 2.57352809, R2 = 0.9999 (11)

When comparing Tables A7 and A8 with Tables A2 and A3, it can be seen that, for
contracts (1) and (3), the actual experimental results and the predictions begin to align
when the number of chains exceeds 24. This confirms that the simple linear regression
functions derived from the results of this study produce similar outcomes according to
the number of chains. Equations (7) and (10) show a small slope and a large Y-intercept,
indicating that the tracking time is almost unaffected by the number of chains, whereas the
relatively larger slopes of Equations (6), (8), (9), and (11) indicate that the tracking time is
influenced by the number of chains. Moreover, it is proven using the above equations that
contract (1) is less affected by the number of chains compared to contract (3), meaning that,
even as the process line lengthens, the increase in tracking time is minimal.

Graphs comparing the actual experimental results with the tracking time predictions
based on the values from Tables A7 and A8 are observed in Figure 7a,b. The data connected
by lines represent the actual experimental results, while the data points represent the
predictions generated through the simple linear regression functions. Comparing these, it
can be seen that the actual experimental results and the predictions are similar. Therefore,
this study demonstrates that such simple linear regression functions are used to predict the
tracking time as the number of chains increases, and it explains the scalability and analytical
potential of applying a hash-chain-based data-tracking process in business processes.

Symmetry 2024, 16, x FOR PEER REVIEW 24 of 31

When comparing Tables A7 and A8 with Tables A2 and A3, it can be seen that, for
contracts (1) and (3), the actual experimental results and the predictions begin to align
when the number of chains exceeds 24. This confirms that the simple linear regression
functions derived from the results of this study produce similar outcomes according to
the number of chains. Equations (7) and (10) show a small slope and a large Y-intercept,
indicating that the tracking time is almost unaffected by the number of chains, whereas
the relatively larger slopes of Equations (6), (8), (9), and (11) indicate that the tracking time
is influenced by the number of chains. Moreover, it is proven using the above equations
that contract (1) is less affected by the number of chains compared to contract (3), meaning
that, even as the process line lengthens, the increase in tracking time is minimal.

Graphs comparing the actual experimental results with the tracking time predictions
based on the values from Tables A7 and A8 are observed in Figure 7a,b. The data con-
nected by lines represent the actual experimental results, while the data points represent
the predictions generated through the simple linear regression functions. Comparing
these, it can be seen that the actual experimental results and the predictions are similar.
Therefore, this study demonstrates that such simple linear regression functions are used
to predict the tracking time as the number of chains increases, and it explains the scalabil-
ity and analytical potential of applying a hash-chain-based data-tracking process in busi-
ness processes.

Figure 7. Comparing data-tracking times between experimental results and predictions. (a) Experi-
mental and Predicted Tracking Time (ms): TX 10,000, (b) Experimental and Predicted Tracking Time
(ms): TX 20,000.

6. Discussion
In this study, we propose a process for executing contracts in the form of a hash chain

to reduce resource consumption and shorten the time required to track the transaction
data recorded in the blockchain, which is utilized by services using existing blockchain
platforms. This process constructs a hash chain in a branching pattern similar to a hash
graph, but with the distinction that the data are sequentially recorded rather than ran-
domly. A hash-chain-based data-tracking process is proposed to enhance efficiency, in-
tegrity, and traceability when recording data on permissioned blockchains in the industry.
Because the blockchain length increases with the continuous influx of transactions, the
process of retroactively tracking transactions consumes more time and resources. This
study aims to address this issue. The experiments conducted in this study involve adding

Figure 7. Comparing data-tracking times between experimental results and predictions. (a) Experi-
mental and Predicted Tracking Time (ms): TX 10,000, (b) Experimental and Predicted Tracking Time
(ms): TX 20,000.

Symmetry 2024, 16, 62 24 of 30

6. Discussion

In this study, we propose a process for executing contracts in the form of a hash chain
to reduce resource consumption and shorten the time required to track the transaction
data recorded in the blockchain, which is utilized by services using existing blockchain
platforms. This process constructs a hash chain in a branching pattern similar to a hash
graph, but with the distinction that the data are sequentially recorded rather than randomly.
A hash-chain-based data-tracking process is proposed to enhance efficiency, integrity, and
traceability when recording data on permissioned blockchains in the industry. Because
the blockchain length increases with the continuous influx of transactions, the process of
retroactively tracking transactions consumes more time and resources. This study aims
to address this issue. The experiments conducted in this study involve adding a tracking
process to the contract on a Hyperledger Fabric basis and evaluating its performance.

6.1. Application in Public Blockchains

It is important to discuss the applicability of the hash-chain-based data-tracking pro-
cess proposed in this study in different blockchain platforms. We believe that platforms
that support smart contracts, such as Ethereum, can adopt our approach with minimal
modifications. The proposed method is designed to operate independently of the under-
lying consensus algorithm, and, therefore, it is not significantly affected by the choice of
consensus mechanism. However, blockchain platforms with slower transaction processing
speeds, such as those utilizing Proof of Work (PoW) [13], may experience delays due to the
time required to reach consensus on transactions.

We acknowledge that the efficiency benefits demonstrated in this research are most
prominent within permissioned blockchain environments, where transaction speeds are
generally faster, and governance is more centralized. In contrast, public blockchains
present distinct challenges, including higher transaction volumes and the need for more
robust consensus mechanisms, which can impact the overall effectiveness of the hash chain
structure. In future studies, we aim to expand the experimental limits and apply various
blockchain platforms and consensus algorithms for experimentation.

6.2. Constrained Experimental Environment and Scalability

The experiments conducted in this study are limited to a maximum of 20,000 total
transactions recorded in the blockchain ledger and 5000 chains that compose the hash chain.
To address this limitation, the experimental results are used to predict the tracking time
through simple linear regression functions, and comparative analyses are conducted. It
is observed that while the total number of transactions influences the existing blockchain
transaction-data-tracking process, it hardly affects the hash-chain-based transaction-data-
tracking process proposed in this study. That is, with the traditional tracking process, as the
size of the blockchain increases, both the tracking time and resource consumption increase.
However, the hash-chain-based tracking process is affected only by the number of linked
chains, resulting in a relatively smaller increase in time delay and resource consumption,
even as the blockchain size grows.

Indeed, continuously increasing the number of transactions and chains for further
experimentation is constrained by the current experimental environment. Nevertheless, by
utilizing the simple linear regression functions to analyze scalability, we can confirm that
the hash-chain-based tracking process proposed in this study offers clear advantages. The
actual resource consumption and tracking time, when the process is applied In practice,
could differ from the experimental results. This discrepancy may be due to external factors
such as the usage of machines operating as blockchain nodes and network conditions.
Therefore, future research should involve selecting specific business processes and devel-
oping actual pilot applications to collect data. This will allow for a comparative analysis of
the experimental results, predictive values, and real-world application outcomes.

Symmetry 2024, 16, 62 25 of 30

6.3. Application Domains and Case Studies in Data Tracking

While the hash chain structure proposed in this study is optimized to reduce tracking
time and resource consumption for transaction data recorded on blockchain, it is cru-
cial to acknowledge services where this process may be less beneficial or not applicable.
For example, platforms that handle non-sensitive, transient data, where the emphasis is
on throughput rather than traceability, may not benefit from the added complexity and
overhead of a hash-chain-based tracking system. Consider fast-moving consumer goods
(FMCG) industries, where the primary concern is inventory turnover rather than detailed
data tracking. Implementing a hash chain structure in such a context could lead to unneces-
sary computational overhead, negating the inherent high-speed nature of these businesses.
Similarly, in service platforms where data are frequently updated or replaced, the perma-
nence offered by the blockchain may serve more as a hindrance than a benefit. Moreover,
systems that operate with a high level of trust among participants and do not require
the immutability guarantee of the blockchain, such as internal data management systems
of a single organization, might find the hash chain structure redundant. In these cases,
traditional databases might be more cost-effective and simpler to maintain. Furthermore,
in service domains where the efficiency of data tracking is unnecessary, research can be
conducted on access control for data using time-based one-time passwords [56] instead of
employing hash chains.

Optimizing the implementation of the proposed hash chain structure for diverse use
cases involves a cost–benefit analysis to determine if the benefits of increased traceability
and integrity outweigh the potential trade-offs in system complexity and performance. For
sectors where tracking is crucial, such as finance, healthcare, and supply chain management,
the optimization might include the development of hybrid models that combine hash chains
with selective encryption using the hash function to protect confidential data, while still
providing the speed and efficiency required for high-volume transactions. In light of these
considerations, future work could focus on developing adaptive hash chain mechanisms
that are capable of identifying the specific needs of a service platform and scaling their
complexity accordingly.

7. Conclusions

We proposed a hash-chain-based data-tracking process to streamline and enhance
the efficiency of the tracking process within blockchain-based service platforms. The
existing blockchain transaction-tracking process requires a thorough investigation of data
to retroactively track transactions recorded in the network, relying on the provided APIs,
which presents a challenge. However, we connected the hash values of the data recorded
in each transaction in the form of a hash chain. Thus, by knowing the desired process line
number, we could track transactions related to that line, thereby reducing the exposure
risk to the original data. In addition, with the hash values linked in a chain structure,
verifying the integrity of the data handled in each transaction and process line became
easy. We conducted performance comparison experiments between the hash-chain-based
data-tracking process and the traditional transaction-tracking process, facilitating both
quantitative and qualitative assessments of the proposed process.

In this study, through the proposed contract-based process, we streamlined the
transaction-tracking process in traditional blockchains, reducing time and resource con-
sumption. Utilizing hash functions in a permissioned blockchain ensured both data in-
tegrity and confidentiality, while the implementation of a hash chain structure secured
symmetry in the data recorded on the blockchain ledger. Furthermore, we evaluated the
applicability of data tracking in permissioned blockchains. By simplifying this process,
we proposed a method to effectively utilize blockchains across various industries that
handle sensitive data. We hope that insights gained from future research will enable the
proactive utilization of diverse blockchain platforms. We anticipate that the blockchain will
be actively applied and utilized, especially in specific domains such as logistics, freight
transportation, customs clearance, and document verification.

Symmetry 2024, 16, 62 26 of 30

Author Contributions: Conceptualization, S.K. and D.K.; methodology, S.K. and D.K.; software,
S.K.; validation, S.K. and D.K.; investigation, S.K.; formal analysis, S.K. and D.K.; resources, S.K.;
data curation, S.K.; visualization, S.K. and D.K.; writing—original draft preparation, S.K. and D.K.;
writing—review and editing, S.K. and D.K.; supervision, D.K.; project administration, S.K. and
D.K.; funding acquisition, D.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This work was supported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (No. RS-2023-00251241) and also supported by
Kyonggi University’s Graduate Research Assistantship 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Abbreviations

Table A1. Abbreviation list.

Term Full Abbreviation

H_Data Hashed origin (private) data
n Node n [n = 1, 2, . . ., n]

n_Pub Public Key (of Node n)
n_Priv Private Key (of Node n)

n_Priv_Data Private Data (of Node n)
n_Pub_Data Public Data (of Node n)

n_Pub(T) Encrypt the T [T: Data]
n_Priv(n_Pub(T)) Decrypt the n_Pub(T)

n_Hash_Value Hash value from X for “hash chain”
H(T) Encrypt the T using Hash Function [T: Data]

T1 + T2 Concatenate T1 and T2 [T: Data]
TX Transaction

Appendix B

These tables represent the average values of the experimental results corresponding to
the graphs shown in Figures 6 and 7. In addition, each contract in the table is denoted as
follows: (1) hash-chain-based contract, (2) hashed-data-based contract, and (3) hashed-data
and hash-chain-based contract.

Table A2. Experiment results: tracking time (TX 10,000).

Contract
Number of Chains

3 6 12 24 48

(1) 0.981 1.104 1.169 1.347 1.348
(2) 243.207 205.907 213.126 208.254 210.144
(3) 2.235 4.555 7.111 12.444 27.122

100 250 500 1000 2500

(1) 1.936 4.086 5.387 11.956 21.315
(2) 207.261 207.997 212.142 210.641 228.255
(3) 56.693 162.163 282.986 546.410 1293.281

The tracking time corresponding to each contract and number of chains is expressed in milliseconds (ms).

Symmetry 2024, 16, 62 27 of 30

Table A3. Experiment results: tracking time (TX 20,000).

Contract
Number of Chains

3 6 12 24 48 100

(1) 0.986 1.058 0.987 1.276 1.789 2.109
(2) 503.674 516.222 514.679 521.332 542.653 518.605
(3) 1.761 3.671 6.602 11.986 27.223 61.244

250 500 1000 2500 5000 .

(1) 3.049 5.345 7.839 24.010 42.227 .
(2) 551.930 540.123 533.014 527.309 535.207 .
(3) 134.259 260.673 567.403 1366.25 2704.56 .

The tracking time corresponding to each contract and number of chains is expressed in milliseconds (ms).

Table A4. Experiment results: CPU usage.

Contract
Number of Chains

3 6 12 24 48

(1) 6.620 6.595 6.377 6.157 6.350
(2) 14.550 11.931 12.006 11.757 11.956
(3) 6.702 6.535 6.886 6.902 7.473

100 250 500 1000 2500

(1) 6.264 5.993 6.722 6.423 6.642
(2) 11.817 12.547 11.261 11.490 11.892
(3) 8.336 11.258 15.989 24.660 42.585

The CPU usage corresponding to each contract and number of chains is expressed as a percentage (%).

Table A5. Experiment results: network traffic (send).

Contract
Number of Chains

3 6 12 24 48

(1) 27.920 29.745 30.051 29.823 32.307
(2) 1345.737 1348.769 1360.853 1315.287 1267.190
(3) 29.056 29.457 30.635 33.407 38.305

100 250 500 1000 2500

(1) 37.404 51.199 72.032 109.715 243.566
(2) 1447.415 1393.477 1343.042 1406.506 1310.048
(3) 47.421 78.749 122.234 197.927 367.543

The network traffic corresponding to each contract and number of chains is expressed in kilobytes (KB).

Table A6. Experiment results: network traffic (receive).

Contract
Number of Chains

3 6 12 24 48

(1) 3.350 3.510 3.356 3.330 3.234
(2) 16.666 16.659 16.764 16.356 15.813
(3) 3.562 3.867 4.412 5.866 8.027

100 250 500 1000 2500

(1) 3.362 3.407 3.422 3.365 3.712
(2) 17.993 17.087 16.484 17.528 16.043
(3) 12.619 28.600 50.344 88.687 174.221

The network traffic corresponding to each contract and number of chains is expressed in kilobytes (KB).

Symmetry 2024, 16, 62 28 of 30

Table A7. Predicted results: tracking time (TX 10,000).

Contract
Number of Chains

3 6 12 24 48 100

(1) 1.378 1.403 1.453 1.553 1.753 2.188
(2) 209.412 209.417 209.426 209.445 209.482 209.562
(3) 10.644 12.199 15.311 21.534 33.980 60.947

250 500 1000 2500 5000 10,000

(1) 3.440 5.528 9.703 22.230 43.107 84.861
(2) 209.793 210.179 210.951 213.265 217.123 224.839
(3) 138.737 268.386 527.684 1305.577 2602.067 5195.05

The tracking time corresponding to each contract and number of chains is expressed in milliseconds (ms).

Table A8. Predicted results: tracking time (TX 20,000).

Contract
Number of Chains

3 6 12 24 48 100

(1) 1.078 1.103 1.154 1.254 1.455 1.891
(2) 525.836 525.842 525.855 525.881 525.934 526.047
(3) 4.199 5.825 9.077 15.580 28.586 56.765

250 500 1000 2500 5000 10,000

(1) 3.147 5.241 9.429 21.992 42.931 84.809
(2) 526.375 526.921 528.014 531.291 536.753 547.676
(3) 138.053 273.533 544.492 1357.369 2712.164 5421.755

The tracking time corresponding to each contract and number of chains is expressed in milliseconds (ms).

References
1. Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [CrossRef]
2. Wang, H.; Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14,

352. [CrossRef]
3. Pierro, M.D. What is the blockchain? Comput. Sci. Eng. 2017, 19, 92–95. [CrossRef]
4. Hsiao, S.-J.; Sung, W.-T. Blockchain-Based Supply Chain Information Sharing Mechanism. IEEE Access 2022, 10, 78875–78886.

[CrossRef]
5. Wu, Z.; Liu, J.; Wu, J.; Zheng, Z.; Chen, T. TRacer: Scalable graph-based transaction tracing for account-based blockchain trading

systems. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2609–2621. [CrossRef]
6. Ismail, L.; Materwala, H. A Review of Blockchain Architecture and Consensus Protocols: Use Cases, Challenges, and Solutions.

Symmetry 2019, 11, 1198. [CrossRef]
7. Dabbagh, M.; Choo, K.-K.-R.; Beheshti, A.; Tahir, M.; Safa, N.S. A survey of empirical performance evaluation of permissioned

blockchain platforms: Challenges and opportunities. Comput. Secur. 2021, 100, 102078. [CrossRef]
8. Yang, R.; Wakefield, R.; Lyu, S.; Jayasuriya, S.; Han, F.; Yi, X.; Yang, X.; Amarasinghe, G.; Chen, S. Public and private blockchain in

construction business process and information integration. Autom. Construct. 2020, 118, 103276. [CrossRef]
9. Hu, Y.-C.; Jakobsson, M.; Perrig, A. Efficient constructions for one-way hash chains. In Proceedings of the International Conference

on Applied Cryptography and Network Security, New York, NY, USA, 7–10 June 2005; pp. 423–441. [CrossRef]
10. Lee, D. Hash function vulnerability index and hash chain attacks. In Proceedings of the 3rd IEEE Workshop on Secure Network

Protocols, Beijing, China, 16 October 2007; pp. 1–6. [CrossRef]
11. Kim, S.; Kwon, Y.; Cho, S. A survey of scalability solutions on blockchain. In Proceedings of the International Conference on

Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 1204–1207.
[CrossRef]

12. Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to scalability of blockchain: A survey. IEEE Access 2020, 8, 16440–16455.
[CrossRef]

13. Nakamoto, S. Bitcoin: A Peer-To-Peer Electronic Cash System Bitcoin. 2009. Available online: https://bitcoin.org/bitcoin.pdf
(accessed on 19 November 2023).

14. Zikratov, I.; Kuzmin, A.; Akimenko, V.; Niculichev, V.; Yalansky, L. Ensuring data integrity using blockchain technology. In
Proceedings of the 20th Conference of Open Innovations Association (FRUCT), St. Petersburg, Russia, 3–7 April 2017; pp. 534–539.
[CrossRef]

https://doi.org/10.1007/s12599-017-0467-3
https://doi.org/10.1504/IJWGS.2018.095647
https://doi.org/10.1109/MCSE.2017.3421554
https://doi.org/10.1109/ACCESS.2022.3194157
https://doi.org/10.1109/TIFS.2023.3266162
https://doi.org/10.3390/sym11101198
https://doi.org/10.1016/j.cose.2020.102078
https://doi.org/10.1016/j.autcon.2020.103276
https://doi.org/10.1007/11496137_29
https://doi.org/10.1109/NPSEC.2007.4371616
https://doi.org/10.1109/ICTC.2018.8539529
https://doi.org/10.1109/ACCESS.2020.2967218
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.23919/FRUCT.2017.8071359

Symmetry 2024, 16, 62 29 of 30

15. Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.-B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart contract development: Challenges and
opportunities. IEEE Trans. Softw. Eng. 2021, 47, 2084–2106. [CrossRef]

16. Aleksieva, V.; Valchanov, H.; Huliyan, A. Implementation of Smart-Contract, Based on Hyperledger Fabric Blockchain. In
Proceedings of the 21st International Symposium on Electrical Apparatus & Technologies (SIELA), Bourgas, Bulgaria, 3–6 June
2020; pp. 1–4. [CrossRef]

17. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,
Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the 13th EuroSys
Conference, Lisbon, Portugal, 23–26 April 2018. [CrossRef]

18. Baird, L.; Luykx, A. The hashgraph protocol: Efficient asynchronous BFT for high-throughput distributed ledgers. In Proceedings
of the International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 31 August–2 September 2020;
pp. 1–7. [CrossRef]

19. Montaser, M.M.A.; Othman, S.H.; Radzi, R.Z.R.M. Secured Tracking and Tracing System Based on Blockchain Technology. In
Proceedings of the International Cyber Resilience Conference (CRC), Langkawi Island, Malaysia, 29–31 January 2021; pp. 1–6.
[CrossRef]

20. Liu, X.; Barenji, A.V.; Li, Z.; Montreuil, B.; Huang, G.Q. Blockchain-based smart tracking and tracing platform for drug supply
chain. Comput. Ind. Eng. 2021, 161, 107669. [CrossRef]

21. Koyama, A.; Tran, V.C.; Fujimoto, M.; Bao, V.N.Q.; Tran, T.H. A Decentralized COVID-19 Vaccine Tracking System Using
Blockchain Technology. Cryptography 2023, 7, 13. [CrossRef]

22. Mendi, A.F. Blockchain for Food Tracking. Electronics 2022, 11, 2491. [CrossRef]
23. Attia, O.; Khoufi, I.; Laouiti, A.; Adjih, C. An IoT-blockchain architecture based on hyperledger framework for healthcare

monitoring application. In Proceedings of the 10th IFIP International Conference on New Technologies, Mobility and Security
(NTMS), Canary Islands, Spain, 24–26 June 2019; pp. 1–5. [CrossRef]

24. Marbouh, D.; Abbasi, T.; Maasmi, F.; Omar, I.A.; Debe, M.S.; Salah, K.; Jayaraman, R.; Ellahham, S. Blockchain for COVID-19:
Review, opportunities, and a trusted tracking system. Arabian J. Sci. Eng. 2020, 45, 9895–9911. [CrossRef] [PubMed]

25. Leng, Z.; Tan, Z.; Wang, K. Application of Hyperledger in the Hospital Information Systems: A Survey. IEEE Access 2021, 9,
128965–128987. [CrossRef]

26. Damgård, I.B. A design principle for hash functions. In Conference on the Theory and Application of Cryptology; Springer: New York,
NY, USA, 1989.

27. Oyinloye, D.P.; Teh, J.S.; Jamil, N.; Alawida, M. Blockchain Consensus: An Overview of Alternative Protocols. Symmetry 2021, 13,
1363. [CrossRef]

28. Pervez, H.; Muneeb, M.; Irfan, M.U.; Haq, I.U. A comparative analysis of DAG-based blockchain architectures. In Proceedings of
the 12th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 19–21 December 2018;
pp. 27–34. [CrossRef]

29. Müller, S.; Penzkofer, A.; Polyanskii, N.; Theis, J.; Sanders, W.; Moog, H. Tangle 2.0 Leaderless Nakamoto Consensus on the
Heaviest DAG. IEEE Access 2022, 10, 105807–105842. [CrossRef]

30. Verma, A.; Bhattacharya, P.; Madhani, N.; Trivedi, C.; Bhushan, B.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Sharma, R. Blockchain
for industry 5.0: Vision, opportunities, key enablers, and future directions. IEEE Access 2022, 10, 69160–69199. [CrossRef]

31. Birman, K. The promise, and limitations, of gossip protocols. SIGOPS Oper. Syst. Rev. 2007, 41, 8–13. [CrossRef]
32. Santiago, C.; Ren, S.; Lee, C.; Ryu, M. Concordia: A Streamlined Consensus Protocol for Blockchain Networks. IEEE Access 2021,

9, 13173–13185. [CrossRef]
33. Guegan, D. Public Blockchain versus Private Blockchain; Working Document Center Economics Pantheon-Sorbonne University:

Paris, France, 2017.
34. Huang, D.; Ma, X.; Zhang, S. Performance analysis of the raft consensus algorithm for private blockchains. IEEE Trans. Syst. Man

Cybern. Syst. 2020, 50, 172–181. [CrossRef]
35. Fan, C.; Ghaemi, S.; Khazaei, H.; Musilek, P. Performance Evaluation of Blockchain Systems: A Systematic Survey. IEEE Access

2020, 8, 126927–126950. [CrossRef]
36. Wang, M.; Duan, M.; Zhu, J. Research on the security criteria of hash functions in the blockchain. In Proceedings of the 2nd ACM

Workshop on Blockchains, Cryptocurrencies, and Contracts (BCC), Incheon, Republic of Korea, 4 June 2018; pp. 47–55.
37. Liu, X.L.; Wang, W.M.; Guo, H.; Barenji, A.V.; Li, Z.; Huang, G.Q. Industrial blockchain based framework for product lifecycle

management in industry 4.0. Robot. Comput. Integr. Manuf. 2020, 63, 101897. [CrossRef]
38. Bertino, E.; Sandhu, R. Database security—Concepts approaches and challenges. IEEE Trans. Depend. Sec. Comput. 2005, 2, 2–19.

[CrossRef]
39. Maurer, U. Modelling a public-key infrastructure. In Proceedings of the Computer Security—ESORICS 96: 4th European

Symposium on Research in Computer Security, Rome, Italy, 25–27 September 1996; pp. 325–350. [CrossRef]
40. Salahdine, F.; Kaabouch, N. Social engineering attacks: A survey. Future Internet 2019, 11, 89. [CrossRef]
41. Gauravaram, P. Security analysis of salt||password hashes. In Proceedings of the 2012 International Conference on Advanced

Computer Science Applications and Technologies (ACSAT), Kuala Lumpur, Malaysia, 26–28 November 2012; pp. 25–30.
[CrossRef]

https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1109/SIELA49118.2020.9167043
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/COINS49042.2020.9191430
https://doi.org/10.1109/CRC50527.2021.9392440
https://doi.org/10.1016/j.cie.2021.107669
https://doi.org/10.3390/cryptography7010013
https://doi.org/10.3390/electronics11162491
https://doi.org/10.1109/NTMS.2019.8763849
https://doi.org/10.1007/s13369-020-04950-4
https://www.ncbi.nlm.nih.gov/pubmed/33072472
https://doi.org/10.1109/ACCESS.2021.3112608
https://doi.org/10.3390/sym13081363
https://doi.org/10.1109/ICOSST.2018.8632193
https://doi.org/10.1109/ACCESS.2022.3211422
https://doi.org/10.1109/ACCESS.2022.3186892
https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1109/ACCESS.2021.3051796
https://doi.org/10.1109/TSMC.2019.2895471
https://doi.org/10.1109/ACCESS.2020.3006078
https://doi.org/10.1016/j.rcim.2019.101897
https://doi.org/10.1109/TDSC.2005.9
https://doi.org/10.1007/3-540-61770-1_45
https://doi.org/10.3390/fi11040089
https://doi.org/10.1109/ACSAT.2012.49

Symmetry 2024, 16, 62 30 of 30

42. Chivers, I.; Sleightholme, J. An introduction to algorithms and the big O notation. In Introduction to Programming with Fortran;
Springer: Cham, Switzerland, 2015; pp. 359–364. [CrossRef]

43. Gayathri Santhosh, M.; Reshmi, T. Enhancing PKI Security in Hyperledger Fabric with an Indigenous Certificate Authority. In
Proceedings of the IEEE International Conference on Public Key Infrastructure and its Applications (PKIA), Bangalore, India, 8–9
September 2023; pp. 1–5. [CrossRef]

44. Wagner, D.; Schneier, B. Analysis of the SSL 3.0 protocol. In Proceedings of the 2nd USENIX Workshop on Electronic Commerce
Proceedings, Oakland, CA, USA, 18–20 November 1996; Volume 1, pp. 29–40. [CrossRef]

45. Anderson, C. Docker [Software Engineering]. IEEE Softw. 2015, 32, 102-c3. [CrossRef]
46. Ubuntu 20.04. Available online: https://releases.ubuntu.com/focal/ (accessed on 19 November 2023).
47. The Go Programming Language. Available online: https://go.dev/ (accessed on 19 November 2023).
48. Cadvisor. Available online: https://github.com/google/cadvisor (accessed on 19 November 2023).
49. Tolaram, N. Cadvisor. In Software Development with Go: Cloud-Native Programming Using Golang with Linux and Docker; Tolaram, N.,

Ed.; Apress: Berkeley, CA, USA, 2022; pp. 347–376. [CrossRef]
50. Prometheus. Available online: https://prometheus.io/ (accessed on 19 November 2023).
51. Chakraborty, M.; Kundan, A.P. Grafana. In Monitoring Cloud-Native Applications; Springer: Berlin/Heidelberg, Germany, 2021;

pp. 187–240.
52. Grafana. Available online: https://grafana.com/ (accessed on 19 November 2023).
53. Gilbert, H.; Handschuh, H. Security analysis of SHA-256 and sisters. In Proceedings of the International Workshop on Selected

Areas in Cryptography, Ottawa, ON, Canada, 14–15 August 2003; pp. 175–193.
54. Chauhan, A.; Malviya, O.P.; Verma, M.; Mor, T.S. Blockchain and scalability. In Proceedings of the IEEE International Conference

on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 122–128. [CrossRef]
55. Zou, K.H.; Tuncali, K.; Silverman, S.G. Correlation and simple linear regression. Radiology 2003, 227, 617–628. [CrossRef]
56. M’Raihi, D.; Machani, S.; Pei, M.; Rydell, J. TOTP: Time-Based One-Time Password Algorithm. Wilmington, DE, USA. 2011.

Available online: https://tools.ietf.org/html/rfc6238 (accessed on 17 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-319-17701-4_23
https://doi.org/10.1109/PKIA58446.2023.10262412
https://doi.org/10.5555/1267167.1267171
https://doi.org/10.1109/MS.2015.62
https://releases.ubuntu.com/focal/
https://go.dev/
https://github.com/google/cadvisor
https://doi.org/10.1007/978-1-4842-8731-6_18
https://prometheus.io/
https://grafana.com/
https://doi.org/10.1109/QRS-C.2018.00034
https://doi.org/10.1148/radiol.2273011499
https://tools.ietf.org/html/rfc6238

	Introduction
	Related Work
	Tracking Process
	Hash Graph

	Background
	Blockchain Platform
	Cryptographic Algorithms
	Hash Function
	Hash Chain

	Data-Tracking Management Process
	Structure of Data-Tracking Management Process
	Algorithm 1: Public-Key-Based Data Security
	Algorithm 2: Linking the Hash Chain
	Algorithm 3: Tracking
	Algorithm 3: Verification

	Algorithms for Data-Tracking Management Process
	Algorithm 1
	Algorithm 2
	Algorithm 3

	Complexity Analysis of Algorithms
	Abstract Data Types (ADTs) of Algorithms and Advanced ADTs
	ADTs of Each Algorithm
	Algorithm Complexity in Relation to Advanced ADTs

	Methods and Experiments
	Case Study
	Materials and Methodologies
	Experimental Environment
	Experimental Procedure

	Results
	Qualitative Analysis
	Quantitative Analysis
	Summary
	Prediction and Comparison of Tracking Time Based on Simple Linear Regression

	Discussion
	Application in Public Blockchains
	Constrained Experimental Environment and Scalability
	Application Domains and Case Studies in Data Tracking

	Conclusions
	Appendix A
	Appendix B
	References

