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Abstract: In this paper, we consider the sum of divisors d of n such that n/d is a power of 2 and
derive a new decomposition for the number of plane partitions of n in terms of binomial coefficients
as a sum over partitions of n. In this context, we introduce a new combinatorial interpretation of the
number of plane partitions of n.
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1. Introduction

Recall that a plane partition π of the positive integer n is a two-dimensional array
π = (πi,j)i,j>1 of non-negative integers πi,j such that

n = ∑
i,j>1

πi,j,

which is weakly decreasing in rows and columns:

πi,j > πi+1,j, πi,j > πi,j+1, for all i, j > 1.

If we ignore the entries equal to zero in a plane partition, it can be considered as
the filling of a Young diagram with positive integers with entries weakly decreasing in
rows and columns and such that the sum of all entries is equal to n. On the other hand,
there is a desirable way to represent a plane partition as a three-dimensional object: this is
achieved by replacing each part of size k of the plane partition by a stack of k unit cubes
(Figure 1). This is a natural generalization of the concept of classical partitions [1]. Different
configurations are counted as different plane partitions. As usual, we denote by PL(n) the
number of plane partitions of n. For convenience, we define PL(0) = 1.

4 4 3 2 2
4 3 2 1
3 2 1
1

→

Figure 1. Representation of a plane partition of 32.
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Plane partitions were introduced by MacMahon [2] who proved the following highly
non-trivial result:

∞

∑
n=0

PL(n) qn =
∞

∏
n=1

1
(1− qn)n , |q| < 1. (1)

The expansion starts as

∞

∏
n=1

1
(1− qn)n = 1 + q + 3 q2 + 6 q3 + 13 q4 + 24 q5 + 48 q6 + 86 q7 + · · · . (2)

An n-color partition of a positive integer m is a partition in which a part of size n
can come in n different colors denoted by subscripts: n1, n2, . . . , nn. The parts satisfy the
following order:

11 < 21 < 22 < 31 < 32 < 33 < 41 < 42 < 43 < 44 < . . .

They were introduced by A. K. Agarwal and G. E. Andrews [3] nearly a century after
MacMahon introduced pane partitions. For example, there are thirteen n-color partitions of 4:

(44), (43), (42), (41), (33, 11), (32, 11), (31, 11), (22, 22)

(22, 21), (21, 21), (22, 11, 11), (21, 11, 11), (11, 11, 11, 11).

It was pointed out in [3] that the right-hand side of (1) is also a generating function for
the number of n-color partitions. Thus, the following statement holds.

Theorem 1. The number of plane partitions of m equals the number of n-color partitions of m.

We also note that the set of plane partitions with strict decrease along columns (of
the Young diagram) is in one-to-one correspondence with the set of symmetric matrices
with non-negative integer entries ([1], Corollary 11.6). Moreover, by the Knuth–Schensted
correspondence ([1], Theorem 11.4), in the set of pairs of plane partitions (π, π′) in which
there is strict decrease along columns, each entry is at most k, and the corresponding rows
of π and π′s are of the same length are in bijection with the set of k × k matrices with
non-negative integer entries.

There is a well-known connection between plane partitions and divisors. In [4], it is
shown that

n PL(n) =
n

∑
k=1

PL(n− k) σ2(k),

where σ2(n) is the sum of squares of divisors of n, i.e.,

σ2(n) = ∑
d|n

d2.

In this article, we consider a restricted sum of divisors function and find connections
with the sequence PL(n).

For a positive integer n, we denote by sn the sum of divisors d of n such that n/d is a
power of 2. For example, the divisors of 12 are

1, 2, 3, 4, 6, 12.

Since
12/3 = 22, 12/6 = 21 and 12/12 = 20,

we have
s12 = 3 + 6 + 12 = 21.



Symmetry 2024, 16, 5 3 of 13

We remark that the sequence

(sn)n>1 = (1, 3, 3, 7, 5, 9, 7, 15, 9, 15, 11, 21, 13, 21, 15, 31, 17, 27, . . .)

is known and can be found in the On-Line Encyclopedia of Integer Sequence ([5], A129527).
The generating function for sn is given on the page for A129527. It can be derived as follows:

∞

∑
n=1

sn qn =
∞

∑
n=1

qn ∑
d|n

log2(n/d)∈N0

d =
∞

∑
d=1

d
∞

∑
n=0

q2n d

=
∞

∑
n=0

∞

∑
d=1

d q2n d =
∞

∑
n=0

q2n

(1− q2n)2 ,

where we have used the identity

∞

∑
d=1

d qd =
q

(1− q)2 , |q| < 1.

with q replaced by q2n
. On the other hand, it is not difficult to prove that

sn =

{
n, for n odd,
n + sn/2, for n even.

(3)

Logarithmic differentiation of the generating Function (1) gives the following identity:

∂

∂q
ln

(
∞

∑
n=0

PL(n) qn

)
=

∂

∂q
ln

∞

∏
n=1

1
(1− qn)n

=
∞

∑
n=1

∂

∂q
ln

1
(1− qn)n

=
∞

∑
n=1

n2 qn−1

1− qn

=
∞

∑
n=1

σ2(n) qn−1, |q| < 1. (4)

In Section 3, we show that

∞

∑
n=0

PL(n) qn =
∞

∏
n=1

(1 + qn)sn , |q| < 1. (5)

Then, logarithmic differentiation of the generating function (5) gives

∂

∂q
ln

(
∞

∑
n=0

PL(n) qn

)
=

∂

∂q
ln

∞

∏
n=1

(1 + qn)sn

=
∞

∑
n=1

∂

∂q
ln(1 + qn)sn

=
∞

∑
n=1

n sn qn−1

1 + qn

=
∞

∑
n=1

∑
d|n

(−1)1+n/d d sd

qn−1, |q| < 1. (6)

Equating the coefficients of qn−1 in the Equations (4) and (6), we obtain the follow-
ing identity:
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Theorem 2. For n > 1,
σ2(n) = ∑

d|n
(−1)1+n/d d sd.

On the other hand, by (4) and (6), we see that

∞

∑
n=1

n2 qn

1− qn =
∞

∑
n=1

n sn qn

1 + qn =
∞

∑
n=1

n sn qn

1− qn − 2
∞

∑
n=1

n sn q2n

1− q2n , |q| < 1.

Therefore, we deduce the relation

n =

{
sn, for n odd,
sn − sn/2, for n even,

which implies identity (3).
From (3), we see that Theorem 2 is trivial when n is odd. However, for n even, this

theorem provides an interesting decomposition of σ2(n). For example,

σ2(6) = 12 + 22 + 32 + 62 = 50.

The case n = 6 of Theorem 2 reads as follows:

σ2(6) = −1× 1 + 2× 3− 3× 3 + 6× 9 = 50.

For any positive integer m, we denote by PL(m)(n) the number of m-tuples of plane
partitions of non-negative integers n1, n2, . . . , nm where n1 + n2 + · · ·+ nm = n. Clearly,
PL(n) = PL(1)(n) and

PL(m)(n) = ∑
n1+n2+···+nm=n

PL(n1) PL(n2) · · · PL(nm).

For r ∈ {−1, 0, 1}, we define the numbers PL(m,r)(n) as follows:

PL(m,r)(n) =


PL(m)(n), for r = 0,
PL(m)(n)− PL(m)(n− 1), for r = −1,

n
∑

k=0
PL(m)(k), for r = 1.

(7)

Recently, Merca and Radu [6] considered specializations of complete homogeneous
symmetric functions and provided the following formula for PL(m,r)(n).

Theorem 3. For m > 1, r ∈ {−1, 0, 1} and n > 0,

PL(m,r)(n) = ∑
t1+2t2+···+ntn=n

(
m− 1 + r + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)
.

This formula provides a decomposition of PL(m,r)(n) as a sum over all the partitions
of n in terms of binomial coefficients involving the multiplicities of the parts.

In this paper, we provide a new decomposition of PL(m,r)(n) as a sum over partitions
of n in terms of binomial coefficients. This time, in addition to the multiplicities of part
sizes, we also need the sequence sn.
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Theorem 4. For m > 1, r ∈ {−1, 0, 1} and n > 0,

PL(m,r)(n) = ∑
t1+2t2+···+ntn=n

n

∏
j=1

(
S(m,r)

j
tj

)
,

where

S(m,r)
n =

{
m · sn + r, if n = 2k, k ∈ N0,
m · sn, otherwise.

The case m = 1 and r = 0 of Theorem 4 reads as follows.

Corollary 1. For n > 0,

PL(n) = ∑
t1+2t2+···+ntn=n

(
s1

t1

)(
s2

t2

)
· · ·
(

sn

tn

)
.

While the sum above is over all partitions of n, not all terms are non-zero. Due to
the fact that (sj

tj
) = 0 when tj > sj, in this sum it suffices to consider the partitions of n in

which, for each j ∈ {1, 2, . . . , n}, part j occurs at most sj times. For example, the partitions
of four with this restriction can be rewritten as

1× 0 + 2× 0 + 3× 0 + 4× 1,

1× 1 + 2× 0 + 3× 1 + 4× 0,

1× 0 + 2× 2 + 3× 0 + 4× 0. (8)

Therefore, the case n = 4 of Corollary 1 reads as follows:

PL(4) =
(

1
0

)(
3
0

)(
3
0

)(
7
1

)
+

(
1
1

)(
3
0

)(
3
1

)(
7
0

)
+

(
1
0

)(
3
2

)(
3
0

)(
7
0

)
= 7 + 3 + 3 = 13.

The case m = 2 and r = 0 of Theorem 4 gives the following identity:

Corollary 2. For n > 0,

n

∑
k=0

PL(k) PL(n− k) = ∑
t1+2t2+···+ntn=n

(
2s1

t1

)(
2s2

t2

)
· · ·
(

2sn

tn

)
.

Considering the partitions of four with t1 6 2, the case n = 4 of Corollary 1 reads
as follows:

4

∑
k=0

PL(k) PL(4− k) =
(

2
0

)(
6
0

)(
6
0

)(
14
1

)
+

(
2
1

)(
6
0

)(
6
1

)(
14
0

)
+

(
2
0

)(
6
2

)(
6
0

)(
14
0

)
+

(
2
2

)(
6
1

)(
6
0

)(
14
0

)
= 14 + 12 + 15 + 6 = 47.

On the other hand, according to (2) we can write

4

∑
k=0

PL(k) PL(4− k) = 1× 13 + 1× 6 + 3× 3 + 6× 1 + 13× 1

= 13 + 6 + 9 + 6 + 13 = 47.
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By Corollary 2, we easily deduce the following congruence identity.

Corollary 3. For n > 0,

∑
t1+2t2+···+ntn=n

(
2s1

t1

)(
2s2

t2

)
· · ·
(

2sn

tn

)
≡ PL

(n
2

)
(mod 2),

where PL(x) = 0 if x is not a non-negative integer.

As a consequence of Theorems 3 and 4, we remark the following identity.

Corollary 4. For m > 1, r ∈ {−1, 0, 1} and n > 0,

∑
t1+2t2+···+ntn=n

(
m− 1 + r + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)

= ∑
t1+2t2+···+ntn=n

n

∏
j=1

(
S(m,r)

j
tj

)
.

The remainder of this paper is organized as follows. In Section 2, we provide an
analytic proof of Theorem 4. In Section 3, we introduce a new combinatorial interpretation
for PL(n). In Section 4, we make a connection to the Josephus problem. In Section 5, we
give some concluding remarks.

2. Proof of Theorem 4

Elementary techniques in the theory of partitions [1] give the following generat-
ing function:

∞

∑
n=0

PL(m,r)(n) qn =
1

(1− q)r

∞

∏
n=1

1
(1− qn)m n , |q| < 1. (9)

In order to prove our theorem, we consider the identity

1 = (1− q)
∞

∏
k=0

(1 + q2k
), |q| < 1,

which can be rewritten as

1
1− q

=
∞

∏
k=0

(1 + q2k
), |q| < 1. (10)

Then, by (10), with q replaced by qn, we obtain

1
1− qn =

∞

∏
k=0

(1 + q2k ·n), |q| < 1. (11)

For |q| < 1, considering (10) and (11), the generating function of PL(m,r)(n) can be
rewritten as follows:

∞

∑
n=0

PL(m,r)(n) qn =
1

(1− q)r

∞

∏
n=1

1
(1− qn)m·n

=
∞

∏
k=0

(1 + q2k
)r ·

∞

∏
n=1

∞

∏
k=0

(1 + q2k ·n)m·n

=
∞

∏
n=1

(1 + qn)S(m,r)
n (12)
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=
∞

∏
n=1

S(m,r)
n

∑
j=0

(
S(m,r)

n
j

)
qj·n


=

∞

∑
n=0

qn ∑
t1+2t2+···+ntn=n

n

∏
j=1

(
S(m,r)

j
tj

)
,

where we have used Cauchy multiplication of power series.

3. A New Combinatorial Interpretation

In this section, we introduce a notion related to n-color partitions and use it to give a
new combinatorial interpretation for plane partitions.

Definition 1. An sn-color partition of a positive integer m is a partition in which a part of size
n can come in sn different colors denoted by subscripts: n1, n2, . . . , nsn . The parts satisfy the
following order:

11 < 21 < 22 < 23 < 31 < 32 < 33 < 41 < 42 < 43 < 44 < 45 < 46 < 47 < . . .

We denote by Qsn(m) the number of sn-color partitions of m into distinct parts. We set
Qsn(0) := 1. For example, there are thirteen sn-color partitions into distinct parts of 4:

(47), (46), (45), (44), (43), (42), (41), (33, 11),

(32, 11), (31, 11), (23, 22), (23, 21), (22, 21). (13)

Using elementary techniques [1], we obtain the following generating function for Qsn(m):

∞

∑
m=0

Qsn(m) qm =
∞

∏
n=1

(1 + qn)sn , |q| < 1.

On the other hand, by (12) with m = 1 and r = 0, we obtain a new expression of the
generating function of PL(n):

∞

∑
n=0

PL(n) qn =
∞

∏
n=1

(1 + qn)sn , |q| < 1. (14)

Thus, we deduce the following result for which we give a combinatorial proof.

Theorem 5. The number of n-color partitions of m equals the number of sn-color partitions of m
into distinct parts.

Proof. Given an integer n, we denote by no the largest odd divisor of n. Then, n = 2kno for
some non-negative integer k and

sn = no(1 + 2 + 22 + · · ·+ 2k) = no(2k+1 − 1) = 2n− no.

Since 1 6 no 6 n, it follows that n 6 sn 6 2n− 1. Note that, for odd n, we have sn = n.
Denote by Pn(m) the set of n-color partitions of m. We define a bijection ϕ : Pn(m)→

Qsn(m).
Start with λ ∈ Pn(m). For each part k j (size k, color j with 1 6 j 6 k) that occurs more

than once, we replace two parts equal to k j by a single part (2k)2k+j (part of size 2k, color
2k + j). Since 1 6 j 6 k, we have 2k + 1 6 2k + j 6 3k. Since s2k = 4k− ko and ko 6 k,
the obtained partition is an sn-partition. We repeat the process until parts are distinct and
obtain a partition µ ∈ Qsn(m). We define ϕ(λ) = µ.

To determine the inverse ϕ−1, start with µ ∈ Qsn(m). Note that if k j is a part of µ, and
k is odd then 1 6 j 6 k. For each part k j with j > k, it follows that k is even and we replace
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k j by two parts (k/2)j−k. Note that if k/2 is odd, then ko = k/2 and sk = 2k− k/2. Then,
1 6 j 6 2k− k/2 and 1 6 j− k 6 k/2. We continue the process until there are no parts k j

with j > k to obtain a partition λ ∈ Pn(m). Then, ϕ−1(µ) = λ.

Example 1. Consider
λ = (55

5, 52
4, 34

2, 33
1, 17

1) ∈ Pn(73).

Here, we used the frequency notation: 34
2 means that there are four parts of size 3 in color 2.

We replace two parts 55 by a part 1010+5 = 1015, etc. After replacing pairs of equal parts
(with equal colors), we obtain

(1015, 1015, 1014, 68, 68, 67, 55, 31, 23, 23, 23, 11).

Since the parts are not distinct, we continue to replace pairs. We obtain

ϕ(λ) = (2035, 1014, 1220, 67, 55, 47, 31, 23, 11) ∈ Qsn(73).

To see that ϕ(λ) ∈ Qsn(73), notice that

s20 = 40− 5 = 35, s10 = 20− 5 = 15, s6 = 12− 3 = 9,

s5 = 5, s4 = 8− 1 = 7, s3 = 3, s2 = 4− 1 = 3, s1 = 1.

Conversely, starting with

µ = (2035, 1014, 1220, 67, 55, 47, 31, 23, 11) ∈ Qsn(73),

we replace parts k j with j > k with two parts (k/2)j−k. For example, 2035 is replaced by 1015, 1015.
After replacing each such part with a pair, we obtain

(1015, 1015, 68, 68, 55, 54, 54, 31, 31, 31, 23, 23, 23, 11).

Since there are still parts k j with j > k, we continue the process to obtain

ϕ−1(µ) = (55, 55, 55, 55, 55, 54, 54, 32, 32, 32, 32, 31, 31, 31, 11, 11, 11, 11, 11, 11, 11).

We remark the following consequence of Theorems 1 and 5.

Corollary 5. The number of plane partitions of m equals the number of sn-color partitions of m
into distinct parts.

4. A Connection with Josephus Problem

The Josephus problem is a math puzzle with a grim description for which we refer the
reader to [7]. Here, we give a friendlier adaptation of the problem: n rocks, labeled 1 to n,
are placed in a circle. An person walks along the circle and, starting from the rock labeled 1,
removes every k-th rock. As the process goes on, the circle becomes smaller and smaller,
until only one rock remains.

We are interested in the case k = 2 of the Josephus problem. For k = 2, we denote by
Jn the order in which the first rock is removed. For example, if there are n = 7 rocks to
begin with, they are removed in the following order:

2, 4, 6, 1, 5, 3, 7.

Therefore, the rock labeled 1 is eliminated at the fourth removal. Therefore, J7 = 4.
The sequence

(Jn)n>1 = (1, 2, 2, 4, 3, 5, 4, 8, 5, 8, 6, 11, 7, 11, 8, 16, 9, 14, 10, . . .)
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is known and can be seen in the On-Line Encyclopedia of Integer Sequence ([5], A225381).
The sequence (Jn)n>1 can be defined as follows:

Jn =

{
(n + 1)/2, for n odd,
n/2 + Jn/2, for n even.

(15)

By (3) and (15), we easily deduce that

Jn =
1 + sn

2
,

for any positive integer n.
It is clear that our results can be expressed in terms of Jn. For example, we remark the

following version of Corollary 1:

Corollary 6. For n > 0,

PL(n) = ∑
t1+2t2+···+ntn=n

tk62Jk−1

(
2J1 − 1

t1

)(
2J2 − 1

t2

)
· · ·
(

2Jn − 1
tn

)
.

In this context, we denote by Ps(n) the set of partitions of n with tj 6 2Jj − 1, for each
j ∈ {1, 2, . . . , n}, and define ps(n) := |Ps(n)|. We set

Ps :=
⋃

n>0
Ps(n).

We also consider the set J defined as

J = {n Jn | n ∈ N}.

Conjecture 1. Let m, n be positive integers. If m 6= n, then m Jm 6= n Jn.

Note that, if n is odd, then nJn = n(n+1)
2 , a triangular number. Thus, if m, n are

both odd and m 6= n, then mJm 6= nJn.
For n > 0, we define:

1. QJe(n) to be the number of partitions of n into an even number of distinct parts
from J ;

2. QJo(n) to be the number of partitions of n into an odd number of distinct parts from J ;
3. QJeo(n) = QJe(n)−QJo(n).

In certain conditions, ps(n) satisfies Euler’s pentagonal number recurrence.

Theorem 6. Assuming Conjecture 1, for n > 0,

∞

∑
k=−∞

(−1)k ps
(
n− k(3k− 1)/2

)
=

{
0, for n odd,
QJeo(n/2), for n even.

(16)

Analytic Proof. The generating function for ps(n) is given by:

∞

∑
n=0

ps(n) qn =
∞

∏
n=1

(1 + qn + q2n + · · ·+ q(2Jn−1)n) =
∞

∏
n=1

1− q2n Jn

1− qn .
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Assuming Conjecture 1, elementary techniques in the theory of partitions [1] give the
following generating function:

∞

∑
n=0

QJeo(n) qn =
∞

∏
n=1

(1− qn Jn).

Thus, we can write

∞

∑
n=0

qn
∞

∑
k=0

(−1)k ps
(
n− k(3k− 1)/2

)
=

(
∞

∑
n=−∞

(−1)n qn(3n−1)/2

)(
∞

∑
n=0

ps(n) qn

)

=
∞

∏
n=1

(1− q2n Jn)

=
∞

∑
n=0

QJeo(n) q2n.

This concludes the analytic proof.

We also provide a combinatorial proof of Theorem 6. First, we introduce some notation.
We denote by P(n) the set of all partitions of n and set P := ∪n>0P(n). Given λ ∈ P , we
denote by `(λ) the number of parts in λ and by |λ| the sum of parts of λ (also referred to
as the size of λ). For a pair of partitions (λ, µ), we write (λ, µ) ` n to mean |λ|+ |µ| = n
(and similarly for a triple of partitions). In general, given a set A(n) of partitions of n (or
pairs of partitions with sizes adding up to n), we set A := ∪n>0A(n). We also write Ae(n)
(respectively, Ae(n)) for the subset of λ ∈ A(n) with `(λ) even (respectively, odd).

Combinatorial Proof of Theorem 6. Let Q(n) be the set of distinct partitions of n. As
explained for example in [1], Franklin defined a sign-reversing involution ϕF on a subset of
the set of distinct partitions of n to prove combinatorially that the generating function for
|Qe(n)| − |Qo(n)| equals

∞

∑
k=−∞

(−1)kqk(3k−1)/2.

We define
B(n) := {(λ, µ) ` n | λ ∈ Q, µ ∈ Ps}.

Hence, the left-hand side of (16) is the generating function for∣∣∣{(λ, µ) ∈ B(n) | `(λ) even}
∣∣∣− ∣∣∣{(λ, µ ∈ B(n) | `(λ) odd}

∣∣∣. (17)

We set 2J := {2nJn | n ∈ N} and define

C(n) = {(α, β) ` n | α ∈ P , β has parts in 2J}

and prove combinatorially that

ps(n) =
∣∣∣(α, β) ∈ C(n) | `(β) even}

∣∣∣− ∣∣∣(α, β) ∈ C(n) | `(β) odd}
∣∣∣.

To do this, we define an involution ψ on the subset C∗(n) of pairs (α, β) ∈ C(n) such
that α has at least one part in 2J or β 6= ∅. Let a be the largest part from 2J in α and β1
the largest part in β. If a > β1, remove part a from α and insert a part of size a into β. If
a 6 β1, remove part β1 from β and insert a part of size β1 into α. The obtained partition
(γ, η) := ψ(α, β) has `(η) 6≡ `(β) mod 2. Hence, ps(n) = |C(n) \ C∗(n)|. Moreover,
C(n) \ C∗(n) consists of pairs (α, ∅) ∈ C(n) such that α has no parts from 2J .
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Next, we define a Glaisher-type bijection ϕG between C(n) \ C∗(n) and Ps(n). Let
(α, ∅) ∈ C(n) \ C∗(n). For each part j is α with tj > 2Jj, replace 2Jj parts of size j by a part
of size 2jJj. We repeat the process until we obtain a partition ξ ∈ Ps(n), i.e., each part j of ξ
satisfies tj 6 2Jj − 1. Set ϕG(α, ∅) := ξ.

If the mapping j 7→ jJj is injective (i.e., if Conjecture 1 holds), the transformation ϕG is
invertible. Starting with a partition ξ ∈ Ps(n) if ξ has a part equal to 2jJj for some j, we
replace part 2jJj into 2Jj parts equal to j. We repeat the process until we obtain a partition α
with no parts in 2J .

Therefore, (17) equals∣∣∣{(λ, α, β) ` n | λ ∈ Q, (α, β) ∈ C}, `(λ) even , `(β) even}
∣∣∣

−
∣∣∣{(λ, α, β) ` n | λ ∈ Q, (α, β) ∈ C}, `(λ) even , `(β) odd}

∣∣∣
−
∣∣∣{(λ, α, β) ` n | λ ∈ Q, (α, β) ∈ C}, `(λ) odd , `(β) even}

∣∣∣
+
∣∣∣{(λ, α, β) ` n | λ ∈ Q, (α, β) ∈ C}, `(λ) odd , `(β) odd}

∣∣∣.
Finally, in a manner similar to ψ, we define an involution ζ on the set

{(λ, α) ` n | λ ∈ Q, α ∈ P} \ {(∅, ∅)}.

If λ1 > α1, move part λ1 from λ to α. Otherwise, move part α1 form α to λ. Clearly, ζ
changes the parity of `(λ).

The transformation that maps (λ, α, β) satisfying λ ∈ Q, α ∈ P and β has parts in 2J
to (ζ(λ, α), β) shows that that (17) equals∣∣∣(∅, ∅, β) ` n | β has parts in 2J , `(β) even}

∣∣∣
−
∣∣∣(∅, ∅, β) ` n | β has parts in 2J , `(β) odd}

∣∣∣.
Halving the parts of β completes the proof.

5. Concluding Remarks and Open Problems

In this section, we introduce some conjectures on the non-negativity of certain trun-
cated theta series involving sequences studied in this article.

In [8], Andrews and Merca considered the truncation of the theta series arising from
Euler’s pentagonal number theorem. They considered the number Mk(n) of partitions of
n in which k is the smallest integer that does not occur as a part and there are more parts
> k than there are < k. For example, we have M3(18) = 3 because the three partitions in
question are

(5, 5, 5, 2, 1), (6, 5, 4, 2, 1), (7, 4, 4, 2, 1).

As shown in [8], for every k > 1, Mk(n) is the coefficient of qn in the series

(−1)k

(
1− 1

(q; q)∞

k

∑
n=1−k

(−1)n qn(3n−1)/2

)
.

There is a substantial amount of numerical evidence to state the following conjecture.

Conjecture 2. For k > 1, all the coefficients of the series

(−1)k

(
1− 1

(q; q)∞

k

∑
n=1−k

(−1)n qn(3n−1)/2

)
∞

∏
n=1

(1− q2n Jn)

are non-negative. The coefficient of qn is positive if and only if n > k(3k + 1)/2.
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Considering the generating functions of ps(n) and QJeo(n), Conjecture 2 can be refor-
mulated in its combinatorial form:

Conjecture 3. For k > 1,

1. For n odd, we have

(−1)k−1
k

∑
j=1−k

(−1)j ps
(
n− j(3j− 1)/2

)
> 0,

with strict inequality if and only if n > k(3k + 1)/2.
2. For n even, we have

(−1)k

(
QJeo(n/2)−

k

∑
j=1−k

(−1)j ps
(
n− j(3j− 1)/2

))
> 0,

with strict inequality if and only if n > k(3k + 1)/2.

The work of Andrews and Merca was the impetus of much work on truncations of
different theta series. See, for example, [9–24]. Recently, Xia and Zhao [25] introduced
a new truncated version of Euler’s pentagonal number theorem. They considered the
number, P̃k(n), of partitions of n in which every positive integer 6 k occurs as a part at least
once and the first part larger that k occurs at least k + 1 times. For example, P̃2(17) = 9, and
the partitions in question are as follows:

(5, 3, 3, 3, 2, 1), (4, 4, 4, 2, 2, 1), (4, 4, 4, 2, 1, 1, 1), (4, 3, 3, 3, 2, 1, 1),

(3, 3, 3, 3, 2, 2, 1), (3, 3, 3, 3, 2, 1, 1, 1), (3, 3, 3, 2, 2, 2, 1, 1),

(3, 3, 3, 2, 2, 1, 1, 1, 1), (3, 3, 3, 2, 1, 1, 1, 1, 1, 1).

As shown in [25], for every k > 1, P̃k(n) is the coefficient of qn in the series

(−1)k−1

(
1− 1

(q; q)∞

k

∑
n=−k

(−1)k qn(3n−1)/2

)
.

Based on numerical evidence, we make the following conjecture which is analogous
to Conjecture 2.

Conjecture 4. For k > 1, all the coefficients of the series

(−1)k−1

(
1− 1

(q; q)∞

k

∑
n=−k

(−1)k qn(3n−1)/2

)
∞

∏
n=1

(1− q2n Jn)

are non-negative. The coefficient of qn is positive if and only if n > (k + 1)(3k + 2)/2.

The combinatorial interpretation of this conjecture reads as follows.

Conjecture 5. For k > 1,

1. For n odd, we have

(−1)k
k

∑
j=−k

(−1)j ps
(
n− j(3j− 1)/2

)
> 0,

with strict inequality if and only if n > (k + 1)(3k + 2)/2.
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2. For n even, we have

(−1)k−1

(
QJeo(n/2)−

k

∑
j=−k

(−1)j ps
(
n− j(3j− 1)/2

))
> 0,

with strict inequality if and only if n > (k + 1)(3k + 2)/2.
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