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Abstract: It is known that the excitations in graphene-like materials in external electromagnetic
field are described by solutions of a massless two-dimensional Dirac equation which includes both
Hermitian off-diagonal matrix and scalar potentials. Up to now, such two-component wave functions
were calculated for different forms of external potentials, though as a rule depending on only one
spatial variable. Here, we shall find analytically the solutions for a wide class of combinations of
matrix and scalar external potentials which physically correspond to applied mutually orthogonal
magnetic and longitudinal electrostatic fields, both depending really on two spatial variables. The
main tool for this progress is provided by supersymmetrical (SUSY) intertwining relations, specifically,
by their most general—asymmetrical—form proposed recently by the authors. This SUSY-like method
is applied in two steps, similar to the second order factorizable (reducible) SUSY transformations in
ordinary quantum mechanics.
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1. Introduction

The extensive study of two-dimensional massless Dirac equations in the presence
of external electromagnetic fields [1–7] is due to its connection with the properties of
electron carriers in graphene and graphene-like materials [8–11]. The actual task is to find
analytically the normalizable solutions of such a Dirac equation where two components
of the “spinor” wave function Ψ(x⃗) ≡ (ΨA(x⃗), ΨB(x⃗)) correspond to two sublattices of
graphene. The potentials in the equation have different origins: the off-diagonal matrix
term is provided by the electromagnetic vector-potential A⃗ = (A1(x1, x2), A2(x1, x2), 0) in
the “long derivatives” and leads to the magnetic field B⃗ = ∇⃗ × A⃗ along the z-axis, while
the scalar potential A0(x1, x2) describes the interaction with electrostatic or some other
scalar field:

[σ1(−i∂1 − A1(x⃗)) + σ2(−i∂2 − A2(x⃗)) + A0(x⃗)]Ψ(x⃗) = 0, (1)

where two-dimensional x⃗ ≡ (x1, x2), the derivatives ∂i ≡ ∂
∂xi

, and the charge is taken as
e = 1.

It is clear that the case of a pure magnetic field in a massless two-dimensional Dirac
equation is explicitly solvable. Indeed, when multiplying (1) without the term A0 by σ1, we
obtain a pair of decoupled first order equations which can be easily solved. The presence
in (1) of a term proportional to the unity matrix σ0 prevents this decoupling (an analogous
problem appears in the presence of the mass term proportional to σ3). Different methods
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have been used [12–23] to study such two-dimensional Dirac equations, mainly with strong
restrictions on the conditions of the problem. There are problems with only electrostatic
or only magnetic fields, as well as the problems with different specific one-dimensional
ansatzes for external fields depending on a variable x1 or radial variable r.

The supersymmetrical method inherent in Schrödinger Quantum Mechanics [24–26]
has become one of the most effective tools in the discussed problems [27–33]. As a rule,
the main ingredient of SUSY Quantum Mechanics, so-called SUSY intertwining relations, has
been explored in different forms. In the present paper, a class of external electromagnetic fields
is chosen with both magnetic (matrix) and electrostatic (scalar) terms depending effectively
on both spatial coordinates. Such progress is possible due to using a particular form of this
approach called asymmetric intertwining relations [34–36]. To date, this technique has been
explored to study the massless two-dimensional Dirac equation with scalar potential as well
as the Fokker–Planck equation [37]. More specifically, the procedure includes two steps (see
Section 2). First, asymmetric intertwining relations provide SUSY diagonalization of the
potential in Equation (1) with both the electromagnetic and electrostatic two-dimensional
terms (Section 3). In the second stage, an additional asymmetric intertwining connects the
Dirac operator with diagonal potential to its partner, for which the potential is similarly
diagonal but with constant elements (Section 4). The solutions of such a Dirac equation can
be found analytically; solutions to the initial problem are built by applying intertwining
operators of both steps (Section 5). Actually, the whole procedure realizes the asymmetric
form of factorizable SUSY intertwining of the second order. Such SUSY intertwinings are
known in their standard (symmetric) form [26] in the context of SUSY Quantum Mechanics
with Schrödinger operator.

2. Asymmetric Intertwining for Two-Dimensional Dirac Equation in an
Electromagnetic Field

We start with the asymmetric intertwining relations

D1N1 = N2D2 (2)

for a pair of two-dimensional massless Dirac operators of the form (1) rewritten as general
operators with Hermitian matrix potentials

D1,2 ≡ −iσk∂k + V1,2(x⃗); k = 1, 2; Vi(x⃗) =

(
v(i)11 (x⃗) v(i)12 (x⃗)
v(i)21 (x⃗) v(i)22 (x⃗)

)
; i = 1, 2. (3)

Two different intertwining operators have the general matrix form

N1 = Ak∂k + A(x⃗); N2 = Bk∂k + B(x⃗) (4)

with constant matrices Ak, Bk and two x⃗−dependent matrices A(x⃗), B(x⃗):

A(x⃗) =
(

a11(x⃗) a12(x⃗)
a21(x⃗) a22(x⃗)

)
; B(x⃗) =

(
b11(x⃗) b12(x⃗)
b21(x⃗) b22(x⃗)

)
. (5)

Expanding Equation (2) in powers of derivatives, we obtain

σk An − Bkσn + σn Ak − Bnσk = 0, k, n = 1, 2, (6)

iσk A(x⃗)− V1(x⃗)Ak = −BkV2(x⃗) + iB(x⃗)σk, k = 1, 2, (7)

iσk(∂k A(x⃗))− V1(x⃗)A(x⃗) = −Bk(∂kV2(x⃗))− B(x⃗)V2(x⃗), k = 1, 2. (8)

Equation (6) provide the following form for the constant coefficient matrices Ak, Bk:

A1 =

(
a b
d c

)
; A2 =

(
n −ib
id p

)
; B1 =

(
c d
b a

)
; B2 =

(
p −id
ib n

)
(9)
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with constant values a, b, c, d, n, p. Equation (7) provides the system of eight linear equations
for the matrix elements of V1,2(x⃗), A(x⃗), B(x⃗):

(p + ic)(v(1)12 − v(2)12 ) = 0; (10)

(n − ia)(v(1)21 − v(2)21 ) = 0; (11)

(n + ia)v(1)11 + 2idv(1)12 − (p + ic)v(2)11 = 2b12; (12)

(n + ia)(v(1)21 − v(2)21 ) + 2idv(1)22 − 2ibv(2)11 = −2a11 + 2b22; (13)

(p + ic)v(1)22 − 2ibv(2)12 − (n + ia)v(2)22 = −2a12; (14)

(n − ia)v(1)11 + 2idv(2)21 − (p − ic)v(2)11 = 2a21; (15)

(p − ic)(v(1)12 − v(2)12 ) + 2idv(2)22 − 2ibv(1)11 = −2b11 + 2a22; (16)

(p − ic)v(1)22 − (n − ia)v(2)22 − 2ibv(1)21 = −2b21. (17)

The first two equations of the system indicate the need to highlight four different possibili-
ties for solutions of (10)–(17), bearing the Hermiticity of both potentials in mind:

(I) p + ic = n − ia = 0;

(II) v(1)12 = v(2)12 ; v(1)21 = v(2)21 ; (p + ic)(n − ia) ̸= 0

(III) v(1)12 = v(2)12 ; v(1)21 = v(2)21 ; p + ic = 0;

(IV) v(1)12 = v(2)12 ; v(1)21 = v(2)21 ; n − ia = 0.

Thus, Equations (6) and (7) are reduced to the system of Equations (12) and (17)
in the four possible variants above. We have not yet considered the matrix differential
Equation (8). It is convenient to solve it in an indirect form using its combination with the
derivative ∂k of Equation (7):

V1(x⃗)A(x⃗)− B(x⃗)V2(x⃗) = (∂kV1(x⃗))Ak + i(∂kB(x⃗))σk. (18)

Below, all four variants are used to obtain the general solution of the initial intertwining
relations (2).

3. SUSY Diagonalization by Means of Intertwining

Substitution of p + ic = n − ia = 0, i.e., of Variant I above, into other Equations (12)–(17)
together with Equation (18) is quite long, but straightforward. These calculations lead to a
system of four nonlinear equations, two of them being differential:

v(1)11 (ia11 + bv(2)11 + av(2)21 ) = v(2)11 (ia22 + cv(2)12 + dv(2)22 ); (19)

v(1)22 (ia22 + cv(2)12 + dv(2)22 ) = v(2)22 (ia11 + bv(2)11 + av(2)21 ); (20)

i(v(2)12 − v(1)12 )(ia22 + cv(2)12 + dv(2)22 ) = 2∂z(ia22 + cv(2)12 + dv(2)22 ); (21)

i(v(2)21 − v(1)21 )(ia11 + bv(2)11 + av(2)21 ) = 2∂z̄(ia11 + bv(2)11 + av(2)21 ). (22)

Here and below, it is convenient to use the space arguments x⃗ of the functions in the
form of complex variables z = x1 + ix2; z̄ = x1 − ix2 and corresponding derivatives
∂ ≡ 1

2 (∂1 − i∂2); ∂̄ ≡ 1
2 (∂1 + i∂2). In particular, the system (19)–(22) takes the compact form:
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v(1)11 (z, z̄) f1(z, z̄) = v(2)11 (z, z̄) f2(z, z̄); (23)

v(1)22 (z, z̄) f2(z, z̄) = v(2)22 (z, z̄) f1(z, z̄); (24)

v(1)12 (z, z̄) = v(2)12 (z, z̄) + 2i∂ ln( f2(z, z̄)); (25)

v(1)21 (z, z̄) = v(2)21 (z, z̄) + 2i∂̄ ln( f1(z, z̄)), (26)

where two combinations are introduced:

f1(z, z̄) ≡ ia11(z, z̄) + bv(2)11 (z, z̄) + av(2)21 (z, z̄); (27)

f2(z, z̄) ≡ ia22(z, z̄) + cv(2)12 (z, z̄) + dv(2)22 (z, z̄). (28)

One may notice the apparent paradox contained in the system (19)–(22). All these
equations are identically fulfilled if

ia11 + bv(2)11 + av(2)21 = ia22 + cv(2)12 + dv(2)22 = 0

for arbitrary potentials V1, V2. The explanation is rather simple; in this case, the Dirac
operators D1, D2 are proportional to the intertwining operators D2 = CN1, D1 = N2C up to
some constant matrix C. Therefore, the intertwining relation (2) becomes a trivial identity
in such a case.

In the present context, the typical approach [24–26,34,36] to using SUSY intertwining
relations can be formulated as follows. Let us choose one of the Dirac operators, D2, such
that the corresponding Dirac equation is rather simple and the problem of its analytical
solution is more easy. Then, the solutions of the partner Dirac equation with operator
D1 are found through the action of the intertwining operator Ψ(1) = N1Ψ(2) (in turn, the
operator N†

2 transforms the spinor Ψ(1) into Ψ(2)). As the first step in this approach, we
choose the potential V2(x⃗) as a diagonal matrix:

V2(x⃗) = diag(v(2)11 (z, z̄), v(2)22 (z, z̄)) ≡ diag(v1(z, z̄), v2(z, z̄)) (29)

with real diagonal matrix elements. Then, due to Equations (23) and (24), the fraction
f2(z, z̄)/ f1(z, z̄) is a real function. Futhermore, Equations (25) and (26) and the Hermiticity
of V1(x⃗), i.e., v(1)12 (z, z̄) = v(1)⋆21 (z, z̄), lead to the following restriction:

f1(z, z̄) f ⋆2 (z, z̄) = c (30)

with an arbitrary real constant c. Summarizing these results, the potential V1 is expressed
in terms of the components (29), function f2(z, z̄), and real constant c:

V1(x⃗) =

(
| f2|2

c v1 2i∂ ln( f2)
−2i∂̄ ln( f ⋆2 )

c
| f2|2

v2

)
=

(
± f 2v1 2i(∂ ln( f ) + i∂φ)

−2i(∂̄ ln( f )− i∂̄φ) ± f−2v2

)
, (31)

where the function f2 is parameterized as

f2(z, z̄) ≡
√
±c f (z, z̄)eiφ(z,z̄). (32)

In the above, the sign ± corresponds to cases c > 0, c < 0, respectively, and f (z, z̄) is a
positive function connecting elements of the initial diagonal potential V2 as

v2(z, z̄) = f 4(z, z̄)v1(z, z̄). (33)
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For the physical system with matrix potential V1 describing a “spin 1/2 particle” in
the external electromagnetic field according to Equation (1), the diagonal elements of V1
define the electrostatic potential

A0(x⃗) = v(1)11 = v(1)22 = ±(v1v2)
1/2 = ± f 2(x⃗)v1(x⃗), (34)

while the off-diagonal terms define the magnetic field that is orthogonal to the plane x1, x2:

B3(x⃗) = ∇⃗ × A⃗(x⃗) = △ ln( f (x⃗)). (35)

The solutions of Dirac equations with such external fields can be obtained from the two-
component solutions Ψ(2)(x⃗) of Dirac equations with diagonal potential V2 by action
of the intertwining operator N; however, the diagonal form of the potential V2 does
not yet provide solvability of the corresponding Dirac problem analytically. Thus far,
supersymmetric intertwining relations (2) have connected an initial Dirac problem with
operator D1 to a Dirac problem with a potential V2 which is diagonal, and as such has a
chance of being solvable. By analogy with SUSY separation of variables, this part of the
procedure can be called SUSY-diagonalization of the two-dimensional Dirac problem with
matrix potential [38].

4. From Diagonal Potential to Constant Potential by Means of Intertwining

Let us now consider variant II with (p + ic)(n − ia) ̸= 0 for the solution of the
system (10)–(17) in the context of the second step of our procedure. Specifically, we consider
intertwining relations between two Dirac operators, both with diagonal potential:

U1(x⃗) =
(

v1(x⃗) 0
0 v2(x⃗)

)
; U2(x⃗) =

(
m1 0
0 m2

)
, (36)

with constant elements m1, m2. Here, the potential U1(x⃗) is identified with the potential
V2(x⃗) from the previous step, while the constant partner potential U2 provides solvability
of the problem. The intertwining operators N1, N2 have the same general form (4), and the
explicit expressions for matrices Ak, Bk, A(x⃗), B(x⃗) are found below, obtained by analytical
solutions of the system of equations in Section 2.

We shall consider the system of Equations (10)–(17) sequentially. Equations (10) and (11)
are fulfilled automatically. Equations (12), (14), (15) and (17) allow off-diagonal elements of
A(x⃗), B(x⃗) at (5) to be expressed in terms of v1(x⃗), v2(x⃗):

a12(x⃗) = −1
2
(p + ic)v2(x⃗) +

1
2

m2(n + ia); (37)

a21(x⃗) =
1
2
(n − ia)v2(x⃗)− 1

2
m1(p − ic); (38)

b12(x⃗) =
1
2
(n + ia)v1(x⃗)− 1

2
m1(p + ic); (39)

a12(x⃗) = −1
2
(p − ic)v2(x⃗) +

1
2

m2(n − ia). (40)

Equations (13) and (16) for diagonal elements of A(x⃗), B(x⃗) can be written as

b11(x⃗) = a22(x⃗) + ibv1(x⃗)− idm2; (41)

b22(x⃗) = a11(x⃗) + idv2(x⃗)− ibm1. (42)
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Equation (8) in its initial form is convenient to write now in complex coordinates z z̄ :

2i

[(
0 ∂
∂̄ 0

)
−
(

v1(z, z̄) 0
0 v2(z, z̄)

)](
a11(z, z̄) a12(z, z̄)
a21(z, z̄) a22(z, z̄)

)
=

−
(

b11(z, z̄) b12(z, z̄)
b21(z, z̄) b22(z, z̄)

)(
m1 0
0 m2

)
, (43)

where ∂ ≡ ∂z = 1
2 (∂1 − i∂2), ∂̄ ≡ ∂z̄ = 1

2 (∂1 + i∂2). In components, the matrix Equation
(43) is equivalent to the system of linear first-order differential equations:

2i(∂a21(z, z̄))− v1(z, z̄)a11(z, z̄) = −m1b11(z, z̄); (44)

2i(∂̄a12(z, z̄))− v2(z, z̄)a22(z, z̄) = −m2b22(z, z̄); (45)

2i(∂a22(z, z̄))− v1(z, z̄)a12(z, z̄) = −m2b12(z, z̄); (46)

2i(∂̄a11(z, z̄))− v2(z, z̄)a21(z, z̄) = −m1b21(z, z̄). (47)

Let us define for convenience

a11(z, z̄)− im1b ≡ g1(z, z̄); a22(z, z̄)− im2d ≡ g2(z, z̄). (48)

Then, after substitution of Equations (37)–(40) and Equations (41) and (42), the system (44)–(47)
takes the form

i(n − ia)(∂v1(z, z̄)) = v1(z, z̄)g1(z, z̄)− m1g2(z, z̄); (49)

i(p + ic)(∂̄v2(z, z̄)) = −v2(z, z̄)g2(z, z̄) + m2g1(z, z̄); (50)

4i(∂̄g1(z, z̄)) = (n − ia)(v1(z, z̄)v2(z, z̄)− m1m2); (51)

4i(∂g2(z, z̄)) = −(p + ic)(v1(z, z̄)v2(z, z̄)− m1m2), (52)

where the form of last two equations mean that functions g1(z, z̄), g2(z, z̄) can be expressed
in terms of one complex function g:

g1(z, z̄) = − 1
p + ic

(∂g(z, z̄)); g2(z, z̄) =
1

n − ia
(∂̄g(z, z̄)), (53)

which satisfies the second order equation:

4i(∂∂̄g(z, z̄)) = −(n − ia)(p + ic)(v1(z, z̄)v2(z, z̄)− m1m2) (54)

and the first two Equations (49) and (50) become

i(n − ia)(∂v1(z, z̄)) = − 1
p + ic

v1(z, z̄)(∂g(z, z̄))− 1
n − ia

m1(∂̄g(z, z̄)), (55)

i(p + ic)(∂̄v2(z, z̄)) = − 1
n − ia

v2(z, z̄)(∂̄g(z, z̄))− 1
p + ic

m2(∂g(z, z̄)). (56)

Thus,

Ω(∂v1(z, z̄)) + v1(z, z̄)(∂g(z, z̄)) = −L1(∂̄g(z, z̄)); (57)

Ω(∂̄v2(z, z̄)) + v2(z, z̄)(∂̄g(z, z̄)) = −L2(∂g(z, z̄)); (58)

Ω ≡ i(n − ia)(p + ic); L1 ≡ m1(p + ic)
n − ia

; L2 ≡ m2(n − ia)
p + ic

.

Below, we shall solve this system of equations by separately considering different options
for the choice of constant parameters.



Symmetry 2024, 16, 126 7 of 14

4.1. Case A: The Parameters Are Real

Let us study the case with real function g(z, z̄) and real values of parameters Ω, L1, L2.
Taking into account the reality of v1(z, z̄) and v2(z, z̄), it is useful to come back to the Carte-
sian coordinates x1, x2 in Equations (57) and (58). Separately, both the real and imaginary
parts of (57) are integrated explicitly with two “constants of integration” s1(x1), s2(x2),
which are arbitrary real functions of their arguments:

exp (g(x⃗)/Ω) = L−1
1 (s2(x2)− s1(x1)); (59)

v1(x⃗) = L1
s2(x2) + s1(x1)

s2(x2)− s1(x1)
. (60)

Analogously, Equation (58) can be integrated with a similar result:

exp (g(x⃗)/Ω) = L−1
2 (s̃2(x2)− s̃1(x1)); (61)

v2(x⃗) = L2
s̃2(x2) + s̃1(x1)

s̃2(x2)− s̃1(x1)
(62)

and arbitrary real s̃1(x1), s̃2(x2). Together, Equations (59) and (61) allow us to connect
s̃1(x1), s̃2(x2) with their analogues:

s̃1(x1) = L−1
1 L2(s1(x1) + δ); s̃2(x2) = L−1

1 L2(s2(x2) + δ), (63)

with an arbitrary real constant δ. These relations have to be substituted into expression (62).
Using these connections in the second-order differential Equation (54) for the function

g(x⃗) and differentiating it by ∂1∂2, we obtain the following simple third-order equation
with separable variables:

s′′′1 (x1)

s′1(x1)
+

s′′′2 (x2)

s′2(x2)
= −4L1L2 = −4m1m2. (64)

After separation ofthe variables in (64) and integration of one-dimensional equations, we
have

s′′1 (x1) = λ2
1s1(x1) + ω1λ2

1; s′′2 (x2) = λ2
2s2(x2) + ω2λ2

2, (65)

where ω1, ω2 are integration constants and λ1, λ2 are arbitrary constants which satisfy
the following relation:

λ2
1 + λ2

2 = −4m1m2.

The solutions of (65) are known:

s1(x1) =
1
2
(σ1eλ1x1 + δ1e−λ1x1)− ω1;

s2(x2) =
1
2
(σ2eλ2x2 + δ2e−λ2x2)− ω2.

Because we used derivatives of Equation (54), it is necessary to check the results. Substitu-
tion of (65) into (54) gives us two relations between the parameters:

ω1λ2
1 + ω2λ2

2 + 2δL1L2 = 0;

λ2
1(σ1δ1 − ω2

1) + λ2
2(σ2δ2 − ω2

2) = 0

Now, depending on the values of the constants, we can list all possible solutions
s1(x1), s2(x2) within Section 4.1. All are expressed in terms of hyperbolic, trigonometric,
and exponential functions, and have to be inserted into (63) to find u1(x⃗), u2(x⃗) according
to (60) and (62):

I. λ2
1 > 0; λ2

2 > 0; σ1δ1 > 0; σ2δ2 > 0.
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By additional translation of x1,2 functions, s1(x1), s2(x2) takes the form

s1(x1) = σ1 cosh(λ1x1)− ω1; s2(x2) = σ2 cosh(λ2x2)− ω2

with the restriction
λ2

1(σ
2
1 − ω2

1) + λ2
2(σ

2
2 − ω2

2) = 0.

II. λ2
1 > 0; λ2

2 > 0; σ1δ1 > 0; σ2δ2 < 0

s1(x1) = σ1 cosh(λ1x1)− ω1; s2(x2) = σ2 sinh(λ2x2)− ω2,

with restriction
λ2

1(σ
2
1 − ω2

1)− λ2
2(σ

2
2 + ω2

2) = 0.

III. λ2
1 > 0; λ2

2 > 0; σ1δ1 > 0; δ2 = 0

s1(x1) = σ1 cosh(λ1x1)− ω1; s2(x2) =
1
2

σ2 exp(λ2x2)− ω2,

with restriction
λ2

1(σ
2
1 − ω2

1)− λ2
2ω2

2 = 0.

IV. λ2
1 < 0; λ2

2 < 0; σ1 = δ⋆1 ; σ2 = δ⋆2

λ1 ≡ iΛ1; λ2 ≡ iΛ2

s1(x1) = σ1 cos(Λ1x1)− ω1; s2(x2) = σ2 cos(Λ2x2)− ω2;

with restriction
Λ2

1(σ
2
1 − ω2

1) + Λ2
2(σ

2
2 − ω2

2) = 0.

V. λ2
1 > 0; λ2

2 < 0; σ1δ1 > 0; σ2 = δ⋆2

λ2 ≡ iΛ2

s1(x1) = σ1 cosh(λ1x1)− ω1; s2(x2) = σ2 cos(Λ2x2)− ω2;

with restriction
λ2

1(σ
2
1 − ω2

1)− Λ2
2(σ

2
2 − ω2

2) = 0.

VI. λ2
1 > 0; λ2

2 < 0; σ1δ1 < 0; σ2 = δ⋆2

λ2 ≡ iΛ2

s1(x1) = σ1 sinh(λ1x1)− ω1; s2(x2) = σ2 cos(Λ2x2)− ω2;

with restriction:
λ2

1(σ
2
1 + ω2

1) + Λ2
2(σ

2
2 − ω2

2) = 0.

4.2. Case B: m2 = 0.

The case with m2 = L2 = 0 and real Ω, L1, g(x⃗) is considered below. For such a choice,
Equation (58) provides us with

v2(x⃗) = exp(g(x⃗)/Ω) =
C

s2(x2)− s1(x1)
, v1(x⃗) = L1

s1(x1) + s2(x2)

s2(x2)− s1(x1)
, (66)

while Equation (54) looks like

(s′′2 (x2)− s′′1 (x1))(s2(x2)− s1(x1))− ((s′1(x⃗1))
2 + (s′2(x⃗2))

2) = CL1(s1(x1) + s2(x2)). (67)
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After differentiation, the latter equation is again amenable to separation of variables,
similarly to (64), except with zero on the right-hand side. It has two different solutions
depending on the value of separation constant:

s1(x1) = a1x2
1 + b1x1 + c1; s2(x2) = a2x2

2 + b2x2 + c2 (68)

and
s′′1 (x1) = λ2(s1(x1) + ω1); s′′2 (x2) = −λ2(s2(x2) + ω2), (69)

with the latter having three kinds of explicit solutions to insert into (66):

s1(x1) = σ1 cosh(λx1)− ω1; s2(x2) = σ2 cos(λx2)− ω2;

s1(x1) = σ1 sinh(λx1)− ω1; s2(x2) = σ2 cos(λx2)− ω2;

s1(x1) =
1
2

σ1 exp(λx1)− ω1; s2(x2) = σ2 cos(λx2)− ω2;

and corresponding restrictions for the constants:

ω2
2 − ω2

1 + σ2
1 − σ2

2 = 0;

ω2
2 − ω2

1 − σ2
1 − σ2

2 = 0;

ω2
2 − ω2

1 − σ2
2 = 0;

λ2(ω2 − ω1)− CL1 = 0.

As for the polynomial solution (68), a few restrictions have to be fulfilled simultaneously:

A ≡ 2a1 + 2a2 + CL1 = 0. (70)

Finally, solution (68) leads to two different opportunities for the components of U1(x⃗). The
first is

v1(x⃗) = −L1
[CL1(c2x2

1 − c1x2
2) + 2(c2

1 − c2
2)]

CL1(c2x2
1 + c1x2

2) + 2(c1 − c2)2
; (71)

v2(x⃗) = − 2(c1 − c2)

CL1(c2x2
1 + c1x2

2) + 2(c1 − c2)2
; (72)

a1 =
Cc2L1

2(c1 − c2)
; a2 = − Cc1L1

2(c1 − c2)
; c1 ̸= c2,

while the second, with c1 = c2 = 0 and functions s1(x1) = a1x2
1, s2(x2) = −(a1 +

1
2 CL1)x2

2, is

v1(x⃗) = −L1
a1x2

1 − (a1 +
CL1

2 )x2
2

(a1 +
CL1

2 )x2
2 + a1x2

1

; v2(x⃗) = − C

(a1 +
CL1

2 )x2
2 + a1x2

1

. (73)

4.3. Case C: p + ic = 0.

Let us again consider intertwining of two Dirac operators, both with diagonal poten-
tial:

W1(x⃗) =

(
w(1)

11 (x⃗) 0
0 w(1)

22 (x⃗)

)
≡
(

v1(x⃗) 0
0 v2(x⃗)

)
; W2(x⃗) =

(
k1 0
0 k2

)
, (74)

and with constant elements k1, k2. Here, the matrix potential W1(x⃗) is identified with the
potential V2(x⃗) from Section 3, with the constant partner potential W2 providing solvability
of the problem. This means that Case C is an alternative option in relation to Cases B and C
from the Sections 4.1 and 4.2. The difference is that we now take p + ic = 0, i.e., variant III
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from Section 2, and it is clear that variant IV can be considered analogously. In this case,
the system (12)–(17) is expressed as follows:

b11 = a22 + ibv1 − idk2; b12 =
n + ia

2
v1; b21 = −pw2 +

n − ia
2

k2;

a12 =
n + ia

2
k2 = Const; a21 = −pk1 +

n − ia
2

v1.

The matrix differential Equation (18) takes the form

i(n − ia)∂v1(x⃗) = v1(x⃗)(a11(x⃗)− ibk1)− k1(a22(x⃗)− idk2);

v2(x⃗)(a22(x⃗)− idk2) = k2(a11(x⃗)− ibk1);

∂a22(x⃗) = 0;

2i∂̄a11(x⃗) =
n − ia

2
(v1(x⃗)v2(x⃗)− k1k2),

which by convenient definition

r1(x⃗) ≡ a11(x⃗)− ibk1; r2(x⃗) ≡ a22(x⃗)− idk2

can be reduced to two equations (r2(x⃗) = r2(z̄))

ik2(n − ia)∂(
v1(x⃗)
r2(z̄)

) = v1(x⃗)v2(x⃗)− k1k2, (75)

4i(∂̄r1(x⃗)) = (n − ia)(v1(x⃗)v2(x⃗)− k1k2), (76)

such that both v1(x⃗) and v2(x⃗) are expressed in terms of one function κ(x⃗) :

v1(x⃗) =
4r2(z̄)

k2(n − ia)
(∂̄κ(x⃗)); v2(x⃗) =

k2(n − ia)
r2(z̄)

(∂κ(x⃗)); r1(x⃗) = (n − ia)(∂κ(x⃗)), (77)

where function κ(x⃗) satisfies the following second-order differential equation:

i(∂∂̄κ(x⃗)) = (∂κ(x⃗))(∂̄κ(x⃗))− k; 4k ≡ k1k2. (78)

Because the right-hand side here is real, the real part of the function κ(x⃗) is a sum of two
mutually conjugated functions:

κ(x⃗) ≡ α(z) + ᾱ(z̄) + iξ(x⃗).

Due to Equation (77), the reality of both diagonal elements v1(x⃗), v2(x⃗) leads to the reality
of (∂κ(z, z̄))(∂̄κ(z, z̄)), which, in terms of α and ξ, means that

Im((∂κ(x⃗))(∂̄κ(x⃗))) = α′(z)∂̄ξ(x⃗) + ᾱ′(z̄)∂ξ(x⃗) = 0,

i.e., function ξ(x⃗) is an arbitrary real function of the specific real argument:

ξ(x⃗) = Φ(i(α(z)− ᾱ(z̄))) ≡ Φ(X); X(z, z̄) ≡ i(α(z)− ᾱ(z̄)). (79)

From Equation (78), we obtain a nonlinear differential equation for the function Φ:

Φ′′(X)− (Φ′(X))2 + 1 =
k

α′(z)ᾱ′(z̄)
. (80)

The left-hand side in (80) depends only on the variable X, which by definition satisfies the
following equation:

(
1

α′(z)
∂ +

1
ᾱ′(z̄)

∂̄)X(z, z̄) = 0;
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therefore, due to (80), we have

(
1

α′(z)
∂ +

1
ᾱ′(z̄)

∂̄)
1

α′(z)ᾱ′(z̄)
= 0,

allowing us to define possible forms of the function α(z). Indeed, the variables in the latter
equation can be separated:

α′′(z)
(α′(z))2 +

ᾱ′′(z̄)
(ᾱ′(z̄))2 = 0,

informing us that exactly two options exist for the function α(z):

a) α′(z) = ω; b) α′(z) =
iλ
z

, (81)

with ω being an arbitrary constant and λ an arbitrary real constant.
For the first option, r2(z̄) must be constant:

v1(x⃗) = 4e(1 + Φ′(X(z, z̄))); v2(x⃗) =
|ω|2

e
(1 − Φ′(X(z, z̄))); (82)

Φ′′(X) − (Φ′(X))2 + 1 =
k

|ω|2 ; e ≡ r2(z̄)ω̄
k2(n − ia)

,

and the parameters must provide that the constant e is real. Depending on the sign of
( k
|ω|2 − 1), one of two solutions is realized:

Φ′
1(X) = −η cos(ηX + µ); Φ′

2(X) = −η̃ ln(cosh(η̃X + µ̃)); (83)

(
k

|ω|2 − 1) ≡ η2 > 0; (
k

|ω|2 − 1) ≡ −η̃2 < 0.

For the second option, Equation (77) states that r2(z̄) = γz̄, constant iγ
n−ia must be

real, and

v1(x⃗) =
4λ2

β
(1 + Φ′(X)); v2(x⃗) =

β

zz̄
(1 − Φ′(X)); β ≡ ik2(n − ia)

γ
. (84)

Here, α(z) = iλ ln(z), ᾱ(z̄) = −iλ ln(z̄), and the equation for Φ(X) takes the form

Φ′′(X)− (Φ′(X))2 + 1 = kλ2e
X
λ . (85)

See [39] for more on solutions of this equation in terms of special functions.

5. Wave Functions and Electromagnetic Fields

In the previous sections, we performed two consecutive transformations of the Dirac
operator with the matrix potential using first-order intertwining operators, similar to the
SUSY intertwining in ordinary quantum mechanics. In this context, such operations are
known as second-order reducible (i.e., factorizable) SUSY transformations [26]. Unlike that
case, however, for the present problem with the Dirac operator we have used the asymmetrical
form of intertwining [34,36] in both steps.

The resulting Dirac equation, with potential which is a diagonal matrix with constant
elements at the diagonal (such as U2 in (36)), is amenable to a simple analytic solution.
Indeed, one of two components of Ψ(2)(x⃗) ≡ (Ψ(2)

A (x⃗), Ψ(2)
B (x⃗))T can be excluded, leading

to the second-order equation (Helmholtz equation) for another component:

(∆ + m1m2)Ψ
(2)
A (x⃗) = 0; Ψ(2)

B (x⃗) =
2i
m2

∂̄Ψ(2)
A (x⃗). (86)
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After separation of the variables in (86), its solution can be written as a linear combination
with arbitrary complex coefficients σk1k2 :

Ψ(2)
A (x⃗) = ∑

k1,k2

σk1k2 exp(k1x1) exp(k2x2) (87)

where the sum (actually, the integral) is over k1, k2, that is, arbitrary complex constants
such that k2

1 + k2
2 = −m1m2. The coefficients in the sum have to be determined using the

boundary conditions for the wave functions.
According to the intertwining relations of form (2), the solutions Ψ(1)(x⃗) ≡ (Ψ(1)

A (x⃗),

Ψ(1)
B (x⃗))T of the initial Dirac equation with potential V1(x⃗) can be constructed using the

sequential action of two intertwining operators N1Ñ1. The first operator N1 intertwines
two Dirac operators: the initial one with potential V1, and one with diagonal potential
(29) (see (2)). The second Ñ1 analogously intertwines the Dirac operator with potential
V2(x⃗) ≡ U1(x⃗) ≡ W1(x⃗) and the operator with either potential U2(x⃗) or W2(x⃗), depending
on whether we follow the exploration described in Sections 4.1 and 4.2 or Section 4.3 . These
intertwining operators have the general form (4), and the corresponding explicit expressions
for the coefficients Ak and A(⃗x) are derived in Sections 3 and 4.

The two-component wave functions Ψ(1)(x⃗) obtained by the above procedure can
describe graphene and similar materials in an external field (i.e., two-dimensional electro-
static plus non-homogeneous orthogonal magnetic). Analytical expressions for the strength
of these fields are known from the analytical expression for the initial potential V1(x⃗). The
strength of electrostatic field is directed along the (x1, x2) plane (see (34)):

E⃗(x⃗) = −∇⃗A0(x⃗) = −∇⃗( f 2(x⃗)v1(x⃗)), (88)

and the strength of B3 of the magnetic one (see (35)) is

B3(x⃗) = △ ln( f (x⃗)). (89)

The functions f (x⃗) are different for the different cases in Sections 4.1–4.3 and can be
calculated from the components v1(x⃗), v2(x⃗) according to (33). These components are
provided by (60) and (62) for Section 4.1, by (66) for Section 4.2, by (82) and (84) for
Section 4.3. The explicit expressions for these functions, mainly in terms of trigonometric
and hyperbolic functions, lead to corresponding expressions for the electromagnetic strengths
in terms of the same elementary functions.

For examples of possible configurations of external fields, we can use the particular
case of the polynomial solutions (68) and (70) for c1 = c2 = 0. The components v1(x⃗), v2(x⃗)
are provided by (73), while the function f (x⃗) is defined from

f 4(x⃗) =
v2(x⃗)
v1(x⃗)

=
2C
L1

[2a1x2
1 − (2a1 + CL1)x2

2]
−1.

According to (88) and (89), the strengths are

E1(x⃗) = 4
√

2CL1a1x1
2a1x2

1 − 3(2a1 + CL1)x2
2

[2a1x2
1 + (2a1 + CL1)x2

2]
3[2a1x2

1 − (2a1 + CL1)x2
2]

1/2
,

E2(x⃗) = 2
√

2CL1(2a1 + CL1)x2
6a1x2

1 − (2a1 + CL1)x2
2

[2a1x2
1 + (2a1 + CL1)x2

2]
3[2a1x2

1 − (2a1 + CL1)x2
2]

1/2
,

and

B3(x⃗) = 2(4a1 + CL1)(2a1x2
1 + (2a1 + CL1)x2

2)(2a1x2
1 − (2a1 + CL1)x2

2)
−2,

with the possibility of choosing arbitrary suitable values for all constant parameters.
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6. Conclusions

In this paper, a modification of the well-known method of asymmetrical intertwin-
ing relations from SUSY Quantum Mechanics has been used to build a massless two-
dimensional Dirac equation with nontrivial matrix potential with solutions that can be
found analytically. It was necessary to use factorizable second-order intertwining, which
includes two steps: the first allows the Dirac operator to be diagonalized, while the sec-
ond connects the latter operator with an explicitly solvable Dirac problem containing the
diagonal matrix potential with constant elements.
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