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Abstract: Active support using highly prestressed cable bolts and anchor cables has become a
mainstream support technology for coal mine roadways. However, the ability of bolts and anchor
cables to withstand transverse shear decreases with the prestress level, jeopardizing mining safety.
This study proposed a technical solution to this problem featuring anchor cables enclosed in an
axisymmetrical tube with a C-shaped cross-section (ACC), which are highly prestressed and can
withstand high transverse shear. The ACC mechanical performance was tested in the #318 gas
extraction roadway of the Shuangliu Coal Mine, China, characterized by extensive deformation under
original support conditions. Theoretical analysis, laboratory tests, numerical simulation, and field
tests were performed to analyze the shear mechanical properties of the ACC and anchor cables alone.
The double shear test results revealed that the proposed ACC scheme increased the transverse shear
resistance and stiffness by 10–25% and 20–40%, respectively. The FLAC3D numerical simulation
showed that the roof-and-floor and rib-to-rib convergences decreased by 9.53 and 25.11%, respectively.
The area of the stress concentration zone also decreased. Field monitoring showed that the ACC
achieved good support performance. During the monitoring period, the maximum roof-and-floor and
rib-to-rib displacements were 40 and 49 mm, respectively. The ACC scheme offered adequate shear
resistance and effectively controlled surrounding rock deformation in the gas extraction roadway
under study, making it applicable to similar engineering scenarios.

Keywords: roadway support; ACC; anchor cable; double shear test; numerical simulation; shear
performance

1. Introduction

The annual growth of China’s total energy and coal consumption in 2022 amounted to
4.3 and 2.9%, respectively, reaching 5.41 billion tons of coal equivalent. Thus, coal remains
China’s energy supply in the foreseeable future and is mainly excavated by underground
mining via roadways [1–3]. Roadway support has to meet rising demands as the min-
ing stresses and depth increase continuously [4–6]. Therefore, it is highly important to
investigate and innovate roadway support technology.

Highly prestressed, high-strength, high-stiffness bolts and anchor cables are dominant
ingredients of roadway support in China and have proven effective for complex, difficult
roadways [7–13]. Recently, in-depth research has been conducted on support members,
such as bolts and anchor cables. Below are some representative studies in this field. Kang
et al. proposed a theory of highly prestressed bolt support [14], which implied that dramat-
ically increasing the initial support stiffness and strength of the bolt anchorage system was
effective for controlling the expansion deformation and maintaining the integrity of the
surrounding rocks. He et al. described a constant-resistance-large-deformation bolt, which
accommodated the large deformation of surrounding rocks under constant resistance while
absorbing the energy of the rock masses undergoing impact deformation [15]. Wu et al.
presented compression-type (or CTC-yield) bolts [16], in which the inner thread segment
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composed the inner anchorage section of the bolt that was firmly fixed at the borehole
bottom, while the bolt’s smooth section would elongate in response to rock deformation
when the load exceeded its capacity. This effectively optimized the stress distribution at the
bolt-grout-rock interface. Tahmasebinia et al. conducted extensive analysis of the key pa-
rameters of anchor rods under dynamic and static conditions through numerical simulation
methods, providing a reference for other scholars when choosing support schemes [17,18].
Pyon et al. studied a rock energy-absorbing bolt (the so-called D-bolt), comprising a smooth
steel bar with a number of anchors along its length [19]. Sakhno and Sakhno proposed
considering the impact of rock mass fracture over time on rock mass properties in deep,
soft-rock tunnels and conducted a case study on the evolution of floor heave and bolt
reinforcement technology [20]. Karanam and Dasyapu [21] conducted a large series of
pull-out and push-out tests of fully grouted rock bolts with varying bolt diameters, lengths,
and cement–water mixing ratios of grout, yielding a detailed analysis of the displacement,
stress, and strain distribution along the bolt.

Notably, highly prestressed cables used in mining roadways are prone to shear fail-
ure [22–24], impairing the surrounding rock stability of the roadway, as shown in Figure 1.
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Figure 1. Failure of the bolt and anchor cables due to shear damage.

The existing problem of poor shear resistance in high prestressed anchor cables has not
yet been comprehensively studied. Therefore, we performed an in-depth study based on
the engineering background of the #318 gas extraction roadway of the Shuangliu Coal Mine,
China, and proposed a technical solution, (called the ACC) featuring anchor cables enclosed
in an axisymmetrical tube with a C-shaped cross-section enclosing the internal anchor
cables. This study included theoretical analysis, laboratory tests, numerical simulation,
and field tests that proved that the ACC effectively solved the contradiction between
susceptibility to breakage of supporting materials from the free face and low shear-bearing
capacity of the supporting materials due to a high prestress level [25,26]. The ACC achieved
good support performance in field tests and may be applied to similar roadways.
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2. Shear Resistance Analysis of the ACC Scheme

As the preliminary stresses (prestresses) acting on anchor cables increase, the axial
force of the anchor cables increases, while the cables’ ability to resist transverse shear
decreases. Under combined tension and shear, the tension and shear at the site of cable
breakage satisfy the following equation:(

N0

Nf

)2
+

(
Q0

Qf

)2
= 1, (1)

where N0 and Q0 are the tensile and shear forces upon cable breakage under combined
tension and shear (kN), respectively; Nf is the ultimate tensile strength of the anchor cable
under tension alone (kN); and Qf is the ultimate shear strength of the anchor cable under
shear alone (kN).

According to Equation (1), when the anchor cable is subjected to combined tension
and shear, the axial force acting on the anchor cable is negatively correlated with the shear
strength of the cable. The ACC is a good solution to the cables’ poor resistance to transverse
shear under a high prestress level.

As a novel support member, the ACC is mainly composed of a C-shaped tube, an
anchor cable, a tray, and an anchor lock, as shown in Figure 2. The C-shaped tube is made
of hot-rolled Q345b steel and has an outer diameter of 28 mm, an inner diameter of 24 mm,
a wall thickness of 2 mm, a slit width of 7.74 mm, and a splay angle of the slit of 35◦. The
C-shaped tube features high bending strength and transverse shear resistance. The free
section is nested in the C-shaped tube, which greatly enhances the free section’s resistance
to transverse shear. Since the length of the broken cable in the #318 gas excavation roadway
is usually shorter than 2 m, the tube length is designed to be 2 m.
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For less stable surrounding rocks in shallow positions to undergo slip dislocation in
coal mine roadways supported with an ACC, they first have to overcome the ultimate
shear strength of the structural plane itself. As the shear stress continues to grow, the
surrounding rocks will compress and apply a shear force on the C-shaped tube. In that case,
the C-shaped tube provides shear resistance to partially withstand rock mass deformation,
thereby protecting the internal anchor cable. As the shear force exerted by the sliding
rock masses and the shear displacement of the rock masses increase, the C-shaped tube
gradually closes until it completely wraps the internal anchor cable, as shown in Figure 3.
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Figure 3. Schematic diagram of the closure of the C-shaped tube.

The ACC offers resistance to the shear slip of the structural plane of surrounding rocks
via the following mechanisms: first, the structural plane of the rock mass provides slip
resistance to the sliding of fractured surrounding rocks; second, the slip resistance converts
from the compression that is exerted by rock masses on the two sides of the structural plane
due to the prestress acting on the anchor cable; third, resistance generated by the C-shaped
tube is compressed under stress; and finally, resistance is provided by the pinning effect as
the C-shaped tube tightly wraps the internal anchor cable. The total shear strength of the
ACC is derived by summing the above components:

τACC = τzs + τyy + τbh + τxd, (2)

Below, the mechanical behavior of ACC resisting each stage of shear slip of the
structural plane is analyzed as detailed below.

(1) Slip resistance of the structural plane itself:

First, the structural plane of the rock mass provides slip resistance to the sliding of
fractured surrounding rocks: Suppose that the structural plane is a plane without undula-
tion and with relative smoothness. There is only sliding friction. Without considering the
dilatancy effect of the surrounding rocks and by applying the Mohr–Coulomb criterion, we
write the following equation to describe the resistance of the structural plane before sliding:

τzs = σn tan ϕ + c, (3)

where τzs is the slip resistance of the structural plane itself (MPa); σn is the normal force
acting on the joint plane (MPa); c is the cohesion with the joint face not anchored; and ϕ is
the internal friction angle of the joint plane.

(2) Slip resistance converted from prestressing on the cable:

Second, the slip resistance converts from the compression that is exerted by rock
masses on the two sides of the structural plane due to the prestress acting on the anchor
cable: When prestress is applied to the internal anchor cable, the ACC compresses the rock
masses on the two sides, thereby increasing the interaction force of the surrounding rocks.
As a result, the friction on the structural plane increases. When slip dislocation occurs in
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the surrounding rocks on the structural plane, the above friction will impede the motion of
the surrounding rocks. This is described as

τyy =
Fyy

A
tan ϕ, (4)

where τyy is the slip resistance converted from prestressing on the cable (MPa); Fyy is the
prestress applied (MPa); and A is the anchored area of the structural plane (m2).

(3) Slip resistance generated by the closure of the C-shaped tube:

Third, resistance generated by the C-shaped tube is compressed under stress: The
C-shaped tube itself has a certain shear strength. After the structural plane undergoes shear
slip, the outer wall of the C-shaped tube will be subjected to shearing. Thus, resistance is
generated as a response to closure deformation. Figure 4 shows a schematic diagram of the
radial shear resistance of the C-shaped tube.
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The shear resistance, T1, generated by the C-shaped tube is given by

T1 =
∫ π

0

E1 I1

3πr1
4 v sin θdθ =

2E1 I1

3πr1
4 v, (5)

where E1 is the elastic modulus of the C-shaped tube (MPa); I1 is the cross-sectional moment
of inertia per unit length of the C-shaped tube (m4); r1 is the outer radius of the C-shaped
tube (mm); and ν is the deformation of the closed C-shaped tube (mm).

When the structural plane is dislocated, the C-shaped tube on both sides of the
structural plane first exerts a shear resistance. The range of action is approximately 20–50%
of the bore radius. Here, the range factor, l1, of force is introduced to represent the scope of
action of the structural plane on the C-shaped tube. The shear strength of the C-shaped
tube generated within this scope due to resistance is calculated as follows:

τbh =
T1l1

A
=

2E1 I1l1
3πr1

4 A
v, (6)

Assume that d0, d1, d2, and d3 are the diameters of the borehole and C-shaped tube be-
fore and after closure around the cable under compression, respectively; the corresponding
radii are r0, r1, r2 and r3.

When the structural plane only undergoes a small lateral dislocation before the bore
wall comes into contact with the C-shaped tube, that is, ν ≤ d0 − d1, we have τbh = 0.
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When the structural plane comes into contact and interacts with the C-shaped tube
and before the C-shaped tube completely closes, that is, d0 − d3 ≤ ν ≤ d0 − d1, we have:

τbh =
2E1 I1l1
3πr4

1 A

[ν

2
− (r0 − r1)

]
, (7)

When the C-shaped tube completely closes and tightly wraps the anchor cable, the
two form a whole, and the deformation of the C-shaped tube stops. Therefore, τbh stops
increasing.

τbh =
2E1 I1l1
3πr4

1 A
(r1 − r3), ν ≥ d0 − d3 (8)

(4) A slip resistance is generated due to the pinning effect:

Fourth, resistance is provided by the pinning effect as the C-shaped tube tightly wraps
the internal anchor cable:When the C-shaped tube completely closes, the constraining
force exerted by the surrounding rocks on the ACC satisfies Winkler’s assumption. The
relationship between the shear force and shear deformation of the ACC on the structural
plane is as follows:

T3a = 2E2 I2β[ν − (d0 − d3)], (9)

where E2 is the elastic modulus of the ACC (MPa), I2 is the section modulus of the ACC
(m4), and β is the flexibility coefficient.

The shear resistance exerted by the ACC on the structural plane due to the transverse
pinning effect is given by

τxd =
T3a

A
, (10)

From Equations (9) and (10), we have

τxd =
2E2 I2

A

(
k23

4Ez I2

) 3
4
[ν − (d0 − d3)], (11)

where d0 and d3 are the borehole diameters before and after the C-shaped steel pipe closure
and anchor cable integration, respectively. The above four slip resistances compose the
total shear strength of the ACC on the structural plane. Different combinations of any of
the four slip resistances at different stages provide the resultant shear resistance.

3. Mechanical Tests of ACC
Double Shear Test of Anchor Cables Alone and the ACC System

A double shear test system for anchor cables (bolts) and C-shaped tubes was used
for tests on the ACC and anchor cables alone. Different support members were compared
in terms of shear resistance. This system was independently developed by the China
University of Mining and Technology (Beijing) and comprised three parts: a host machine,
a control oil pump, and a tension–shear testing system. The tension–shear testing system is
a collective term for the shear and tension systems operating separately or simultaneously.
The core components are two servo-loading cylinders, one in the axial direction and the
other in the normal direction. A schematic diagram of the testing system is shown in
Figure 5.

Based on the proportioning test, the strength of the concrete test block in the double
shear test was 40 MPa. Next, double shear tests were performed for the ACC and the
anchor cable alone. The tests were intended to analyze the differences in shear resistance of
various support members with the same concrete strength, bore diameter, and prestress
without anchorage.

The specific procedure parameters of the double shear tests are shown in Table 1.
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Table 1. Procedure of double shear tests.

Test No. Support Member
Model

Prestress Design Value
(kN)

Concrete Test Block
Strength (MPa)

S1 Φ21.6 mm anchor cable 250 40
S2 Φ21.8 mm anchor cable 250 40
S3 Φ21.6 mm ACC 250 40
S4 Φ21.8 mm ACC 250 40

The test block appearance is illustrated in Figure 6.
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Figure 6. Photo of the double shear test block.

Upon the completion of the tests, the fracture surfaces were compared by analyzing
photos of the anchor cables alone and the ACC, while the ACC was also monitored during
the tests. Under the action of shear, the C-shaped tube itself was first deformed, and the
internal anchor cable wrapped by the tube was subjected to combined tension and shear,
as shown in Figure 7a,b. Given its distinct structure, the strands broke individually for
the internal anchor cable. As observed from Figure 7c,d, anchor cables alone primarily
experienced combined tensile shear and tensile failures. It is easy to see that the stress status
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differed in the single steel wire strand in the two support structures. For this reason, the
fracture patterns also differed in the two structures. When the steel wire strands broke, the
fracture pattern was more diversified when the anchor cable structure was more complex.
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ACC, (b) Φ21.8 mm ACC, (c) Φ21.6 mm anchor cable, and (d) Φ21.8 mm anchor cable.

As shown in Figure 8, the stress variation curves of the Φ21.8 mm anchor cable and
ACC were analyzed. For both structures, the stress variation curves were divided into
four stages: (i) overcoming frictional resistance, (ii) slip stage, (iii) deformation stage, and
(iv) step-like breaking stage. The stress status of each strand of the Φ21.8 mm anchor
cable and that of the internal anchor cable of the ACC varied. Therefore, when the steel
wire strands broke, one by one or all at once, both the axial and shear forces dropped in a
step-like manner.
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Figure 8. Comparison of normal displacement-normal load/axial force curves of the ACC and an-

chor cable: (a) Φ21.8 mm anchor cable; (b) Φ21.8 mm ACC. 

Figure 9 shows variations in the normal force, axial force, and normal displacement 

of the anchor cable and the ACC under the normal load action. 

Figure 8. Comparison of normal displacement-normal load/axial force curves of the ACC and anchor
cable: (a) Φ21.8 mm anchor cable; (b) Φ21.8 mm ACC.
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The greatest difference between the two structures was observed in the second (slip)
stage. For the anchor cables, the slip stage corresponded to the decreasing gap between
the reserved hole in the concrete block and the anchor cable. For the ACC, the slip stage
included the following two processes: (1) the gap between the reserved hole in the concrete
block and the anchor cable decreased, and (2) the concrete block and the C-shaped tube
interacted. The tube was gradually compressed until it closed and tightly wrapped the
anchor cable.

Figure 9 shows variations in the normal force, axial force, and normal displacement of
the anchor cable and the ACC under the normal load action.
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Figure 9. Comparison of tensile shear test results between anchor cables and ACC: (a) Φ21.6 mm
anchor cable & ACC; (b) Φ21.8 mm anchor cable & ACC.

It can be observed from Figure 9 that when breaking occurred under the normal load,
the axial ultimate bearing capacity of the ACC with the Φ21.6 mm anchor cable increased
by 3.29% compared with the Φ21.6 mm anchor cable alone, while the respective normal
ultimate bearing capacity increased by 23.82%. The ACC’s axial ultimate bearing capacity
with the Φ21.8 mm anchor cable increased slightly compared with the Φ21.8 mm anchor
cable alone, while the normal ultimate bearing capacity increased by 10.73%. In addition,
the initial shear stiffness of the ACC with Φ21.6 mm and Φ21.8 mm anchor cables increased
by 22 and 37%, respectively, compared with the anchor cables alone.

As analyzed above, the normal bearing capacity of the ACC was improved dramati-
cally compared to anchor cables alone.

4. Numerical Simulation of ACC

The case study was the Shuangliu Coal Mine located northwest of Lingshang Village
of Lvliang City, Shanxi Province, China, with a ground elevation of 778–920 m. The #318 gas
extraction roadway lies west of the #318 transport roadway and east of the #320 material
roadway. The #381 gas extraction roadway has a width of 5 m and a height of 3.8 m. The
coal seam from which gas is extracted via this roadway is the #(3 + 4) coal seam at the top of
the lower Shanxi Formation, with an average thickness of 3.8 m. According to the working
data, the surrounding rocks of the #318 gas extraction roadway are primarily composed of
mudstone, fine sandstone, and medium sandstone. More details on the surrounding rock
parameters are given in Table 2.
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Table 2. Lithology of #318 gas extraction roadway-surrounding rocks.

Lithology Support Member Model Prestress Design Value/kN

Fine sandstone 4.46 Grayish-white, medium-to-thick bedded, fine-grained sand-like structure, with the
predominance of quartz and feldspar, silica-cemented, and containing siderite.

Medium
sandstone 3.61 Grayish-white, medium-grained sand-like structure, with the predominance of quartz and

feldspar, silica-cemented, and containing muscovite and siderite.

Fine sandstone 4.13
Blackish-gray, fine-grained sand-like structure, with the predominance of quartz and

feldspar, containing muscovite and siderite, and having a higher fragmentation level, a hard
texture, and cracks.

Mudstone 5.18 Grayish-black, brittle-textured, medium-to-thick bedded, having semihard texture, and
containing fossil plant roots and stems and siderite nodules.

Mudstone 10.51 Grayish-black mudstone, thin-bedded, having slip planes and developed cracks, and
containing plant fossils.

Fine sandstone 8.15 Light-gray, fine-grained sandstone is embedded with thin siltstone layers and has developed
lower part cracks.

The original support scheme of the #318 extraction roadway is shown in Figure 10. The
roof is supported by Φ20 × 2400 mm bolts combined with two W-shaped steel belts; the
ribs are supported by Φ20 × 2000 mm bolts, plus a W-shaped guard plate placed vertically,
and the anchor cable is made of Φ17.8 mm × L6400 mm steel strands. The first row is
1100 m from the roadway centerline. In the second row, one cable is arranged in the middle
of the roadway, and other cables are laid with a spacing of 1000 m.
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4.1. Analysis of Damage Features of Surrounding Rocks

According to the field survey, the #318 gas extraction roadway underwent significant
deformation. Some photos were taken (Figure 11), displaying the following features of
deformation failure in the roadway:

(1) The roof was significantly fractured, and the metal net caught the falling rock pieces.
The W-shaped steel belts were bent in a wave-like manner; the two ribs were severely
deformed, and the bolt trays became embedded; the floor heave was severe. The closer to
the working face, the larger the floor deformation.

(2) Some roof bolts and cables were dislocated. The field survey showed that nearly
all bolts and cables underwent shear failure. Photos of the fractures of bolts and cables are
shown in Figure 12.
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Figure 12. Photos of the bolt and anchor cable breakage in the roadway: (a) bolt shearing; (b) anchor
cables damaged by shearing.

According to related data, supports are usually densified in coal mines to counter
shear failure. However, this approach achieves poor support performance and interferes
with the subsequent reinforced support. Based on the actual engineering conditions of the
Shuangliu Coal Mine, the main influencing factors of roadway stability were identified:

(1) The rock masses and coal seam in the #318 gas extraction roadway have limited
strength. In addition, due to the action of high geostatic stress, the surrounding rocks in the
ribs and corners underwent significant deformation. Severe rib failure further reduced the
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support offered by the roof. Stress concentration occurred at the roadway’s roof corners,
severely threatening the surrounding rock stability.

(2) The large deformation of the #318 gas extraction roadway was related to the original
support design and the choice of support materials. The original support design does not
fully account for the features of the surrounding rocks. Moreover, the support materials
selected did not have sufficiently high shear strength. For these reasons, the support system
only partially fulfilled its functions.

4.2. ACC Scheme for the #318 Gas Extraction Roadway

In this study, we proposed an ACC scheme for the #318 gas extraction roadway in the
Shuangliu Coal Mine, containing the following additions to the original support scheme.

In the roof, ribs, and floor corners, the ACC with Φ21.8 mm anchor cables was installed
along with arc-shaped high-strength cable trays for reinforced support. Two rows of ACC
were installed on the roof, with a spacing of 1000 mm. Two rows of ACC were installed
500 mm from the rib top and 150 mm from the rib bottom. One row of ACC was installed
in the middle of the rib, and the arrangement was symmetrical in the two ribs, with a
spacing of 1000 mm. One row of ACC was arranged in the east and west floor corners,
respectively, with a spacing of 1000 m. The support scheme using an ACC is shown in
Figure 13. Using an 8.4 m-long anchor cable as an example, its cost was compared to that
of the ACC, as shown in Table 3. The former was $44.91, versus ACC’s $46.95, implying a
4.5% cost increase for a 10–25% improvement in shear resistance, thus, substantiating the
ACC usage feasibility.

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

4.2. ACC Scheme for the #318 Gas Extraction Roadway 
In this study, we proposed an ACC scheme for the #318 gas extraction roadway in 

the Shuangliu Coal Mine, containing the following additions to the original support 
scheme. 

In the roof, ribs, and floor corners, the ACC with Φ21.8 mm anchor cables was in-
stalled along with arc-shaped high-strength cable trays for reinforced support. Two rows 
of ACC were installed on the roof, with a spacing of 1000 mm. Two rows of ACC were 
installed 500 mm from the rib top and 150 mm from the rib bottom. One row of ACC was 
installed in the middle of the rib, and the arrangement was symmetrical in the two ribs, 
with a spacing of 1000 mm. One row of ACC was arranged in the east and west floor 
corners, respectively, with a spacing of 1000 m. The support scheme using an ACC is 
shown in Figure 13. Using an 8.4 m-long anchor cable as an example, its cost was com-
pared to that of the ACC, as shown in Table 3. The former was $44.91, versus ACC’s $46.95, 
implying a 4.5% cost increase for a 10–25% improvement in shear resistance, thus, sub-
stantiating the ACC usage feasibility. 

Table 3. Costs of an 8.4 m-long anchor cable and ACC. 

Component Anchor Cable: Φ21.8 
mm × 1000 mm 

Anchor Cable Sup-
port Plate: 300 × 300 

× 14 mm 
Anchorage: KM22 

Anchoring Agent 
for Anchor Cables: 

CK2355 + 2 × 
K2355 

C-Shaped Tubes: 
Φ28 × 1000 mm 

Unit price 
(USD) 

3.41 10.22 4.09 1.96 1.02 

Total cost 
(USD) 28.64 10.22 4.09 1.96 2.04 

 
Figure 13. Schematic diagram of ACC in the roadway cross-section. 

  

Figure 13. Schematic diagram of ACC in the roadway cross-section.



Symmetry 2023, 15, 1757 13 of 18

Table 3. Costs of an 8.4 m-long anchor cable and ACC.

Component Anchor Cable:
Φ21.8 mm × 1000 mm

Anchor Cable
Support Plate:

300 × 300 × 14 mm
Anchorage: KM22

Anchoring Agent for
Anchor Cables:

CK2355 + 2 × K2355

C-Shaped Tubes:
Φ28 × 1000 mm

Unit price
(USD) 3.41 10.22 4.09 1.96 1.02

Total cost
(USD) 28.64 10.22 4.09 1.96 2.04

4.3. Numerical Analysis of Deformation and Failure Mechanism of the #318 Gas
Extraction Roadway

The FLAC3D commercial software (FLAC 3D 5.0., ITASA, USA) package was used for
modeling, based on the actual engineering situation in the #318 gas extraction roadway
of the Shuangliu Coal Mine. The stress state was simulated under the original and ACC
schemes after excavating the #318 gas extraction roadway. The bolts and cables were
simulated using CABLE elements, and the C-shaped tubes were simulated using PILE
elements. Modeling was performed based on field data. The surrounding rock parameters
of the roadway are listed in Table 4.

Table 4. Characteristic parameters of roadway surrounding rocks.

Rock Formation Bulk Modulus
(GPa)

Shear Modulus
(GPa)

Density
(kg·m−3)

Internal Friction
Angle (◦) Cohesion (MPa) Tensile Strength

(MPa)

Fine sandstone 2.4 1.8 2600 30 1.6 1.2
Medium

sandstone 3.2 2.3 2600 33 2.2 1.8

Fine sandstone 2.4 1.8 2660 30 1.6 1.2
Mudstone 1.8 1.3 2550 27 1.1 0.9
Coal seam 1.5 1.2 1380 23 0.8 0.4
Mudstone 1.8 1.3 2550 27 1.1 0.9

Fine sandstone 2.4 1.8 2600 30 1.6 1.2

The numerical simulation model had dimensions of 30 m × 30 m × 15 m (length
× width × thickness); the roadway model had a size of 5000 mm × 3800 mm. The
overall model and the roadway were symmetrical on both sides, as shown in Figure 14.
Displacement constraints were imposed on the four sides and the bottom of the model.
A vertical distributed stress of 12.4 MPa was applied to the model’s top to simulate the
overlying load. The lateral pressure coefficient was taken as 1.2.

1 
 

 

Figure 14. Numerical simulation model.
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Figure 15 shows the distributions of vertical and horizontal stresses in the roadway
surrounding rocks under the original support scheme and the ACC system calculated by
numerical simulation: those in Figure 15a,b were compared against those in Figure 15c,d.
The following findings were made:
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Figure 15. Stress distributions under the original (a,c,e,g) and ACC (b,d,f,h) support schemes.

(1) The area of stress concentration decreased dramatically under the ACC scheme
compared to the original support scheme. The above result indicated that the ACC scheme
effectively reduced stress concentration and crack generation, thereby contributing to the
surrounding rock stability of the roadway.

(2) In the floor, roof, and two ribs, the area of stress disturbance under the ACC scheme
was smaller than that under the original support scheme. Under the original support
scheme, the area of stress disturbance in the two ribs was within 4.8 m from the roof and
floor and 2.3 m from the two ribs. The area of stress disturbance in the two ribs was within
4.7 m from the roof and floor and within 1.7 m from the two ribs under the ACC scheme.
The area of stress disturbance has been marked with a red circle in the Figure 15. It is
easy to see that the bearing capacity of the surrounding rocks was more fulfilled under the
ACC scheme.

Next, when comparing Figure 15e,f to Figure 15g,h, the following results were observed:
(1) The minimum horizontal stresses in the ribs under the original and ACC schemes

were 0.03 and 0.81 kN, respectively, proving that the ACC scheme effectively improved the
bearing capacity of the surrounding rocks in the ribs, thereby enhancing the surrounding
rock stability.

(2) Compared with the original support scheme, the tensile stress in the surrounding
rocks decreased by 4.1% under the ACC scheme. The latter was qualified as a complemen-
tary support structure for surrounding rocks, and conducive to forming stable zones.

As shown in Figure 16, the ACC scheme effectively reduced the surrounding rock
displacements in the vertical and horizontal directions. In the vertical direction, the roof-
to-floor convergences were 17.01 and 15.53 cm under the original and ACC schemes,
respectively, differing by 9.53%. As shown in Figure 16a,b,e,f, the rib-to-rib convergence
reached 22.27 and 17.80 cm in the horizontal direction under the original and ACC schemes,
respectively. Compared with the original scheme, the rib deformation decreased by 25.11%
under the ACC scheme, which was a remarkable reduction, as shown in Figure 16c,d,g,h.
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Figure 16. Displacement distributions under the original (a,c,e,g) and ACC (b,d,f,h) support schemes.

As analyzed above, the ACC scheme outperformed the original scheme in controlling
the deformation of the floor, roof, and two ribs.

Figure 17 shows the distribution ranges of the plastic zone obtained by numerical
simulation under the original and ACC schemes. A comparison between Figure 17a,b
shows that the plastic zone in the surrounding rocks was much smaller under the ACC
scheme than under the original support scheme. According to the numerical simulation,
the volume of the plastic zone in the surrounding rocks decreased by 5.01% under the ACC
scheme compared to that under the original support scheme.
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5. Field Monitoring of the ACC in the #318 Extraction Roadway

To validate the performance of the ACC scheme, we conducted field tests within
a length of approximately 300 m in the #318 gas extraction roadway. The ACC scheme
was applied to support tests in the roadway. Monitoring of the two ribs, floor, and roof
was performed for 55 days, using the cross-shaped point arrangement method. The field
monitoring data are shown in Figure 18.
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It can be observed from the field monitoring data in Figure 18 that from the start of
monitoring to day 11 of monitoring, the roof-and-floor and rib-to-rib deformation rates were
the highest at monitoring points 1 and 2. The roof-and-floor and rib-to-rib deformations at
monitoring points 1 and 2 increased by 25 and 28 mm versus 23 and 26 mm, respectively.
From day 25 of monitoring onward, the above deformations slowly increased. After 55 days
of monitoring, the maximum roof-and-floor and rib-to-rib deformations were 40 and 48 mm
at monitoring point 1, respectively, reaching 39 and 49 mm at monitoring point 2. Thus,
the ACC scheme effectively controlled the deformation rate of the surrounding rocks in
the roadway. The deformation law observed by field monitoring was consistent with that
estimated by numerical simulation. This proved that the proposed ACC scheme provided
adequate shear resistance during the engineering process, which enhanced the ability
of the surrounding rocks to withstand shear loads. The ACC scheme achieved a good
application effect.

6. Conclusions

(1) The ACC is a novel support member that can withstand transverse loads and
resolve the problem of poor shear resistance when using anchor cables with a high prestress
level. The slip resistance offered to the sliding surrounding rocks is provided by the
following four components: (i) surrounding rocks themselves, (ii) response to the prestress,
(iii) the C-shaped tube, and (iv) the converted pinning effect.

(2) The performed double-shear tests showed that under the same prestress level, the
axial ultimate bearing capacity of the ACC with the Φ21.6 mm anchor cable increased
by 23.82% compared to the Φ21.6 mm anchor cable alone; the normal ultimate bearing
capacity increased by 10.73%. In addition, compared with anchor cables alone, the two
types of ACC increased the initial shear stiffness by 22% and 37%, respectively, indicating
that the ACC outperformed anchor cables alone in shear resistance.

(3) The numerical simulation using FLAC3D proved that the proposed ACC scheme
reduced the stress concentration. The volume of the plastic zone in the surrounding rocks
decreased by 5.01%, compared to the original support scheme. The ACC scheme effectively
controlled the deformation displacement of the roof, floor, and two ribs. The maximum
roof-to-floor and rib-to-rib convergences under the ACC scheme were 15.53 and 17.80 cm,
respectively, implying reductions of 9.53 and 25.11%, compared to the original scheme.
The above results proved that the ACC system fully fulfilled its shear-bearing capacity
and ensured the surrounding rock stability of the #318 gas extraction roadway taken as a
case study.
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(4) Field monitoring showed that the ACC reduced the deformation of the floor, roof,
and two ribs, and the deformation rate of the surrounding rocks, in a real engineering
scenario. According to the 55-day monitoring, the maximum roof-and-floor and rib-to-rib
deformations were 40 and 49 mm, respectively. This indicated a good application effect of
the ACC in field tests and the ability of the ACC to provide extra shear resistance when
added to prestressed bolts and cables.
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