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Abstract: Following the discovery of an artificial protein cage with a paradoxical geometry, we
extend the concept of homogeneous symmetric congruent equivalent near-miss polyhedral cages, for
which all the faces are equivalent, and define bi-homogeneous symmetric polyhedral cages made
of two different types of faces, where all the faces of a given type are equivalent. We parametrise
the possible connectivity configurations for such cages, analytically derive p-cages that are regular,
and numerically compute near-symmetric p-cages made of polygons with 6 to 18 edges and with
deformation not exceeding 10%.

Keywords: uniform polyhedra; polyhedral cages; platonic group; near-miss cages; Cayley graph;
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1. Introduction

Recently, an artificial protein structure, referred to as TRAP-cage, was engineered from
the trp RNA-binding attenuation (TRAP) protein [1–4]. It is an 11-subunit RNA-binding
protein that regulates the expression of the genes involved in tryptophan metabolism (trp)
in Bacillus subtilis.

This nanocage consists of 24 nearly regular hendecagonal (polygon with 11 edges)
faces, each of which has 5 neighbours with which it shares an edge. The 6 edges per
face not shared with another face define the boundary of 38 holes; of these holes, 32 are
triangles to which 3 faces contribute 1 edge each. The other six holes are made from
the edges of four hendecagonal faces, which contribute to the holes with two of their
edges. Some similar nearly regular structures made of the same protein have been recently
identified [5,6].

The geometrical structure of the discovered protein cage was defined as a polyhedral
cage (p-cage) in [7]. Mathematically, the p-cage corresponding to the TRAP-cage cannot be
constructed with regular hendecagons; the edge lengths and angles of the hendecagonal
faces must be slightly deformed relative to a regular polygon [7,8]. These objects are called
near-miss p-cages.

Artificial polyhedral nanostructures are not new, and they are not restricted to proteins.
A good example is given by DNA origami [9–11]. Unlike protein nanocages, these DNA
structures are mostly hollow, as the DNA strands span the edges of what we call faces. This
being said, the regular or nearly regular geometries identified in this study could be useful
for a range of other nanostructures, such as DNA origami.

We should also point out that the concept of chemical cages is not new, and these
cages have been observed or made in a number of contexts [12–16]. Moreover, in chemistry,
polyhedral structures are also quite common [12,17–19].

Quite a range of artificial protein cages have recently been experimentally generated
[20–25]. Interestingly, and unlike virus capsids, most of them need metal atoms to create
the strong bonds required to bind the different proteins together [26]. The main aim for
generating these artificial nanocages is to develop new methods for drug delivery [27–31].
The drug is encapsulated inside the cage, while specific receptors are bound to the outside
of the cage to bind with the targeted cells (typically, cancer cells) [27]. Once inside the
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targeted cell, the protein cage opens to release the drug in the cytoplasm of the cell [32].
As a result, only the cells that are targeted receive the drug, instead of most of the cells of
the body, when the drug is injected in the blood stream. Moreover, it means that a smaller
quantity of the drug is needed, thus significantly reducing the cost when the drug is a very
expensive active compound.

The structure of virus capsids is essentially based on the geometry of platonic solids [33].
Some of the cages created experimentally, on the other hand, exhibit structures that are
completely different [2,5,6]. This raises the question as to which are the best geometries for
such cages [34–36]. In [7,8], large numbers of polyhedral cages were identified. They were
constructed by requiring that all the faces of a given p-cage to be equivalent.

In this study, we extended these studies by constructing p-cages made of two families
of polygons such that each face is equivalent to all the faces belonging to the same family.
As the number of such potential p-cages is very large, we also restricted ourselves to
p-cages where faces of a given type can only be attached to faces of the other type. Our aim
was is to provide bionanoengineers with a list of geometries from which nanocages can
be constructed, helping them to decide which polygonal protein structures to use to build
such cages, similar to those described in [1–4].

The structure of our paper is as follows: After a few formal definitions, we recall
how the planar graphs of regular solids are linked to the connectivity between the faces
of equivalent p-cages. We then construct all the planar graphs made of two families of
vertices such that each vertex of a given type is linked to a vertex of the other type and so
that each vertex of a given family is equivalent to all the other vertices of the same family.

We then use the obtained graphs and the corresponding solids to determine the
possible configurations for the corresponding p-cages; we used a computer program to
determine those that have regular faces or irregular faces with deformation not exceeding
10%. We conclude by describing the obtained p-cages and by presenting the images of
some regular ones as well as some of the least deformed (near-miss) ones.

2. Bi-Homogeneous Symmetric-1-2 Polyhedral Cages

As defined in [7,8], a polyhedral cage is an assembly of planar polygons, which we call
faces, and holes, which are usually neither planar nor regular. Every edge must then either
belong to two faces or to one face and a hole. The edges of the polygonal faces adjacent
to another face are called shared edges, while the edges adjacent to a hole are called hole
edges. We also impose the following two conditions: When two edges are adjacent to each
other, at least one of them must be adjacent to a hole. Moreover, each face must have at
least three neighbours. Together, these two conditions imply that the faces of the p-cages
must have at least six edges.

A p-cage is said to be convex if the holes can be filled in with triangles in such a way
that the resulting polyhedron is convex. In what follows, we only consider convex p-cages.

If all the faces of a p-cage are polygons with the same number of edges, the p-cage
is said to be homogeneous [7]. We now define bi-homogeneous symmetric-1-2 (BiHS12)
p-cages as p-cages made of two types of polygons, where all the faces of a given type are
equivalent, such that for each pair of faces of a given type, there is a congruent automor-
phism (a proper rotation) of the p-cage that maps one of the faces onto the other. This
implies that all the faces of a given type are identical.

P-cages made of regular polygons are defined as regular. If, on the other hand, the faces
are slightly irregular, the p-cages are said to be a near miss. For some near-miss p-cages,
the deformations are so small that they can hardly be noticed with the naked eye, while
for other p-cages, they can be rather large. As a result, we define below a measure of the
amount of deformation and restrict ourselves to deformations not exceeding 10%.

On any face, between the shared edges, there are some hole edges. On the planar
graph corresponding to the hole polyhedron of the cage, these numbers may be added
as labels qi,v around each vertex v, where there is one such label between any two edges
around the vertex, so i goes from 1 to the rank of vertex v. In the case of a bi-homogeneous
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cage, the labels around each vertex corresponding to a face of type 1 or 2 are identical;
so, instead of the index v, in qi,v, one may use the notation qi and Qi for the two types of
vertices of the graph.

In what follows, we use N1 and N2 to denote the number of faces of type 1 and 2 of
the p-cage and P1 and P2 to denote the number of edges of the faces of each type. Each hole
will be made of Ωh edges where we include a hole index h as a p-cage can have different
types of holes.

3. Bi-Homogeneous-Symmetric-1-2 P-Cage Construction

As described in [7,8], joining the centres of the faces of the p-cage that share one edge
generates an irregular polyhedron, which does not usually have planar faces, but the corre-
sponding graph is a planar graph [37] (see Figure 1). We called this irregular polyhedron
the hole-polyhedron because, by construction, the faces, the vertices and the edges corre-
spond, respectively, to the holes of the p-cage, the faces of the p-cage, and the links between
the p-cage faces. This corresponds to the dual of the p-cage as it clearly encapsulates the
connectivity between the p-cage faces.

3

1

1
1
1

4

Figure 1. Schematic construction of the hole polyhedron of a p-cage.The number of hole–edges is
written on one hexagon and one hendecagon. The hole–edges are coloured in yellow, except for the
faces on the opposite side seen through the holes, while the shared edges are black.

Equivalence between the faces of the p-cage is translated onto an equivalence between
the vertices of the hole–polyhedron. The planar graphs of the hole-polyhedron for bi-
homogeneous-symmetric p-cages have vertices split in two sets; for any two vertices of a
given type, there is an automorphism of the graph that maps one of the vertices into the
other. The number of such graphs is very large, and we restrict ourselves to graphs where
the vertices of a given type are linked to vertices of the other type. This is equivalent to
saying that the p-cage faces of type 1 are neighbours of faces of type 2 and vice versa. We
call these planar graphs BiHS12 planar graphs.

To construct a p-cage, one must first chose a BiHS12 planar graph and place polygons
of type 1 onto each type 1 vertex of the BiHS12 planar graph and place polygons of type 2
onto the type 2 vertices. The hole–edges can be distributed in different ways between the
corners around each vertex. For example, when placing an octagon on a trivalent vertex,
such as on a tetrahedron, there are three shared edges and five hole–edges that must be
distributed between the three adjacent faces of the planar graph. This can be achieved
as 1,1,3 or 1,2,2, plus permutations, and this must also be performed for each face of the
p-cage in such a way that the faces of the p-cage are all equivalent (see [7]).

Formally, given a BiHS12 planar graph, if a type 1 vertex, on which we place a P1-gonal
face for the p-cage, has d neighbours, then the numbers qi (i = 1 . . . d) of hole–edges on
each corner around that vertex must satisfy ∑d

i=1 qi = P1 − d. Similarly, for type 2 vertices,
we have ∑d

i=1 Qi = P2 − d. Requiring the faces of the p-cage be equivalent implies that the



Symmetry 2023, 15, 1804 4 of 29

corresponding vertices of the hole–polyhedron graph must be equivalent. This implies that
the sequence qi must be identical for all the type 1 vertices up to a cyclic rotation, which is
also determined by the equivalence between the hole–polyhedron vertices. Similarly, the
sequence Qi must be identical for all the type 2 vertices. As we shall see, for some p-cages,
the equivalence imposes that some pairs of qi and Qi must be identical.

As a first step, we characterise all the BiHS12 planar graphs.

4. Bi-Homogeneous-Symmetric-1-2 Planar Graphs

We denote, respectively, the number of vertices, faces, and edges of the planar graph
by V, F, and E; and, by Euler’s formula, they satisfy the constraint V + F− E = 2. We have
vertices of 2 different numbers of edges, L1 and L2, and we denote the number of vertices
of type j by Vj.

If adjacent vertices are of different types, the vertices around a face of the planar graph
must be of alternating types, implying that the planar graph faces must have an even
number of edges and have the same number of vertices of each type. In a planar graph,
each edge belongs to two faces; therefore, the number of edges can be obtained as one half
of the sum of edges of the faces. Let fi denote the number of faces with 2i edges; with
this notation,

E = ∑
i

i fi . (1)

As we assumed that vertices of type 1 are only connected to those of type 2; each edge
belongs to a type 1 and a type 2 vertex. Again, the number of edges is obtained as

E = L1V1 = L2V2 . (2)

As all edges have one end on a type 1 and one on a type 2 vertex, the number of
vertices in any of the types can be obtained by dividing the total number of edges with the
ranks of the vertices in one type,

Vj =
E
Lj

= ∑
i

i fi
Lj

, (3)

where, in the second equality, we used (1). Plugging V = V1 + V2 and (2), written in the
form E = (L1V1 + L2V2)/2, into Euler’s formula yields

F + V1

(
1− L1

2

)
+ V2

(
1− L2

2

)
= 2 . (4)

The total number of faces is the sum of the number of faces with a given number
of edges,

F = ∑
i

fi , (5)

which, together with (4), yields

2L1L2 = ∑
i

fi[L1L2 + i(L1 + L2 − L1L2)] . (6)

Moreover, if each vertex of type j belongs to vj,i faces with i vertices of each type,

Vj =
i fi
vj,i

. (7)

and

∑
i

vj,i = Lj. (8)
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One must therefore find all the i and fi satisfying (6). Then, compute V1 and V2
using (3), which must be integers, and compute v1,i and v2,i using (7), which must also
be integers that satisfy (8). We wrote a computer program that tests these conditions
and solved this problem for the cases L1 ∈ [3− 6] and L2 ∈ [L1 − 6]. After eliminating
the numerical solutions that did not correspond to any planar graph, we obtained the
graphs described below. The naming convention for the corresponding p-cages is similar
to the one used in [8], i.e., NAME_Pp1_Pp2_q1_ . . . _qn − Q1_ . . . _QN where NAME is
one of sp, Ato, Atco, Atid, DArd, or DArt for, respectively, the square prism, the truncated
octahedron, the truncated cuboctahedon, the truncated icosidodecahedron, the rhombic
dodecahedron (dual of the cuboctahedon), and the rhombic triacontahedron (dual of
the icosidodecahedron). p1 and p2 are the numbers of edges for faces of type 1 and 2
respectively, while qi and Qi (see Section 2) are the number of hole edges for faces of
type 1 and 2, respectively. When naming or labelling the p-cages we use the following
equivalences: a = q1, b = q2, c = q3 and A = Q1, B = Q2, C = Q3, D = Q4, E = Q5.

Using our computer program, we found that the only BiHS12 planar graphs are,
as shown in Figure 2, the following:

(a) (b) (c))

(d) (e) (f)

Figure 2. Bi-homogeneous-symmetric-1-2 planar graphs: (a) square prism, (b) truncated octahedron,
(c) truncated cuboctahedron, (d) truncated icosidodecahedron, (e) rhombic dodecahedron, and
(f) rhombic triacontahedron.

• The graph of any prism with a P-gon base where P is even: L1 = L2 = 3, V1 = V2 = P,
n2 = P, nk = 2, v1,2 = v2,2 = 2, v1,k = v2,k = 1. We only consider the square prism,
as prisms with larger bases lead to cages with very large holes [8]. The p-cages are
named sp_Pp1_Pp2_a_b_c-A_B_C.

• The graph of the truncated octahedron is: L1 = L2 = 3, V1 = V2 = 12, n2 = 6, n3 = 8,
v1,2 = v2,1 = 1. v1,k = v2,k = 2. The p-cages are named Ato_Pp1_Pp2_a_b_c-A_B_C

• The chiral graph of the truncated cuboctahedron is: L1 = L2 = 3, V1 = V2 = 26,
n2 = 12, n3 = 8, n4 = 6, v1,2 = v2,1 = 1, v1,3 = v2,3 = 1, v1,4 = v2,4 = 1. The p-cages
are named Atco_Pp1_Pp2_a_b_c-A_B_C.

• The graph of the truncated icosidodecahedron: L1 = L2 = 3, V1 = V2 = 60, n2 = 30,
n3 = 20, n5 = 12, v1,2 = v2,1 = 1, v1,3 = v2,3 = 1, v1,5 = v2,5 = 1. The p-cages are
named Atid_Pp1_Pp2_a_b_c-A_B_C.
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• The graph of the rhombic dodecahedron, the dual of the cuboctahedron, is: L1 = 3,
L2 = 4, V1 = 8, V2 = 6, n2 = 12, v1,2 = 3, v2,2 = 4. The p-cages are named
DArd_Pp1_Pp2_a_b_c-A_B_C_D.

• The graph of the rhombic triacontahedron, the dual of the icosidodecahedron, is:
L1 = 3, L2 = 5, V1 = 10, V2 = 12, n2 = 30, v1,2 = 3, v2,2 = 5. The p-cages are named
DArt_Pp1_Pp2_a_b_c-A_B_C_D_E.

5. Labelling of Hole–Edges

We now identify all the possible configurations for the BiHS12 p-cages before we
determine the coordinate positions of all the vertices corresponding to the planar faces for
the p-cages. We then select those for which the face deformation, defined below, does not
exceed 10%.

In this section, we list all the planar graphs we identified as having equivalence
symmetry and label the corners around each vertex of the graphs so that there is an
automorphism of the graph, making all the vertices of type 1 equivalent to each other and
all the vertices of type 2 equivalent to each other.

Note that swapping a, b, c with A, B, C corresponds to swapping P1 and P2 and leads
to the same or the chiral p-cage, so we only need to consider p-cages with P2 ≤ P1.

5.1. sp_Pp1_Pp2_a_b_c-A_B_C

As there are two vertices of a given type on the same square, at least one of them must
face the same type of vertex on the same square. We label this a. The other two, b and
c, can either face each other or face the same label. If b faces c, then a = b = c. The only
possibility is for each label to face the same label diagonally opposite, and this applies to
the two types of vertices. See Figure 3a.

Other prisms have a similar labelling with alternating labels a and A on the base of the
prism, while the quadrilaterals on the sides have alternating bBbB and cCcC labels.

There are equivalences between labels. The permutation, a ⇔ A, b ⇔ C, c ⇔ B
corresponds to a rotation of the square prism, while a ⇔ A, b ⇔ B, c ⇔ C corresponds
to the chiral p-cage. Moreover, any cyclic permutation of the pairs a, A, b, B, and c, C
corresponds to a chiral or an identical p-cage.

5.2. Ato_Pp1_Pp2_a_b_c-A_B_C

One of the labels must be placed on the square, for which we use the lettera. Then, via
construction, some of the hexagons are all b, and the others are all c. The same applies to
both types of vertices. See Figure 3b.

If P1 = P2 and a = A, b = B, and c = C, then Ato_Pp_Pp_a_b_c-a_b_c is identical or
the chiral version of Ato_Pp_Pp_a_c_b-a_c_b.

5.3. Atco_Pp1_Pp2_a_b_c-A_B_C

By equivalence, a given label must be placed either on a square, a hexagon, or an
octagon. See Figure 3c.

5.4. DArd_Pp1_Pp2_a_b_c-A_B_C_D

By equivalence, a given label must be placed either on a square, an hexagon, or a
decagon. See Figure 3d.
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Figure 3. Labelling for the (a) cube, (b) truncated octahedron, (c) truncated cuboctahedron,
(d) truncated icosidodecahedron, (e) rhombic dodecahedron, and (f) rhombic triacontahedron. (The
labels on type 1 vertices are not shown.)

5.5. DArd_Pp1_Pp2_a_b_c-A_B_C_D

The symmetry group of the rhombic dodecahedron is the symmetry group of the cube.
For the two types of faces to be equivalent, one must find a subgroup that acts transitively
on each set of vertices. This means that we have to find a subgroup for which the order is a
multiple of 6 and 8, and this corresponds to the full symmetry group of the cube, which
is of order 24 [8,37–39]. Applying that symmetry, we easily see that the only equivalent
configuration is to have a = b = c and A = B = C = D. See Figure 3e.

5.6. DArt_Pp1_Pp2_a_b_c-A_B_C_D_E

The symmetry group of the rhombic triacontahedron is the symmetry group of the
dodecahedron. For the two types of faces to be equivalent, one must find a subgroup that
acts transitively on each set of vertices. This means that we have to find a subgroup for
which the order is a multiple of 10 and 12; this corresponds to the full symmetry group of
the dodecahedron that is of order 60 [8,37–39]. Applying that symmetry, we easily see that
the only equivalent configuration is to have a = b = c and A = B = C = D = E. See Figure 3f.

6. Optimisation

Having identified all the possible configurations for the p-cage, we proceed by defining
a measure for the deviations of the faces from regular polygons. We also define a function
that measures the irregularity of the p-cage so that we can later use a simulated annealing
method to determine the configurations that are regular or the least irregular.

For a p-cage to be regular, all the faces, all the edges, and all the angles of the polygonal
faces must be identical. For a P-gon, this means that all the edges must have the same
length L and the same angle π(1− 2/P). Near-miss p-cages are p-cages where the faces
are not regular polygons but close to being regular. Irregular faces have edge lengths and
angles slightly different from those of a regular one.

To evaluate the level of regularity of the p-cage, we first determine the distance di
between vertices i and i + 1 as well as the angle αi between the segments (i − 1, i) and
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(i, i + 1). Defining the following energy function to evaluate the deformation of each type
of face

Ej =

Pj

∑
i=1

cl

(
di − L

L

)2
+ ca

αi − π(1− 2
Pj
)

π(1− 2
Pj
)

2
, (9)

the function we have to minimise is

E =
1

P1 + P2

(
E1 + E2 + cc EFconv + cpc EPconv

)
(10)

where cl , ca, and cc are three weight factors. EFconv, given explicitly by (12), is 0 unless the
polygon defined by the vertices is concave. EPconv, given explicitly by (13), is 0 unless the
p-cage is concave. These last two terms were used in the simulated annealing to enforce
the convexity of the faces and the p-cage by taking large values for cc and cpc.

We divide the sum by P to approximately set the same energy scale for each P. This
facilitates the parametrisation of the optimising algorithm.

We consider all p-cages with P = 6 to 18. As large values of q and Q lead to very large
holes, we restrict ourselves to values of qi and Qi taking values between 1 to 5.

To characterise the face, with normal vector m f , we define ni as its vertices, ordered
anticlockwise. Then, to measure the angle αi and edge length di, we define vi = ni − ni−1,
evaluate vi × vi+1, and

if (vi × vi+1) ·m f ≥ 0 : αi = π − acos(
(vi · vi+1)

|vi||vi+1|
), di = |vi|,

if (vi × vi+1) ·m f < 0 : αi = π + acos(
(vi · vi+1)

|vi||vi+1|
), di = |vi|. (11)

Note that αi in (11) corresponds to the angle inside the face, which is larger than π if the
face is not convex. If m f is the vector normal to the face and if ni are running anticlockwise
when seeing the face in the direction of n f , then, using the Heaviside function H(x),

EFconv =
1
P ∑

i

[
H
(
(vi × vi+1) ·m f

)]
. (12)

If Vi is the position of the centre of face i and if we consider two adjacent faces Vi and
Vj with normal vectors mi and mj, respectively, we can check if the p-cage is convex by
computing the distance between the centres of the two faces as well as the distance between
Vi + mi and Vj + mj. If the latter is the largest for all pairs of adjacent faces, then the p-cage
is convex. We can then use the following expression for EPconv:

EPconv =
1
P ∑

i

[
H
(
|Vi − Vj|2 − |Vi + mi − Vj + mj|2

)]
. (13)

We define the length and angle deformations as follows:

• Length : ∆l = maxi

(
| di−L

L |
)

• Angle : ∆a = maxi

(
| αi−π(1− 2

P )

π(1− 2
P )
|
)

In most cases, near-miss p-cages can be deformed smoothly, changing the edge lengths
as well as the angles and, as a result, both ∆l and ∆a. Identifying near-miss p-cages for
a given connectivity (fixed hole–polyhedron, P1, P2, qi, and Qi) consists of finding the
geometry that minimises ∆l and ∆a. This can be achieved by minimising the function (10)
over the coordinates of the vertices. As in [7], we performed this using a simulated
annealing algorithm, for a range of values of cl and ca satisfying the constraint cl + ca = 2.
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After removing those with crossing faces from the obtained p-cages, we selected the
configuration with the smallest deformation, i.e., those for which the maximum value of ∆l
and ∆a was the smallest.

Some regular convex p-cages (∆l = ∆a = 0) for P1 = P2 were already derived
analytically in [7].

7. Parametrisation

In order to parameterise the p-cages, we introduce the following parametrisation of
the planes containing the reference faces

P1(t1, t2) = Vi + t1vi1 + t2vi2, P2(s1, s2) = Wi + s1wi1 + s2vi2, (14)

where i is the index of the faces adjacent to the first plane, while t1, t2, s1, and s2 are
parameters. V and W are arbitrary vectors, and the plane basis vectors vi1 and vi2 can be
assumed to be orthonormal, similarly for wi1 and wi2.

For near-miss p-cages, the vectors V and W are adjusted using a simulated anneal-
ing procedure, while their orientations are constrained by the symmetry of the p-cage.
As a starting point, we consider that V0 and W0 point to two adjacent vertices of the
hole–polyhedron.

We then chose some simple vectors: v0 for the first plane of type 1 and w0 for the first
plane of type 2, and use

v11 =

(
1−

V1V t
1

|V1|2

)
v0, v12 =

V1 × v11

|V1 × v11|2
,

w11 =

(
1−

W1W t
1

|W1|2

)
w0, w12 =

W1 ×w11

|W1 ×w11|2
. (15)

The vectors spanning the other faces are obtained using the symmetry of the p-cage.
One of the problems we have to solve is to find the intersection between these two

planes. First, we define the normal vectors, p and q, to the planes as well as the vector u
parallel to the plane intersection:

p = v1 × v2, q = w1 ×w2, u = q× p. (16)

In order to fix a specific point on the line of intersection, we choose the one that is
perpendicular to u. We then have

U = V + t1v1 + t2v2 = W + s1w1 + s2w2 (17)

and multiplying (17) by u leads to a relationship between t1 and t2 as well as between s1
and s2. Now, multiplying (17) by q, we obtain an expression for t1 that, as detailed in [8],
when inserted back into (17), gives

U = V +
(q · (W − V))(u · v2) + (u · V)(q · v2)

(q · v1)(u · v2)− (u · v1)(q · v2)

(
v1 −

(u · v1)

(u · v2)
v2

)
− (u · V)

(u · v2)
v2. (18)

We are now ready to construct each family of p-cages one by one by considering their
specific symmetries.

7.1. Square Prism

The vertices of the square prism that are opposite to each other on the prism face
span two not necessarily regular tetrahedra on which the faces of both types are placed.
These two tetrahedra can then be rotated with respect to each other.

The faces of the p-cage are placed around the corners of the square prism. The
corners of a cube are at (±1,±1,±1), but as the square prism can be elongated or squashed
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vertically, we have an extra degree of freedom, as we can rotate the vector (1, 1, 1) by an
angle θ around the axis

g0 = (−1, 1, 0). (19)

We consider (Figure 4) the following vectors for the normal to the face of type 1 (Vi)
and type 2 (Wi):

V1 = (x1, y1, z1)
t, V2 = Rz(π)V1, V3 = Rx(π)V1, V4 = Ry(π)V1,

W1 = (x2, y2, z2)
t, W2 = Rz(π)W1, W3 = Ry(π)W1, W4 = Rz(π)W1.

(20)

We use V1 as the reference frame. The base vectors for the reference faces are given
by (15), where

v0 = (−1, 1, 0)t, w0 = (−1,−1, 0)t. (21)

The bases for the other faces are obtained from v11, v12 or w11, w12 by applying the
rotations relating the corresponding faces to the reference faces as described in (20).

V

W W

W3

2 1

1,1

1,2

v

1,1
w

2,1
w

3,1
w3,2

w

1,2
w2,2

w

v
n
1

n
5

n
6

n
2

n
3

3

3

1

1

5

56

6

2

2

4

4

n
4

z

x
y

V=(1,1,1)

W1=(−1,1,1)W2=(1,−1,1)

W3=(1,1,1)

3

1

1

1

1

2

2

2 2

3

3

3

4

4

4

4

5

55

5

6

6

6

6

1,1

1,2

1,3

2,12,2

2,3
1,4

Figure 4. Labelling the vertices of the reference faces of the square prism p-cage.The letter v is used for
the type 1 faces while the letter w is used for the type 2 faces. The vertices, labbeled n are numbered
anti-clockwise on the face of type 1 and clockwise on the face of type 2.

We use V , v11, v12, Wi, wi,1 and wi,2 for i = 1, 2, 3 in (18) and (16) to compute the vectors
spanning the line of intersection between adjacent faces Ui and ui. Then, the vertices on the
face intersection are

n1 = U1 + t1u1, n2 = U1 + t2u1,

n3 = U2 + t3u2, n4 = U2 + t3u2,

n5 = U3 + t5u3, n6 = U3 + t6u3. (22)

The optimisation parameters are V1, W1, t1, t2, t3, T4, t5, t6, from Equation (22), as well
as the coordinates, in the face plane, of the nonshared vertices.

Given the faces constructed around V1 and W1, we can construct the remaining six
faces by applying the rotations Rz(π), Ry(π), and Rx(π) to these reference faces.
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7.1.1. Regular P-Cages

For the cube

V = S1(1, 1, 1), W = S2(−1, 1, 1), (23)

S1 and S2 are two scaling parameters. Then,

v11 =
1√
2
(−1, 1, 0), v12 =

1√
6
(−1,−1, 2),

w11 =
1√
2
(−1−, 1, 0), w12 =

1√
6
(1,−1, 2),

p = (1, 1, 1)
1√
3

, q = (−1, 1, 1)
1√
3

, u =

(
0,

2
3

,−2
3

)
, (24)

(u · V) = 0, (u · v11) =

√
2

3
, (u · v12) = −

√
2
3

,

(q · V) =
1√
3

, (q · v11) =

√
2
3

, (q · v12) =

√
2

3
,

(q ·W) =
√

3,

and

U =

(
3
2
(S1 − S2),

3
4
(S1 + S2),

3
4
(S1 + S2)

)
. (25)

When a = b = c and A = B = C, the p-cages can easily be regular. The inner radius r
of a regular P-gon and its edge length L satisfy

ri =
L
2

cotan(
π

Pi
) (26)

where i refers to the type of face, and

r1 = |U −V|, r2 = |U −W|. (27)

so that

r2
1 =

3
8
(S1 − 3 S2)

2, r2
2 =

3
8
(S2 − 3 S1)

2. (28)

Equations (28) can easily be solved to obtain

S1 = − 1√
24

(3 r2 + r1), S2 = − 1√
24

(3 r1 + r2). (29)

We have to consider both positive and negative values of r1 and r2, leading to four
solutions, but only keep positive values of S1 and S2 and the one for which they are both
the largest.

Considering all the combinations of P1 and P2, we obtain the regular p-cages, with
a = b = c and A = B = C, listed in Table 1. We present all our results using six decimal
paces as this corresponds to the accuracy generated by our computer program. For regular
p-cages, the results are exact.

When P1 = P2, we can use a different approach. We consider a regular P-gon centred
in the x− y plane with vertices

n̂i = ρ

(
sin
(

2π i
P

+ φ

)
,− cos

(
2π i

P
+ φ

)
, 0
)t

, i = 0 . . . P− 1. (30)



Symmetry 2023, 15, 1804 12 of 29

where ρ = d/(2 sin(π/2P)) is the radius of the circle containing the polygonal face of edge
length d. The polygon is then rotated by an angle θ around the x axis and then translated
by a distance −R along the y axis, giving

ni = Rz(σ) Rx(θ) n̂i + (0,−R, 0)t, i = 0 . . . P− 1. (31)

The vertices of the neighbour face are given by

mi = Rz

(π

2

)
ni. (32)

Defining

si =
2iπ
P

+ φ, (33)

we have

ni =

 ρ sin si cos σ− ρ cos si sin σ cos θ
−ρ cos si cos σ cos θ − ρ sin si sin σ− R

ρ cos si sin θ

,

mi =

 ρ cos si cos σ cos θ + ρ sin si sin σ + R
ρ sin si cos σ− ρ cos si sin σ cos θ

ρ cos si sin θ

.

(34)

We must now impose some constraints on the vertices of the two faces so that they
share one edge with their neighbours.

Table 1. List of all regular sp p-cages with a = b = c = (P1 − 3)/3 and A = B = C = (P2 − 3)/3.

P1 P2 S1 S2 S2/S1 P1 P2 S1 S2 S2/S1

6 6 0.707107 0.707107 1.000000 9 18 2.016882 1.420062 0.704088
6 9 1.018016 0.810743 0.796395 12 12 1.523603 1.523603 1.000000
6 12 1.319479 0.911231 0.690599 12 15 1.821394 1.622867 0.891003
6 15 1.617270 1.010494 0.624815 12 18 2.117369 1.721525 0.813049
9 9 1.121653 1.121653 1.000000 15 15 1.920657 1.920657 1.000000
9 12 1.423116 1.222141 0.858778 15 18 2.216633 2.019316 0.910983
9 15 1.720906 1.321404 0.767854 18 18 2.315291 2.315291 1.000000

7.1.2. Bottom of the Face

The bottom half of the p-cage must match the top half, so that, up to a z translation
(we ignore the z component),

n0 = Rz(
π

2
) Ry(π)mP−1, nP−1 = Rz(

π

2
) Ry(π)m0, (35)

where

Rz(
π

2
) Ry(π)mi =

 −1 0 0
0 1 0
0 0 −1

ni, (36)

which, after inserting the vectors ni and mi from (35) into (36), yields

(sin s0 + sin sP−1) cos σ = (cos sP−1 + cos s0) sin σ cos θ

(cos s0 − cos sP−1) cos σ cos θ = (sin sP−1 − sin s0) sin σ. (37)
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If σ is nonzero, we can divide the first line of (37) by the second one, yielding

tan(σ) =
sin s0 + sin sP−1

cos s0 + cos sP−1

1
cos θ

=
cos s0 − cos sP−1

sin sP−1 − sin s0
cos θ. (38)

This implies that

sin2 sP−1 − sin2 s0 = cos2 θ(cos2 s0 − cos2 sP−1) (39)

and cos2 θ = 1. As a result, θ = 0, which corresponds to a flat p-cage.
If σ = 0, then from (37), we have

sin s0 = − sin sP−1, cos s0 = cos sP−1. (40)

Then, substituting (33) into the above, we obtain

sin φ = − sin
(

2(P− 1)π
P

+ φ

)
= sin

(
2π

P
− φ

)
,

cos φ = cos
(

2(P− 1)π
P

+ φ

)
= cos

(
2π

P
− φ

) (41)

and this implies that

φ =
π

P
. (42)

7.1.3. Side Edges

There must also be indices i0 and j0 for which

ni0 = mj0+1, ni0+1 = mj0 . (43)

Using (34) and some algebra, we obtain

R
ρ
= sin si0 − cos θ cos si0 = sin si0+1 − cos sj0 cos θ (44)

as well as

cos θ =
sin si0+1 − sin si0
cos si0+1 − cosi0

. (45)

For any value of P, we need to find the value for i for which θ is in the range [0, π/2]
and for which R/ρ is positive. This leads to the regular p-cages listed in [8] and given
in Table 2.

Table 2. List of all regular sp p-cages with P1 = P2.

Name Name Name

sp_P6_P6_1_1_1-1_1_1 sp_P7_P7_1_1_2-1_1_2 sp_P8_P8_1_2_2-1_2_2
sp_P8_P8_1_1_3-1_1_3 sp_P9_P9_2_2_2-2_2_2 sp_P10_P10_2_2_3-2_2_3
sp_P11_P11_2_3_3-2_3_3 sp_P11_P11_2_2_4-2_2_4 sp_P12_P12_3_3_3-3_3_3
sp_P12_P12_2_2_5-2_2_5 sp_P13_P13_3_3_4-3_3_4 sp_P14_P14_3_3_5-3_3_5
sp_P14_P14_3_4_4-3_4_4 sp_P15_P15_4_4_4-4_4_4 sp_P16_P16_4_4_5-4_4_5
sp_P16_P16_3_5_5-3_5_5 sp_P17_P17_4_5_5-4_5_5 sp_P18_P18_5_5_5-5_5_5
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7.2. Truncated Octahedron

The coordinates of the vertices of a truncated octahedron of edge length 1 are

(±
√

2,±1
2

, 0), (±1
2

,±
√

2, 0), (±
√

2, 0,±1
2
),

(±1
2

, 0,±
√

2), (0,±
√

2,±1
2

, 0), (0,±1
2

,±
√

2, 0).
(46)

The faces are mapped to each other via the following rotations:

V x2 = Rx(π)V x1, V x3 = Ry(π)V x1, V x4 = Ry(π)V x2,

Vy1 = Ry

(π

2

)
Rz

(π

2

)
V x1, Vy2 = Ry

(π

2

)
Rz

(π

2

)
V x2,

Vy3 = Rz(π)Vy1, Vy4 = Rz(π)Vy2,

V z1 = Rz

(π

2

)
Ry

(π

2

)
V x1, V z2 = Rz

(π

2

)
Ry

(π

2

)
V x2,

V z3 = Rx(π)V z1, V z4 = Rx(π)V z2, (47)

where V stands for V or W .
The normal to the face of the p-cage can be placed on the vertices of the truncated

octahedron, but they can actually be rotated arbitrarily, so that the symmetries described
above remaining valid.

We take the following (see Figure 5):

Vx1 = S(1, y1, z1)
t, z1 > 0,

Wx1 = S(1, y2, z2)
t, y1 > 0, (48)

and the basis vectors for the reference faces are given by (15), where

v0 = êy, w0 = êy. (49)

The bases for the other faces are obtained by applying the rotations relating these other
faces to the reference faces, as described in (47).

We next use V , v11, v12, Wi, wi,1 and wi,2 for i = 1, 2, 3 in (18) and (16) to compute the
vectors spanning the line of the intersection between adjacent faces Ui and ui. Then, the
vertices on the face intersection are given by (22). The optimisation parameters are V1, W1,
t1, t2, t3, T4, t5, t6, from Equation (22), as well as the coordinates, in the face plane, of the
nonshared vertices.
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v
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Figure 5. Labelling of the vertices of the reference faces of the truncated octahedron p-cage.The letter
v is used for the tyoe 1 faces while the letter w is used for the type 2 faces. The labels x, y, z are used
for vertices located on the face normal to the corresponding axis.
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Regular Ato P-Cages

Regular Ato p-cages can be obtained by tiling a square or a hexagon with some
polygons (Figure 6).

φ
φ

ψ
ψ

(a) (b)

Figure 6. Tiling of a square or a hexagon using polygons. (a) square: ϕ = 3π/4, ψ = 2π/4,
(b) hexagon: ϕ = 2π/4, ψ = 2π/3,

When the face contributes q edges to a hole, the rotation is 2π(q + 1)/P. We must
then impose that ϕ = 2π(q2 + 1)/P and ψ = 2π(q1 + 1)/P. For the square, we have
q2 + 1 = 3P/8 and q1 + 1 = P/4, implying that P is a multiple of 8 and the regular p-
cages of that type are Ato_P8_P8_1_2_2-1_2_2 and Ato_P16_P16_3_5_5-3_5_5. For the
hexagon, q2 + 1 = P/4 and q1 + 1 = P/3, so P must be a multiple of both 4 and 3, and
the regular p-cage of that type is Ato_P12_P12_2_3_4-2_3_4 and the identical p-cage is
Ato_P12_P12_2_4_3-2_4_3.

If we join together the vertices shared by adjacent faces, we obtain an irregular hexagon
that we call the subface (see Figure 7a). To obtain a regular Ato p-cage, the face must form
holes centred on the vertices of the underlying octahedron (see Figure 7b,c). Faces I and I I
contribute, respectively, q1 edges and Q1 edges to that hole.
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u

II

IIII
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uII
I

wIII

I

uIII

AA
H

G C
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H J
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D
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θ4

θ3
ψ
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R

R r

q=3

q=2q=2

(c)

ρ

d

d

D

γ
2

1
ψ

γ

σ

σ
σ

Figure 7. Regular Ato p-cage: (a) p-cage irregular hexagon subface of the p-cage. (b) Planar unfolding
of the p-cage. The red rectangle are centred on the vertices of the underlying octagon. (c) Regular
cages Ato_P12_P15_3_3_3-2_5_5. (d) Side view joining two vertices of the underlying octahedron.

If ρ is the radius of the circle containing the regular polygon (see Figure 7a), R denotes
the distance between the centre of the face and the centre of a shared edge. r is used to
denote the distance between the centre of the face and the centre of the large edge of the
subface hexagon. We use γq = 2πq/P to denote the angle spanned by q segments, d is the
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length of a face edge, and D the length of the edge of the subface hexagon. The angle ψ
between the face edge and the adjacent subface edge is π(q + 1)/P. We then have

R =
d

2 tan π
P

, ρ =
d

2 sin π
P

, r = ρ cos
(γq

2

)
=

d
2

cos
(πq

P
)

sin
(

π
P
) . (50)

Seen from the side, the faces I and III form, respectively, an angle α1 and α1 + α2 with
the x− z plane and face III forms an angle α3 with the x− y plane (Figure 7d). Note also
that, by symmetry, the angle H − J − A in Figure 7d is the same as the angle D− E− F: α3.

Using lowercase letters for the vectors in the unfolded diagram and uppercase letters
for the vectors in the p-cage, we have

vI = RI(− sin ψI , 0,− cos ψI), vI I = RI I(cos ψI I , 0, sin ψI I),

wI = rI(0, 0,−1), wI I = rI I(1, 0, 0),

uI = RI(0, 0, 1), uI I = RI I(−1, 0, 0),

nI = (cos ψI , 0,− sin ψI), nI I = (− sin ψI I , 0, cos ψI I). (51)

The vectors in face I are rotated by an angle θ1 around the x axis, and face I I is rotated
an angle θ3 around the z axis. The matrices are

Rx(θ1) =

 1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

, Rz(θ3) =

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

. (52)

We multiply the vectors with index I defined in (51) by Rx(θ1), while the vectors with
index I I are multiplied by Rz(θ3). The vectors obtained are denoted by the corresponding
uppercase letter:

VI = Rx(θ1)vI = RI(− sin ψI ,− cos ψI sin θ1,− cos ψI cos θ1),

VI I = Rz(θ3)vI I = RI I(cos ψI I cos θ3, cos ψI I sin θ3, sin ψI I),

WI = Rx(θ1)wI = rI(0,− sin θ1,− cos θ1),

WI I = Rz(θ3)wI I = rI I(cos θ3, sin θ3, 0),

UI = Rx(θ1)uI = RI(0, sin θ1, cos θ1),

UI I = Rz(θ3)uI I = RI I(− cos θ3,− sin θ3, 0),

NI = Rx(θ1)nI = (cos ψI ,− sin ψI sin θ1,− sin ψI cos θ1),

NI I = Rz(θ3)nI I = (− sin ψI I cos θ3,− sin ψI I sin θ3, cos ψI I). (53)

After folding the planar faces into the p-cage, the following conditions must be set so
that the faces share 1 edge:

(NI · VI I) = 0, (NI I · VI) = 0 (54)

which, after inserting the vectors defined in (53), yields

0 = cos ψI cos ψI I cos θ3 − sin ψI sin θ1 cos ψI I sin θ3 − sin ψI cos θ1 sin ψI I (55)

0 = sin ψI I cos θ3 sin ψI − sin ψI I sin θ3 cos ψI sin θ1 − cos ψI I cos ψI cos θ1. (56)

Multiplying (55) by sin ψI I cos ψI and (56) by sin ψI cos ψI I and adding the two to-
gether, we obtain

cos θ3 =
sin(2ψI)

sin(2ψI I)
cos θ1. (57)
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Substituting (57) into (55), we obtain, after some manipulations,

cos2 θ1 =
(1± cos(2ψI))(1± cos(2ψI I))

sin2(2ψI)
. (58)

In (58), the ± signs must be identical, and cos(θ1) must be positive, so we have two
solutions to consider.

We must impose other constraints. First of all, to ensure the convexity of the p-cage,
we must have σI + σI I ≤ 3π/2 where σi = π − ψi. Then, the centres of the holes must be
located at the vertices of an octahedron, or, in other words, the segment A− F must form a
45-degree angle with the vertical axis. With

DI = rI tan(
πq1

P1
), DI I = rI I tan(

πQ1

P2
), (59)

the coordinates of these two points are

Ay = −(rI + RI) sin(θ1)− (rI I + RI I) sin(θ1 + θ2)−
DI
2

, (60)

Ax = Az = 0, (61)

Fz = (rI + RI) cos(θ1) + (rI I + RI I) cos(θ1 + θ2) +
DI I
2

, (62)

Ax = Az = 0. (63)

The constraint FZ = −Ay must also be satisfied, which is, more explicitly:

∆O = (rI + RI)(sin(θ1)− cos(θ1)) + (rI I + RI I)(sin(θ1 + θ2)− cos(θ1 + θ2)) +
DI − DI I

2
= 0. (64)

Finally, we must impose the constraint that the faces are not crossing each other. This
means that for q1 even (ρ1 − r1) cos θ1 ≤ D2/2 and, for q1 odd, (R1 − r1) cos θ1 ≤ D2/2.
For Q1, even ρ2 − r2 cos θ3 ≤ D1/2 must hold while for Q1, odd (R2 − r2) cos θ3 ≤ D1/2.

The list of regular Ato p-cages is given in Table 3.

Table 3. Regular Ato p-cages.

Name Name Name

Ato_P6_P10_1_1_1-1_3_3 Ato_P10_P12_1_3_3-3_3_3 Ato_P15_P15_2_5_5-4_4_4
Ato_P6_P15_1_1_1-2_5_5 Ato_P11_P11_2_3_3-2_3_3 Ato_P15_P18_2_5_5-5_5_5
Ato_P8_P8_1_2_2-1_2_2 Ato_P12_P15_3_3_3-2_5_5 Ato_P16_P16_3_5_5-3_5_5
Ato_P9_P10_2_2_2-1_3_3 Ato_P12_P12_2_3_4-2_3_4 Ato_P17_P17_4_5_5-4_5_5
Ato_P9_P15_2_2_2-2_5_5 Ato_P14_P14_3_4_4-3_4_4

Note that Ato_P13_P17_2_4_4-4_5_5 is nearly regular with a deformation ∆l = ∆a =
6.66 · 10−5, and the reason for this is that ∆O = 0.00169.

7.3. Truncated Cuboctahedron

We inscribe a truncated cuboctahedron in a cube of edge length 4 so that the octagons
are contained inside the face of the cube. We label the vertices as V±σi, where σ stands for
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x, y, or z, and corresponds to the octagon contained in the plane σ = ±2. i is the index of
the octagon vertices, and they have the following coordinates (see Figure 8):

V x1 = (2,
√

2, 2−
√

2)t, V x2 = Rx(
π

4
)V x1 = (2, 2−

√
2,
√

2)t,

V x3 = Rx(
π

2
)V x1 = (2,

√
2− 2,

√
2)t, V x4 = Rx(

π

2
)V x2 = (2,−

√
2, 2−

√
2)t,

V x5 = Rx(π)V x1 = (2,−
√

2,
√

2− 2)t, V x6 = Rx(π)V x2 = (2,
√

2− 2,−
√

2)t,

V x7 = Rx(−
π

2
)V x1 = (2, 2−

√
2,−
√

2)t, V x8 = Rx(−
π

2
)V x2 = (2,

√
2,
√

2− 2)t. (65)

The vertices are then obtained using the following rotations:

Vyi = Rz(
π

2
)V xi, V zi = Ry(−

π

2
)V xi,

V−xi = Rz(π)V xi, V−yi = Rz(−
π

2
)V xi, V−zi = Ry(

π

2
)V xi. (66)

V

A

x1

Vx3

Vx5

Vx7

Vz7

Vx2

Vx4

V
y4

Vx6

Vx8

x

y

z

a

1

2

3

3

4

4

5

5

6

6

b

b

b

b

b

c

c
c

c

c

c

A

A

A

A

A

A

B

B

B

B

B

C
C

C
C

C

C

C

a

a

a

a

B

Figure 8. Labelling of the vertices of the reference faces of the truncated cuboctahedron p-cage. The
letter v is used for the type 1 faces while the letter w is used for the type 2 faces.

We then place the reference faces on the following vertices:

V = V x1, W1 = V x2, W2 = V x8, W3 = Vy4, (67)

and take

v0 = êy, w0 = êy. (68)

We then use V , v11, v12, Wi, wi,1, and wi,2 for i = 1, 2, 3 in (18) and (16) to compute
the vectors spanning the line of intersection between adjacent faces Ui and ui. The ver-
tices on the face intersection are given by (22). The optimisation parameters are V1, W1,
t1, t2, t3, T4, t5, t6, from Equation (22), as well as the coordinates, in the face plane, of the
nonshared vertices.

Regular Atco P-Cages

To obtain a regular Atco p-cage, we must tile a hexagon with six polyhedra, which,
as seen above, implies that P must be a multiple of 3 and 4. So, the only regular Atco
p-cage, with P ≤ 18, is the Atco_P12_P12_4_2_3-4_2_3. It is obtained by tiling each face
of an octahedron with six regular dodecagons.
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7.4. Truncated Icosidodecahedron

The truncated icosidodecahedron is made of 12 decagons, 20 hexagons and 30 squares.
The decagons are centred on the vertices of an icosahedron that have the following coordi-
nates (see Figure 9):

V x,i = (0,±1,±φg)
t, Vy,i = (±φg, 0, ±1)t, V z,i = (±1, ±φg, 0)t, (69)

where φg = (1 +
√

5)/2 is the golden ratio.

6

6

11
11

2

3

3

4

4

5

5

F 2F
n

12n 21n

22n

19n

13n

Figure 9. Labelling of the vertex coordinates for the p-cages derived from the truncated icosido-
decahedron. The blue edges and node numbers correspond to the faces of type 1 while the green
edges and nudes correspond to type 2 faces. The nodes are ordered respectively anti-clockwise and
clockwise for the type 1 and type 2 faces.

The angle 2θ between two decagons of the truncated icosidodecahedron is the angle
between two adjacent vertices of the icosahedron. Taking v = (0, 1, φg, )t and w =

(0, −1, φg)t, we have cos(2θ) = (φ2
g − 1)/(φ2

g + 1) = (1 +
√

5)/(5 +
√

5). Then, sin(θ) =√
(1− cos(2θ))/2 =

√
2/(5 +

√
5). cos(θ) =

√
(3 +

√
5)/(5 +

√
5).

If R denotes the distance between the centre of the truncated icosidodecahedron and
the centre of a decagonal face, and r denotes the inner radius of the decagonal face (see
Figure 10), if we look at the cross-section of the truncated icosidodecahedron going through
the centres of two adjacent decagons and cutting a square face in two, we have

r =
L
2

cotan(
π

10
), δr =

L
2 sin(β)

,

R = (r + δr) cotan(θ), β =
π

2
− θ. (70)

Then

r =
L
2

cotan
( π

10

)
=

L
2

(√
5 + 2

√
5
)

,

R =
L
2

(
cotan

( π

10

)
+

1
cos(θ)

)
=

L
2

√5 + 2
√

5 +

√
5 +
√

5
3 +
√

5

. (71)

For L = 1, we have r ≈ 1.538841 and R ≈ 2.126627.
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L

L

L

r
r

R

θ

δr

δr
β

β

φ

Figure 10. Derivation of the vertex coordinates for the truncated icosidodecahedron.

We place the centre of the first octagon at

F1 = (R, 0, 0)t (72)

and the 10 vertices of that octagon at

n11 =
(

R, r,−r tan(
π

10
)
)
=

(
R, r,−r

√
1− 2√

5

)t

=

(
R, r,− L

2

)t
,

n1i = Rx

(
i
π

5

)
v1 i = 2 . . . 9 . (73)

Defining

g = (R cos(θ), R sin(θ), 0)t =

R

√
3 +
√

5
5 +
√

5
, R

√
2

5 +
√

5
, 0

t

, (74)

the five decagons surrounding the first one are then given by

F2+i = Rx

(
i
2π

5

)
Rg(π)F1, i = 0 . . . 4 , (75)

while the remaining six decagons are

F7+i = Rz(π)F1+i, i = 0 . . . 5 . (76)

The vertices nji around the decagon j are the obtained by applying the rotation in (75)
to the vertices (73). The reference faces are then placed on the vertices

V = n11, W1 = n1,2, W2 = Rx(
−π

5
)W1 = n19, W3 = Rg(π)W1 = n22. (77)

We now take

v0 = êy, w0 = êy. (78)

Next, we use V , v11, v12, Wi, wi,1 and wi,2 for i = 1, 2, 3 in (18) and (16) to compute
the vectors spanning the line of the intersection between adjacent faces Ui and ui. The
vertices on the face intersection are given by (22), and the optimisation parameters are V1,
W1, t1, t2, t3, T4, t5, t6, from Equation (22), as well as the coordinates, in the face plane, of the
nonshared vertices.

There are no convex regular Atid p-cages.
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7.5. Rhombic Dodecahedron

The rhombic dodecahedron is the dual of the cuboctahedron, and as both types of
faces must contribute the same number of edges to every hole, by symmetry, the faces must
be spanned by the faces of the cuboctahedron.

A cuboctahedron of edge length
√

2 has vertices at the coordinates (±1,±1, 0), (±1, 0,±1)
and (0,±1,±1). Hence, we can take

V1 = (1, 0, 0)t, W1 =
2
3
(1, 1, 1)t (79)

and

v11 = (0, 1, 0)t, v12 = (0, 0, 1)t,

w11 =
1√
2
(−1, 1, 0)t, w12 =

1√
6
(1, 1,−2)t. (80)

We then have

V2 = Rz(
π

2
)V1, V3 = Rz(π)V1, V4 = Rz(−

π

2
)V1, V5 = Ry(−

π

2
), V1

V6 = Ry(
π

2
)V1, W2 = Rz(

π

2
)W1, W3 = Rz(π)W1, W4 = Rz(−

π

2
)V1,

W5 = Rz(
π

2
)W1, W6 = Rz(π)W1, W7 = Ry(π)V1, W8 = Rz(π)W5. (81)

Using g = (1, 1, 1)/
√

3, we also have the following relationships between the vertices
(see Figure 11):

n3 = Rx(
π

2
)n1, n4 = Rx(

π

2
)n2, n5 = Rx(π)n1, n6 = Rx(π)n2,

n7 = Rx(
−π

2
)n1, n8 = Rx(−

π

2
)n2, m3 = Rg(−

2π

3
)n1,

m4 = Rg(−
2π

3
)n2, m5 = Rg(

2π

3
)n1, m6 = Rg(

2π

3
)n2. (82)

As all qi are identical and so are Qi, the p-cages derived from this graph are all regular.
Indeed, the inner radius r of a regular P-gon and its edge length L satisfy (26) and (27).

n
1

n
2

n

m m

m

m

3

n
5

n
6 n

7

n
8

n
4

3 4

5

6

Figure 11. Labelling of the vertices of the reference faces of the rhombic dodecahedron p-cage.The
vertices of type 1 faces are denoted n and numbered anti-clockwise while the vertices of type 2 faces
are denoted m and numbered clockwise.
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We then have

V = (S2, 0, 0), W =

(
2
3

S1,
2
3

S1,
2
3

S1

)
,

v1 = (0, 1, 0), w1 = (−1, 1, 0)/
√

2,

v2 = (0, 0, 1), w1 = (1, 1,−2)/
√

6,

p = v1 × v2 = (1, 0, 0), q = w1 ×w2 = (−1,−1,−1)/
√

3,

u = q× p = (0,−1, 1)/
√

3. (83)

From (18), we have

U = (S2,
2S1 − S2

2
,

2S1 − S2

2
). (84)

and, as a result,

r2 = |U − V | =
∣∣∣∣2 S1 − S2√

2

∣∣∣∣,
r1 = |U −W | =

∣∣∣∣3S2 − 2s1√
6

∣∣∣∣. (85)

This can easily be solved to obtain

S1 =
1
2

(
3√
2

r2 +

√
3
2

r1

)
,

S2 =

(√
3
2

r1 +
1√
2

r2

)
. (86)

This leads to the regular p-cages listed in Table 4.

Table 4. List of all regular DArd p-cages with a = b = c = (P1 − 3)/3 and A = B = C = D =

(P2 − 4)/4.

P1 P2 S1 S2 S2/S1 P1 P2 S1 S2 S2/S1

6 8 1.810660 1.914214 1.057191 12 12 3.121921 3.604884 1.154701
6 12 2.509549 2.380139 0.948433 12 16 3.808852 4.062838 1.066683
6 16 3.196479 2.838093 0.887881 15 12 3.419712 4.200465 1.228310
9 8 2.121570 2.536033 1.195357 15 16 4.106642 4.658419 1.134362
9 12 2.820459 3.001959 1.064351 18 12 3.715687 4.792416 1.289779
9 16 3.507389 3.459912 0.986464 18 16 4.402618 5.250370 1.192556

12 8 2.423033 3.138958 1.295467 21 16 4.697562 5.840259 1.243253

7.6. Rhombic Triacontahedron

The faces of the p-cages are inscribed inside the faces of the icosidodecahedron, and
the center of pentagonal faces are given by (69) (see Figure 12). There are regular p-cages of
this type. Indeed, the coordinates of the centres of the triangular faces are

W =
1
3
(
(0, 1, φg) + (0, −1, φg) + (1, φg, 0)

)
=

1
3
(1, φg, 2φg). (87)

The angle between v1 = (0, 1, φg) and w1 = (1, φg, 2φg) is such that

cos(θ) =
(v1 ·w1)

|v1||w1|
=

7 + 3
√

5√
110 + 42

√
5

. (88)
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The coordinates of the vertices of the icosidodecahedron are

qz1 = (φg, 0, 0), Vz2 = (−φg, 0, 0), qy1 = (φg, 0, 0),

Vy2 = (−φg0, 0), qz1 = (0, 0, φg), Vz2 = (0, 0,−φg),

qx±±± = (±1,±φ2
g,±φg), qy±±± = (±φg,±1,±φ2

g), qz±±± = (±φ2
g, φg,±1). (89)

Then, the coordinates of the reference pentagon are (see Figure 12)

g1 =

(
1
2

,
φg

2
,

φ2
g

2

)
, g2 =

(
0, 0, φg

)
, g3 =

(
1
2

,−
φg

2
,

φ2
g

2

)
,

g4 =

(
φ2

g

2
,−1

2
,

φg

2
,

)
, g5 =

(
φ2

g

2
,

1
2

,
φg

2
,

)
, (90)

and the face is centred at

gp =

(
1 + φ2

g

5
, 0,

2φg + φ2
g

5

)
. (91)

The coordinates of the reference triangle are

g1 =

(
1
2

,
φg

2
,

φ2
g

2

)
, g6 =

(
−1

2
,

φg

2
,

φ2
g

2

)
, g7 =

(
0, 0, φg

)
, (92)

and the face is centred at

gt =

(
0,

φg

3
,

φg + φ2
g

3

)
. (93)

We take

V = gp, W = gt, v0 = (0, 1, 0), w0 = (−1, 0, 0). (94)

n
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n
3

n
4

n
5

n
6
n
7
n
8

n
9

n
10

n
2

m m

m

m

3
4
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6

1

12

3

4

5

67
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5 6

I

VI
II
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IV V

Figure 12. Labelling of the vertices of the reference faces of the rhombic triacontahedron p-cage as
mapping the faces on an icosidodecahedron. Vertices I, I, I I, IV, V, and VI are, respectively, g1, g2,
g3, g4, g5 and g6. The vertices of type 1 faces are denoted n and numbered anti-clockwise while the
vertices of type 2 faces are denoted m and numbered clockwise.

As all the qi are identical, all the p-cages are regular.
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Regular DArt P-Cages

As all qi are identical and so are Qi, the p-cages derived from this graph are regular,
as we now prove. Taking v1 = v0 and w1 = w0, from (94), we have

V = S2

(
1 + φ2

g

5
, 0,

2φg + φ2
g

5

)
, W = S1

(
0,

φg

3
,

φg + φ2
g

3

)
,

v1 = (0, 1, 0), w1 = (−1, 0, 0). (95)

The vector v2, which is perpendicular to both v1 and V , and, similarly, w2, which is
perpendicular to both w1 and W , are given by

v2 =

(
− 3
√

5 + 5
4
√

5 + 10
, 0,

√
5 + 5

4
√

5 + 10

)
, w2 =

(
−4 + 2

√
5

7 + 3
√

5
, 0,

1 +
√

5
7 + 3

√
5

)
. (96)

From (16), we have

p = v1 × v2 =

( √
5 + 5

4
√

5 + 10
, 0,

3
√

5 + 5
4
√

5 + 10

)
,

q = w1 ×w2 =

(
0,

1 +
√

5
7 + 3

√
5

,
4 + 2

√
5

7 + 3
√

5

)
, (97)

and

u = q× p =

(
4
√

5 + 10
29
√

5 + 65
,

7
√

5 + 15
29
√

5 + 65
,− 3

√
5 + 5

29
√

5 + 65

)
. (98)

From (18), we obtain a very complicated analytical expression for U that can be
approximated numerically as

U ≈ (1.963525491562422 S2 − 1.713525491562421 S1,

− 1.059016994374947 S2 + 1.463525491562421 S1,

0.4045084971874737 S2 + 1.059016994374948 S1). (99)

In this section, as the results are exact, we present the numerical approximations using
double precision accuracy. Then,

r2
1 = |U − V |2 = a S2

1 + b S2
2 + cS1S2, r2

2 = |U −W |2 = A S2
1 + B S2

2 + CS1S2. (100)

where (again, only writing out the numerical approximation of the complicated exact
expression),

a ≈ 3.914892813645649, b ≈ 5.140576474687263, c ≈ 8.97213595499958,

A ≈ 6.19959346906221, B ≈ 3.246149283687347, C ≈ −8.972135954999578. (101)

As shown in the Appendix A, this can be solved to obtain

S1 =

√√√√−K1 ±
√

K2
1 − 4K2K0

2K2
, S2 =

√
∆r − ∆aS2

1
∆b

, (102)

where
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K0 = r4
1 +

b2∆2
r

∆2
b
− 2

br2
1∆r

∆b
, K1 = 2

br2
1∆a

∆b
− 2b2 ∆r∆a

∆2
b
− 2ar2

1 + (2 a b − c2)
∆r

∆b
,

K2 = a2 +
b2∆2

a

∆2
b

+ (c2 − 2 a b)
∆a

∆b
, ∆a = a C− A c, ∆b = b C− B c, ∆r = r2

1 C− r2
2 c. (103)

This leads to the regular p-cages listed in Table 5.

Table 5. List of all regular DArt p-cages with a = b = c = (P1 − 3)/3 and A = B = C = D =

E(P2 − 5)/5.

P1 P2 S1 S2 S2/S1 P1 P2 S1 S2 S2/S1

6 10 2.427051 2.500000 1.030057 12 15 4.179611 4.470477 1.069592
6 15 3.313585 3.273659 0.987951 12 20 5.056432 5.235659 1.035445
6 20 4.190407 4.038842 0.963830 15 15 4.600750 5.052477 1.098185
9 10 2.866744 3.107640 1.084031 15 20 5.477571 5.817659 1.062087
9 15 3.753278 3.881299 1.034109 18 15 5.019322 5.630930 1.121851
9 20 4.630099 4.646482 1.003538 18 20 5.896144 6.396112 1.084796

12 10 3.293076 3.696818 1.122603 21 20 6.313258 6.972550 1.104430

8. Results Summary and Conclusions

We identified six types of geometries from which bi-homogenoues symmetric 1-2 p-cages
can be constructed, each corresponding to planar graphs. Each planar graph corresponds
to a hole polyhedron, which is one of the following: a prism with an even number of edges
(including the cube), the truncated octahedron, the truncated cuboctahedron, the truncated
icosidodecahedron, the rhombic dodecahedron, or the rhombic triacontahedron. The p-cages
we found for the different holes–polyhedra are given in Table 6.

We were able to construct regular BiHS12 p-cages for all of them except for the
truncated icosidodecahedron, which does not have any. We present images of some of the
regular p-cages in Figure 13 and of some of the best near-miss p-cages for each type of
hole–polyhedron, except for DArd and DArt (for which, by symmetry, all the p-cages are
regular), in Figure 14.

The full list of all BiHS12 p-cages with deformations below 10% is given in the Sup-
plementary Material. A picture of all regular BiHS12 p-cages as well as pictures of all
near-miss BiHS12 p-cages with deformations below 1% are also provided there.

sp_P6_P9_1_1_1-2_2_2 Ato_P6_P10_1_1_1-1_3_3 Atco_P12_P12_4_2_3-4_2_3

DArd_P6_P12_1_1_1-2_2_2_2 P6_P15_1_1_1-2_2_2_2_2

Figure 13. Graphic representation of some regular p-cages.
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sp_P11_P16_2_3_3-5_4_4
∆l = 0.00007
∆a = 0.00007

sp_P13_P17_2_4_4-4_5_5
∆l = 0.00031
∆a = 0.00031

Ato_P13_P17_2_4_4-4_5_5
∆l = 0.00007
∆a = 0.00007

Ato_P15_P15_3_4_5-3_4_5
∆l = 0.00031
∆a = 0.00031

Atco_P15_P15_5_3_4-5_3_4
∆l = 0.00131
∆a = 0.00131

Atco_P6_P11_1_1_1-4_1_3
∆l = 0.00178

∆a == 0.00178

Atid_P13_P14_4_4_2-5_3_3
∆l = 0.00474
∆a = 0.00475

Atid_P13_P14_5_3_2-4_4_3
∆l = 0.00646
∆a = 0.00646

Figure 14. Graphic representation of some near-miss p-cages.

Table 6. Number of p-cages found for each type of hole–polyhedron graph.

Type Regular 0 < ∆ ≤ 1% 1% < ∆ < 10%

sp 28 49 556
Ato 11 24 987
Atco 1 18 1512
Atid 0 11 950
DArd 19 0 0
DArt 14 0 0

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/sym15091804/s1, BiHS12_tables.pdf: full list of all the BiHS12
p-cages with a deformation below 10%; Regular_pcages.pdf: picture of each regular BiHS12 p-cage;
Best_BiHS12_cages.pdf: picture of every near-miss BiHS12 p-cage with a deformation below 1%.
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Appendix A. Solving a Pair of Quadratic Algebraic Equations

To compute the coordinates of the vertices of the regular DArt p-cages, we need to solve

r2
1 = a S2

1 + b S2
2 + cS1S2, r2

2 = A S2
1 + B S2

2 + CS1S2, (A1)

where the coefficients a, A, b, B, c, and C take explicit values for each type of p-cage, and r1
and r2 are determined, respectively, from P1 and P2 by (26). We can determine the values of
the scaling parameters S1 and S2 by computing

S1 S2 =
r2

1 − a S2
1 − b S2

2
c

=
r2

2 − A S2
1 − B S2

2
C

,

S2
2

(
b
c
− B

C

)
=

r2
1
c
−

r2
2

C
+ S2

1

(
A
C
− a

c

)
,

S2
2 =

(r2
1 C− r2

2 c) + S2
1(A c− C a)

b C− B c
. (A2)

Squaring the first equation and expanding the squared sums yield

c2 S2
1 S2

2 =
(

r2
1 − a S2

1 − b S2
2

)2

= r4
1 + a2 S4

1 + b2 S4
2 − 2ar2

1S2
1 − 2br2

1S2
2 + 2abS2

1S2
2. (A3)

Defining

∆a = a C− A c, ∆b = b C− B c, ∆r = r2
1 C− r2

2 c, (A4)
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and substituting (A2) into (A3), we have

c2 S2
1

(
∆r − ∆aS2

1
∆b

)
= r4

1 + a2 S4
1 + b2

(
∆r − ∆aS2

1
∆b

)2

− 2ar2
1S2

1

− 2br2
1

(
∆r − ∆aS2

1
∆b

)
+ 2abS2

1

(
∆r − ∆aS2

1
∆b

)
. (A5)

As a result, we can write

0 = K2 S4
1 + K1 S2

1 + K0 (A6)

where

K2 = a2 +
b2∆2

a

∆2
b

+ (c2 − 2 a b)
∆a

∆b
,

K1 = 2
br2

1∆a

∆b
− 2b2 ∆r∆a

∆2
b
− 2ar2

1spreg.txt + (2 a b − c2)
∆r

∆b
,

K0 = r4
1 +

b2∆2
r

∆2
b
− 2

br2
1∆r

∆b
. (A7)

Finally,

S1 =

√√√√−K1 ±
√

K2
1 − 4K2K0

2K2
,

S2 =

√
∆r − ∆aS2

1
∆b

. (A8)
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