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Abstract: We approximate the solution of a generalized form of the Bagley–Torvik equation using
Taylor’s expansions in fractional powers. Then, we study the fractional Laguerre-type logistic
equation by considering the fractional exponential function and its Laguerre-type form. To verify our
findings, we conduct numerical tests using the computer algebra program Mathematica©.
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1. Introduction

In a recent article [1], we used expansions in fractional powers to solve, in an el-
ementary way, several multi-term fractional differential equations, which appeared in
the literature (see, e.g., [2–9]). The fractional derivative is a critical concept for innumer-
able applications in the most diverse fields of applied sciences. Several definitions are
examined and compared in classic papers (see e.g., [10–12]), where fractional differential
equations [13] are also studied.

Without going into this vast field of investigation, in the article above [1], we limited
ourselves to considering the Euler’s definition for the fractional derivative that falls within
the one given by Caputo [14], and we only considered expansions in fractional power series.
The powers considered in our expansions enjoy a symmetrical property, being integer
multiples of a given number α, (0 < α < 1).

This method has been analyzed in the work of Groza–Jianu [15], where the main
results valid for ordinary power series expansions were extended to the case of fractional
power exponents.

In this article, in Section 2, we extend the results obtained in [1] by studying a general-
ization of the classical Bagley–Torvik equation [16] .

Moreover, in Section 3, we introduce the fractional version of the exponential function,
which is related to the Mittag–Leffler function [17], frequently used in the framework of
studies concerning fractional derivative theory and applications.

As is well known, the exponential function is the basic tool for constructing special
functions and polynomials, often through suitable generating functions, which gave rise to
symmetric or antisymmetric functions. Extending this function to the fractional case makes
the generalization of many classical polynomial sets and functional operators possible.
This is the aim of our investigation involving the study of fractional versions of many
mathematical special functions, special polynomials and numbers.
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Our goal is to show how these generalized entities, depending on a parameter α
(with 0 ≤ α < 1), approach their corresponding classical counterparts as α approaches 1.
In this way, one can develop fractional versions of classical differential equations, including
those related to population dynamics, and define fractional Laplace transforms, as well as
fractional special numbers. Related articles are currently being published on these topics.

In Section 4, we recall the fractional-order logistic equation already examined in a
preceding article, with the purpose of generalizing that to the Laguerre-type case.

The Laguerre-type exponentials and derivatives are recalled in Section 5 and are
extended to the fractional case.

It is worth noting that the Laguerre derivative and the associated Laguerre-type special
functions [18,19] determine a symmetry in the space of analytic functions. In fact, the op-
erator DxD = D + x D2 introduces a linear differential isomorphism, acting on the space
of analytic functions of the x variable. By using this isomorphism, a parallel structure is
created within this space, so that the differentiation properties can be immediately derived.

Furthermore, iterations of the Laguerre derivative can be defined, and this parallelism
can be iterated too, in an endless way. Therefore, a cyclic construction is created within the
space that repeats the same structure at a higher level of differentiation order. It is one of
the great cycles that sometimes occur within mathematical theories.

By using the Laguerre-type derivative, we study the Laguerre-type fractional-order lo-
gistic equation, while extending the results in [20] to the Laguerre-type case. The traditional
fractional logistic equation has been examined in [21,22].

2. The Bagley–Torvik Equation

In 1984, Torvik and Bagley [16] first proposed a fractional order differential equation
to model the viscoelastic behavior of geological strata, as well as metals, and glasses. They
showed the effectiveness of their approach in describing structures containing elastic and
viscoelastic components. The so called Bagley–Torvik equation became a model to test the
solution of fractional differential equations, with suitable initial conditions.

We consider the following inhomogeneous Bagley–Torvik-type fractional differential
equation (see [15]), with special initial conditions

D2
t y(t) + A D3/2

t y(t) + B y(t) =

= c0 +
c1

Γ(3/2)
t1/2 +

c2

Γ(2)
t +

c3

Γ(5/2)
t3/2 + · · ·+ cn

Γ(n/2 + 1)
tn/2 + . . . ,

(1)

y(0) = 1, y(1/2)(0) = 0, y′(0) = 0, y(3/2)(0) = 0 . (2)

Put

y(t) =
∞

∑
n=0

antn/2 . (3)

Since

D3/2tn/2 =
Γ(n/2 + 1)

Γ(n/2− 1/2)
t(n−3)/2, (n ≥ 3) , (4)

and in Equation (1) the derivatives of order 3/2 and 2 appear, we put a1 = a2 = a3 = 0 in
the expansion (3). As a0 = y(0) = 1, we have

y(t) = 1 + a4 t2 + a5 t5/2 + a6 t3 + a7 t7/2 + a8 t4 + . . . , (5)
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and

y′(t) = 2 a4 t +
5
2

a5 t3/2 + 3 a6 t2 +
7
2

a7 t5/2 + 4a8 t3 + . . . .

D3/2
t y(t) =

Γ(3)
Γ(3/2)

a4 t1/2 +
Γ(7/2)

Γ(2)
a5 t +

Γ(4)
Γ(5/2)

a6 t3/2 +
Γ(9/2)

Γ(3)
a7 t2 + . . . ,

y′′(t) = 2 a4 +
15
4

a5 t1/2 + 6 a6 t +
35
4

a7 t3/2 + 12 a8 t2 + . . . .

Substituting into Equation (1), we find

2 a4 +
15
4

a5 t1/2 + 6 a6 t +
35
4

a7 t3/2 + 12 a8 t2 + · · ·+

+ A
(

Γ(3)
Γ(3/2)

a4 t1/2 +
Γ(7/2)

Γ(2)
a5 t +

Γ(4)
Γ(5/2)

a6 t3/2 +
Γ(9/2)

Γ(3)
a7 t2 + . . .

)
+

+ B
(

1 + a4 t2 + a5 t5/2 + a6 t3 + a7 t7/2 + a8 t4 + . . .
)
=

= c0 +
c1

Γ(3/2)
t1/2 +

c2

Γ(2)
t +

c3

Γ(5/2)
t3/2 + · · ·+ cn

Γ(n/2 + 1)
tn/2 + . . . .

Equating the coefficients of equal t-powers, we find a triangular system, which recur-
sively gives the an coefficients n ≥ 4 of the solution (3).

2a4 + B = c0

A
Γ(3)

Γ(3/2)
a4 +

15
4

a5 =
c1

Γ(3/2)

A
Γ(7/2)

Γ(2)
a5 + 6 a6 =

c2

Γ(2)

A
Γ(4)

Γ(5/2)
a6 +

35
4

a7 =
c3

Γ(5/2)

A
Γ(9/2)

Γ(3)
a7 + B a4 + 12a8 =

c4

Γ(3)

A
Γ(5)

Γ(7/2)
a8 + B a5 +

63
4

a9 =
c5

Γ(7/2)

...

A
Γ( n+5

2 )

Γ( n+2
2 )

an+3 + B an +
(n + 2)(n + 4)

4
an+4 =

cn

Γ( n+2
2 )

.

2.1. Convergence Results

Let A and B be positive numbers, and suppose the sequence {cn} is bounded, i.e.,
|cn| ≤ C, ∀n.

We have put, for example, A = 2, B = 1, and we have found that the coefficients an
alternate in sign and tend to zero as n→ +∞.



Symmetry 2023, 15, 1702 4 of 11

We first prove that the coefficients of the series (3) are in the order of the reciprocal of
the Gamma function of (n− 1)/2, so that the series is absolutely convergent in the whole
complex plane. Then, we show that, on the real axis, the Nth remainder term tends to zero
when N → +∞.

Consequently,∣∣∣∣A Γ
(

n + 5
2

)
an+3 + B Γ

(
n + 2

2

)
an + Γ

(
n + 2

2

)
(n + 2)(n + 4)

4
an+4

∣∣∣∣ ≤ C ,

assuming an+3 < 0, and consequently, an > 0, an+4 > 0, with an+4 < |an+3| < an, we have∣∣∣∣A Γ
( n+5

2
)

an+3 + B Γ
( n+2

2
)

an + Γ
( n+2

2
) (n + 2)(n + 4)

4
an+4

∣∣∣∣ <
<
∣∣−A Γ

( n+5
2
)
|an+3|+ B Γ

( n+2
2
)

an
∣∣ ≤ C ,

so that ∣∣∣∣−A Γ
(

n + 2
2

)
|an+3|+ B Γ

(
n + 2

2

)
|an+3|

∣∣∣∣ ≤ C ,

|an+3| ≤
C

|B− A| Γ( n+2
2 )

,

and

an = O
(

1
Γ( n−1

2 )

)
.

Then, we find

∞

∑
n=0
|an|tn/2 ≤ C

|B− A|
∞

∑
n=0

tn/2

Γ( n−1
2 )

.

so that the series
∞

∑
n=0

antn/2 is absolutely convergent in the whole complex plane, as its

convergence radius is +∞.
Furthermore, according to the Leibniz theorem, ∀t > 0 on the positive real axis,

the alternating series
∞

∑
n=0

an tn/2 is convergent and the remainder term RN(t) resulting from

the truncation of the series at the index N is bounded by the first neglected term, that is

|RN(t)| = |
∞

∑
n=N+1

an tn/2| ≤ |aN+1| t(N+1)/2 .

2.2. Numerical Results

Assuming cn = 1, ∀n ≥ 0, A = 2, B = 1 and using the above recursion, we find the
following the Table of the an coefficients 0 ≤ n ≤ 40, reported in Figure 1.
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Figure 1. The an coefficients for 0 ≤ n ≤ 40.

The graph of the approximate solution is depicted in Figure 2.

Figure 2. Graph of the solution ỹ(t) using the an coefficients vs y(t), obtained using the predictor–
corrector method.
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3. The Fractional Exponentials

Note that in the particular case c = {1, 1, . . . , 1, . . . }, the second member of the classical
Bagley–Torvik equation is an extension of the exponential function:

Exp1/2(t) = 1 +
1

Γ(3/2)
t1/2 +

1
Γ(2)

t + · · ·+ 1
Γ(n/2 + 1)

tn/2 + . . . . (6)

It is convergent in the whole complex plane, as the same holds for the classical
exponential exp(t).

Furthermore, according to the fractional differentiation rule of powers, the following
results

D1/2Exp1/2(t) = Exp1/2(t) . (7)

In general, putting

Expα(t) = 1 +
1

Γ(α + 1)
tα +

1
Γ(2α + 1)

t2α + · · ·+ 1
Γ(nα + 1)

tnα + . . . .

we find

DαExpα(t) = Expα(t) .

Remark 1. Recalling the Mittag–Leffler function [17]

Eα,β(x) =
∞

∑
n=0

xn

Γ(αn + β)
, ∀ x ∈ C, ∀ α, β ∈ R+ ,

assuming β = 1, and substituting x with xα results in

Eα,1(xα) = Expα(x) , and Dα
x Eα,1(xα) = Eα,1(xα) ,

so that the fractional exponentials can be reduced to the Mittag–Leffler function.
In particular, we have:

E 1
2 ,1(x1/2) =

∞

∑
n=0

xn/2

Γ(n/2 + 1)
= Exp1/2(x) .

4. The Fractional-Order Logistic Equation

We consider the fractional-order logistic initial value problem [21] Dα
t P(t) = r P(t)

[
1− 1

K P(t)
]

, (0 < α < 1) ,

P(0) = p0 .
(8)

In a recent paper [20], we proved the result

Theorem 1. Setting

P(t) =
∞

∑
n=0

an
tαn

Γ(α n + 1)
, (9)
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the solution of the fractional-order logistic initial value problem in Equation (8) is obtained by
computing the an coefficients through the following recursion

a0 = p0

an+1 = r

[
an −

1
K

n

∑
k=0

ak an−k Γ(n α + 1)
Γ(α(n− k) + 1) Γ(α k + 1)

]
.

(10)

Example

Assuming α = 1/2, r = 1, K = 1.5, and putting y0 = 0.5, we find the following Table
for the an coefficients, (0 ≤ n ≤ 36), reported in Figure 3.

5. The Laguerre-Type Exponentials

In preceding articles [18,19], the Laguerre-type exponential

eL(x) := ∑
k=0∞

xk

(k!)2 . (11)

has been introduced in connection with the Laguerre-type derivative

DL := DxD = D + x D2 . (12)

Namely, it is an eigenfunction of this operator, since ∀a (complex constant), resulting
in the following equation:

DLeL(a x) = a eL(a x) .

In general, for any integer n ≥ 1, the higher-order Laguerre-type exponentials

enL(x) := ∑
k=0∞

xk

(k!)n+1 , (13)

satisfy the eigenvalue property concerning the nth order Laguerre derivative

DnL := Dx · · ·DxDxD = S(n + 1, 1) D + S(n + 1, 2) xD2 + · · ·+
S(n + 1, n + 1) xnDn+1

(14)

where S(n+ 1, 1), S(n+ 1, 2), . . . , S(n+ 1, n+ 1) denote the Stirling numbers of the second
kind, since

DnLenL(a x) = a enL(a x) .

The Laguerre-type special functions have been considered in preceding papers, and the
relevant properties have been examined. It turned out that the properties of Laguerre-type
special functions exhibit symmetric properties with respect to those of the corresponding
ordinary ones. This is a consequence of a differential isomorphism in the space of analytic
functions that connects ordinary and Laguerre-type special functions. Such isomorphism is
described in [19].

5.1. The Fractional Laguerre-Exponentials

Introducing the fractional Laguerre-type exponential of order α = 1/2,

L1Exp1/2(t) = 1 +
1

[Γ(3/2)]2
t1/2 +

1
[Γ(2)]2

t+

1
[Γ(5/2)]2

t3/2 + · · ·+ 1
[Γ(n/2 + 1)]2

tn/2 + . . . ,
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we found that

D1/2 x1/2 D1/2
L1Exp1/2(t) = L1Exp1/2(t) .

More generally, putting

Ln Exp1/2(t) = 1 +
1

[Γ(3/2)]n+1 t1/2 +
1

[Γ(2)]n+1 t+

1
[Γ(5/2)]n+1 t3/2 + · · ·+ 1

[Γ(n/2 + 1)]n+1 tn/2 + . . . ,

and considering the iterated Laguerre-type operator, which embeds n + 1 fractional deriva-
tives, results in the following equation:

D1/2 x1/2 D1/2 x1/2 D1/2 · · · x1/2 D1/2
Ln Exp1/2(t) = Ln Exp1/2(t) .

Of course, the results of this section, and the relevant application, could be generalized
to any value of α, (0 < α ≤ 1); but, for the sake of conciseness, we limit ourselves to the
particular case α = 1/2 because the technique used is always the same.

5.2. The Laguerre-Type Fractional-Order Logistic Equation

We consider the Laguerre-type fractional-order logistic initial value problem
D1/2

t t1/2D1/2
t P(t) = r P(t)

[
1− 1

K P(t)
]

,

P(0) = p0 .

(15)

We prove the following result:

Theorem 2. Setting

P(t) =
∞

∑
n=0

an
tn/2

Γ(n/2 + 1)
, (16)

the solution of the considered Laguerre-type fractional-order logistic initial value problem is obtained
computing the an coefficients using the recursion

a0 = p0

an+1 = r

[
an

Γ( n+2
2 )

Γ( n+3
2 )
− 1

K

n

∑
k=0

ak an−k [Γ( n+2
2 )]2

Γ( n+3
2 ) Γ( n−k

2 + 1) Γ( k
2 + 1)

]
.

(17)

Proof. Using the fractional differentiation, we find

D1/2
t t1/2D1/2

t P(t) =
∞

∑
n=0

an+1
Γ( n+3

2 ) tn/2

[Γ( n+2
2 )]2

,

P(t) · 1
K

P(t) =
1
K

∞

∑
n=0

n

∑
k=0

ak an−k
tn/2

Γ( n−k
2 + 1) Γ( k

2 + 1)
.
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Substituting into the equation, we find

∞

∑
n=0

an+1
Γ( n+3

2 ) tn/2

[Γ( n+2
2 )]2

=

= r

[
∞

∑
n=0

an
tn/2

Γ( n+2
2 )
− 1

K

∞

∑
n=0

n

∑
k=0

ak an−k
tn/2

Γ( n−k
2 + 1) Γ( k

2 + 1)

]
=

= r
∞

∑
n=0

[
an

Γ( n+2
2 )
− 1

K

n

∑
k=0

ak an−k

Γ( n−k
2 + 1) Γ( k

2 + 1)

]
tn/2 ,

so that the recursion for the an coefficients follows.

5.3. Numerical Results

Assuming r = 1, K = 2, y0 = 1, and using the above recursion, we find the following
Table of the an coefficients 0 ≤ n ≤ 36, reported in Figure 4.

Remark 2. Note that in the Table contained in Figure 3, as well as in that in Figure 4, the values
of the coefficients an, with even index greater than 0, that is for n = 2m, con, m a strictly positive
integer, vanish or are so small that they cannot have any influence on the solution. The graph of the
solution of problem 15, with a = 1/2, is shown in Figure 5.

Figure 3. The an coefficients of the solution (9), for the considered parameters, and 0 ≤ n ≤ 36.
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Figure 4. The an coefficients for the Laguerre-type fractional logistic equation, with 0 ≤ n ≤ 36.

Figure 5. Graph of the solution of the problem (15) (α = 1/2), using the an coefficients of the
Table in Figure 4 (dotted line), compared with the solutions of the Laguerre-type logistic equation
(α = 1) using a predictor-corrector method (blue line) and a recursion method for approximating the
coefficients (orange dashed line).

6. Conclusions

We have presented various findings within the context of fractional derivatives. Ad-
ditionally, we have introduced a fractional version of the exponential function, which is
connected to the Mittag–Leffler function that is commonly found in papers on fractional
derivatives. In terms of the fractional derivative, this function shares the same eigenvalue
characteristic as the traditional exponential has with respect to the ordinary derivative. As a
result, many of the properties associated with analytic functions involving the exponential
can be extended to fractional power series.

We are currently working on further articles that will delve deeper into this subject.
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