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Abstract: The two-field thermal conditions of local thermal nonequilibrium (LTNE) were used to
investigate linear stability of thermal convection in a liquid-saturated, porous layer via the extended
Brinkman–Darcy model for different non-uniform basic thermal gradients. The critical values were
numerically computed by the Galerkin method for rigid isothermal boundaries. The impact of LTNE
and different forms of non-uniform basic temperature gradients on the onset of porous convection
was examined. The porosity modified conductivity ratio has no influence on system stability at
a small inter-phase heat transport coefficient limit. However, for higher values of the inter-phase
heat transport coefficient, an increase in the porosity modified conductivity ratio hastens the onset
of convection. An increase in the Darcy number delays the convective motions. The results for
different basic temperature profiles are symmetric qualitatively. In addition, the possibility of control
of convection by a basic temperature profile was studied in detail.

Keywords: porous medium; convection; nonuniform temperature gradient; thermal non-equilibrium

1. Introduction

Rayleigh–Bénard convection, also known as natural convection or thermal convection,
is the study of convection heat transport in permeable media induced by density variations.
Over the last few decades, many authors have studied this because it has many different
applications in both science and engineering. Nield and Bejan [1] adequately documented
the expanding volume of work encompassing different features of the problem. The as-
sumption that the liquid and permeable media phases are in local thermal equilibrium
(LTE) provides the foundation for the exploration of convective flow in porous media.
However, LTNE does occur when the fluid and permeable medium phases have different
volume-average temperatures. In physical science, symmetry is a significant notion, and its
modern implementation to comprehend non-equilibrium behavior is yielding profound
insights and innovative outcomes. The first study of LTNE effects on convective motions in
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permeable media using the Darcy equation was performed by Banu and Rees [2]. Postel-
nicu [3], Postelnicu and Rees [4], and Malashetty et al. [5] used the Brinkman equation to
study the LTNE impact on permeable convective flow. Straughan [6] discussed the nonlin-
ear stability in porous convection using the LTNE model. Further research on the impacts of
LTNE on permeable convection has been conducted throughout the last few decades [7–18].
The study of heat transfer and convective fluid flows through a porous medium has been
the primary objective of the investigators’ work [19,20], with particular attention being paid
to symmetry principles that emerged from the collective research. Under circumstances
where the Reynolds number is high, the symmetry fails. However, numerous scholars have
looked into the practical implications of these issues based on different dynamics. Recently,
Suma et al. [21] discussed the effect of anisotropy on convective flows under the LTNE
regime for asymmetric thermal boundaries. Capone and Gianfrani [22] explored the impact
of the second sound effect on LTNE anisotropic porous convective motions.

The flow of fluids with a non-uniform thermal gradient occurs in natural and industrial
systems when fluid temperature varies unevenly. This temperature change affects fluid
behavior, creating intriguing and complicated flow patterns. Such fluxes are studied in fluid
dynamics and heat transfer, which affect meteorology and engineering. In many practical
circumstances, nonlinear temperature gradient scenarios are preferred over uniform profile
cases. Nield [23] discussed the impact of thermal gradient on system stability. The study of
thermal porous convection with different forms of inhomogeneous temperature gradient
for adiabatic boundaries was considered by Rudraiah et al. [24]. The Brinkman model
was utilized by Vasseur and Robillard [25] to discuss the thermal distribution influence
on the stability of the system. In an asymmetric geometry of porous matrix, Degan and
Vasseur [26] studied the inhomogeneous thermal gradient impact on thermal convection.
The influence of an inhomogeneous thermal profile on a micropolar liquid was carried
out by Idris et al. [27]. Shivakumara et al. [28] and Lee et al. [29] revised the impact of
both LTNE and nonlinear thermal profiles on the beginning of convection in isotropic
permeable media. The thermal gradient effect on the threshold of dual diffusive convection
in a permeable media was conferred by Hamid et al. [30].

The occurrence of a non-uniform temperature gradient due to differential heating with
depth is prevalent in geophysical and engineering applications. As a result, understanding
the influence of a non-uniform basic temperature gradient on the onset of porous convection
under the LTNE regime is of practical importance and no attention has been given to
assessing the combined effects of LTNE and non-uniform basic temperature gradients on
the criterion for the onset of porous convection, despite its importance in understanding
convective motions encountered in many scientific and technological problems. The aim
of this paper was to use the LTNE model to determine the impact of several non-uniform
basic temperature gradients on the beginning of convection in a liquid-saturated porous
media. Such a study helps in understanding the control of convection. The discussion
considers four different types of fundamental temperature profiles: (i) linear thermal profile
(M1), (ii) inverted parabolic thermal profile (M2), (iii) cubic-1 thermal profile (M3), and (iv)
cubic-2 thermal profile (M4). The porous layer’s bounding surfaces are considered to be
rigid isothermal, and the resulting eigenvalue is solved numerically using the Galerkin
method, while a detailed parametric study on the criterion for the onset of convection
effects is presented graphically.

2. Mathematical Formulation

A fluid-saturated, porous layer with rigid horizontal boundaries at z = 0 and d is
considered (see Figure 1). The lower surface is maintained at a constant temperature Tl ,
and the upper surface is maintained at Tu (<Tl). A Cartesian coordinate system is selected
for the gravitational field, with the origin at the lower end of the permeable layer and
the z-axis vertically upward. For the temperature equation, a two-field thermal condition
describing liquid and solid phases separately is used. The basic state is quiescent and is
perturbed infinitesimal disturbances. The governing linear perturbation equations in the
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non-dimensional form may then be demonstrated by applying the techniques described in
Shivakumara et al. [28] and Lee et al. [29].
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In the above equations, Θ(z) is the amplitude of perturbed fluid temperature,
γ = ε k f /(1− ε) ks is the porosity modified conductivity ratio, a =

√
l2 + m2 is the overall

horizontal wave number, D = d/dz is the differential operator, H = hd2/ε k f is the coef-
ficient of inter-phase heat transport, W(z) is the amplitude of perturbed vertical velocity,
Da = µ̃ f K/µ f d2 is the Darcy number, Φ(z) is the amplitude of perturbed solid tempera-
ture, R = βgKd∆T/ενκ f is the Darcy–Rayleigh number and f (z) is a dimensionless basic
thermal gradient. Following Idris et al. [27], f (z) is taken in the following form:

f (z) = b1 + 2b2(z− 1) + 3b3(z− 1)2 (4)

where b1, b2, and b3 are constants. We note that the case where b1 = 1, b2 = 0, and b3 = 0
corresponds to classical linear basic state thermal profile distribution and the corresponding
problem was discussed by Postelnicu [3] and Malashetty et al. [5].

The upper and lower bounding surfaces of the permeable layer are assumed to be rigid
with fixed temperatures for both liquid and solid phases at the boundaries. Consequently,
the boundary constraints are as follows:

W = DW = Θ = Φ = 0 at z = 0, 1. (5)

3. Numerical Solution

An eigenvalue problem (EVP) is formed from the Equations (1)–(3) and the boundary
conditions (5). Below are the different sorts of basic thermal profiles that are to be discussed:

Model (i): Linear thermal profile (M1)

f (z) = 1 (6)

which corresponds when b1 = 1 and b2 = 0 = b3.
Model (ii): Inverted parabolic thermal profile (M2)

f (z) = 2(1− z) (7)

which corresponds when b1 = 0 = b3 and b2 = −1.
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Model (iii): Cubic-1 thermal profile (M3)

f (z) = 3(z− 1)2 (8)

which corresponds when b1 = 0 = b2 and b3 = 1.
Model (iv): Cubic-2 thermal profile (M4)

f (z) = 0.6 + 1.02(z− 1)2 (9)

which corresponds when b1 = 0.6, b2 = 0 and b3 = 0.34.
To solve the EVP for various kinds of f (z), the Galerkin technique is found to be more

appropriate. Consequently, W(z), Θ(z), and Φ(z) are expanded as follows:

W =
n

∑
i=1

Ai Wi(z), Θ(z) =
n

∑
i=1

Bi Θi(z), Φ(z) =
n

∑
i=1

Ci Φi(z) (10)

where Ai, Bi, and Ci are unknown coefficients. The base functions Wi(z), Θi(z), and Φi(z)
are assumed in the following form:

Wi = (z4 − 2z3 + z2) T∗i−1, Θi = z(z− 1)T∗i−1 = Φi (11)

where T∗i s are the modified Chebyshev polynomials, such that Wi, Θi, and Φi satisfy the
boundary constraints. Equation (11) is substituted in Equations (1)–(3) and the resulting
equations are multiplied respectively, by Wj(z), Θj(z), and Φj(z), integrated by parts with
respect to z between z = 0 and 1, We obtain the following system of algebraic equations by
utilizing the boundary conditions:

Aji Ai + BjiBi = 0 (12)

Cji Ai + DjiBi + EjiCi = 0 (13)

FjiBi + GjiCi = 0 (14)

The coefficients Aji to Gji involve the inner products of the base functions and are
given by the following:

Aji = Da < D2WjD2Wi > +(2 a2 Da + 1) < DWjDWi > +a2(a2Da + 1) < WjWi >

Bji = −a2R < WjΘi >

Cji = − < f (z)ΘjWi >

Dji =< DΘjDΘi > +(a2 + H) < ΘjΘi >

Eji = −H < ΘjΦi >

Fji = −γ H < ΦjΘi >

Gji =< DΦjDΦi > +(a2 + γH) < ΦjΦi >

(15)

where the inner product is defined as < · · · > =
1∫

0
(· · · ) dz.

The Rc (critical Rayleigh number) is found by numerically solving the characteristic
equation given by Equations (12)–(14) corresponding to Model (i)–(iv) basic temperature
profiles as a wave number a function for diverse γ, Da, and H values. When all physical
parameters are fixed, the Newton–Raphson method is utilized to derive the Rayleigh
number as a function of wave number, and the bisection method is built in to discover the
key stability parameters to the appropriate degree of accuracy. It should be noted that the
results are converged by employing six terms in the series expansion.
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4. Results and Discussion

On the criteria for the onset of porous convection, the impact of LTNE and the non-
uniform thermal gradient arising from transitory heating are presented. Due to its many
applications, including building insulation, solar collectors, cooling of radioactive waste
containers, nuclear engineering, geothermal energy, fire control, and compact heat exchang-
ers, the phenomenon of natural convection through porous materials has gained attention.
The Galerkin technique is applied to solve the resulting EVP. The curves for neutral stability
in the (R, a)-plane are demonstrated graphically in Figures 2 and 3 for various basic thermal
profiles and for range values of Da, H, and γ. We see that the stability curves have a single
minimum with these figures. The area above each curve denotes an unstable state, whereas
the region below each curve denotes a stable state. The neutral curves for various basic
temperature profiles and two values of γ (= 0.5 and 2) with Da = 0.01 and H = 100 are
presented in Figure 2a. For an increasing γ, the minimum Rayleigh number declines; it
signifies that the result of γ is destabilizing the system. The system stability for model M4
is the most stable followed by model M3, model M1, and the least stable for model M2
when γ = 0.5, while for γ = 2, the least stable on the onset of convection for model M4.
The same trend is noticed for the considered types of temperature profiles M1, M2, and
M3 as observed in γ = 0.5. Figure 2b shows the findings for the same parametric settings
as Figure 2a, but with a different value of Da = 0.1. Figure 2b displays the same kind of
behavior as Figure 2a. Here, the result of growing Da is to delay the convective motions.

Figure 3a,b shows the result of growing H is to increase the R value and increase the
stability region. The neutral curves for the model M4 are the most stabilizing followed by
model M3, model M1, and least stable for model M2 when H = 50. For H = 10, model
M3 has a more stabilizing effect when compared to model M4 at the lower value of the
wave number, while the opposite trend is noticed at the higher values of the wave number
followed by M1 and least stable for model M2. From these Figures, it is noted that there is
no substantial impact on the system for the models M1 and M2 at lower wave numbers.

The behavior of Rc and ac as function of H for different basic temperature profiles and
for dual values of γ (= 0.5, 10) is computed numerically and the outcomes are summarized
in Figures 4 and 5 at Da = 0.01 and Da = 0.1, respectively. In Figures 4a and 5a, it is
observed that the impact of γ on the system stability is destabilizing, while the increase in
H is to stabilize the system. We note that Rc increases monotonically with H for diverse
basic thermal profiles. It is found that Rc is independent of γ at lower H and is leftover
independent of H for γ > 10. This is due to the small H and higher γ; there is no
substantial heat transport among the liquid and solid phases, and so the criterion for the
system’s stability is unaffected by the solid phase’s characteristics for all of the temperature
distributions considered. Further, the deviation in Rc between the models M1 and M2
is observed to be not so significant as compared to the models M3 and M4. The work
therefore demonstrates the ability of efficiently managing (suppressing or enhancing)
porous convection in a liquid saturated permeable layer by the appropriate choice of
various fundamental thermal profiles. The values of Rc are higher for model M4 and least
for model M2 when γ = 0.5, while the system is more stable for model M3 and least
stable for model M2 for γ = 10. The performance of ac as function of H for diverse basic
temperature profiles and for two values of γ (=0.5, 10) is shown in the Figures 4b and 5b
at Da = 0.01 and Da = 0.1, respectively. The values of ac are leftover constant at the
higher and lower H values and they display a non-monotonic behavior for different basic
temperature profiles as well as for various γ at intermediate H except for the model M4 at
γ = 0.5. The values of ac are unbounded growth for the model M4 at γ = 0.5 for Da = 0.01
and 0.1. The critical wave numbers remain almost independent of H for γ > 10. Upsurge
in γ is to diminution the ac and the consequence is to upsurge the convection cell size for
all the models considered. Increase in Da is to diminish the convection cell size. Here, it is
disclosed that ac is advanced for model M3 followed by M2, then model M4, and least for
model M1.
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5. Conclusions

Linear stability of thermal convection in a permeable layer via the LTNE regime
was explored and various forms of basic temperature profiles were taken into account in
this study. The subsequent EVP was solved by means of the Galerkin scheme for rigid
isothermal boundaries. The results of this study can be summarized as follows:

1. The system was found to be more stable for model M4 (Cubic-2 temperature profile)
when compared to non-uniform temperature profiles. In particular, model M2 hastens
the onset of convection.

2. The porosity modified conductivity ratio γ has no impact on the system stability at the
small-H limit for all the temperature profiles considered, while for higher H values,
an increase in γ hastens the onset of convection.

3. The system is found to be stable with increase in H and Da for all the temperature
profiles considered. The values of Rc remain almost independent of H at large γ ≥ 10.
The values of ac attain the maximum for diverse values of γ at intermediate H and
remain constant at small and higher H values.

4. The rise in γ causes upsurge of the convection size, while increasing Da diminishes
the convection cell size for all models considered.

5. The ac is higher for model (M3) (Cubic-1 temperature profile) and least for model (M1)
(linear temperature profile). The values of ac are unbounded growth for model (M4)
at lower γ.

6. The results for various basic temperature profiles are asymmetric quantitatively, and
more importantly, they give an idea about the possibility of controlling convection
using an appropriate choice for the basic temperature profile.
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