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Abstract: We consider the relativistic spinor field theory re-formulated in polar variables to allow
for the interpretation given in terms of fluid variables. After that, the dynamics of spinor fields are
converted as dynamics of a special type of spin fluid. We demonstrate that such conversion into
dynamical spin fluid is not unique, but it can be obtained through 19 different rearrangements, by
explicitly showing the 19 minimal systems of hydrodynamic equations that are equivalent to the
Dirac equations.
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1. Introduction

In mathematics, writing complex functions as a product of a module times a unitary
phase, that is, writing a complex function in its polar decomposition, is a well-known
method extensively used to treat a variety of problems.

In physics, this method can be applied whenever complex functions are involved,
and of all cases, the most important is certainly quantum mechanics. In its non-relativistic
spinless case, the wave function is a complex scalar, so its polar decomposition is straight-
forward. When the wave function written in the polar form is inserted into the Schrödinger
equation, the latter splits in a continuity equation for the velocity density plus a quantum
mechanical extension of the Hamilton–Jacobi equation. This procedure was first applied
by Madelung, and it is widely known today. As in their final form the field equations are
expressed as derivatives of quantities like density and velocity, this procedure actually
converts quantum mechanics into a special type of fluid mechanics, and since the continu-
ity equation states that this fluid must be incompressible, such a formulation of quantum
mechanics is called the hydrodynamic formulation [1,2].

A more realistic description of quantum mechanics can be given when it is extended to
include spin. Still within the validity of non-relativistic regimes, the wave function is now a
complex doublet that transforms in a specific way under rotations, but a polar form can be
obtained just the same. After the inclusion of spin, the Schrödinger equation is known to
be enlarged into the Pauli equations, but again, when the spinorial wave function written
in the polar form is used, a hydrodynamic formulation becomes possible [3,4]. As it stands,
one would now assume that in the relativistic case, in which the wave function is formed
by two complex doublets transforming in a very specific way under boosts and rotations,
an analogous polar form could also be obtained. And since in the relativistic case the
Pauli equations are replaced by the Dirac equations, one should also expect the relativistic
spinorial field in the polar form to convert the Dirac equations into the corresponding
hydrodynamic formulation [5,6]. This is exactly what eventually happens although not
with the immediate chronology that one might have guessed. And the reason is covariance.

In fact, in the passage from a wave function of a scalar character to that of a spinor
character, whether non-relativistic or relativistic, there are additional transformation laws
that have to be considered. As already mentioned, non-relativistic spinors are doublets

Symmetry 2023, 15, 1685. https://doi.org/10.3390/sym15091685 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15091685
https://doi.org/10.3390/sym15091685
https://doi.org/10.3390/sym15091685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9186-2807
https://doi.org/10.3390/sym15091685
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15091685?type=check_update&version=2


Symmetry 2023, 15, 1685 2 of 13

that account for both helicity states, and while each component is a scalar for diffeomor-
phisms (that is, for passive transformations of coordinates), the two components mix under
rotations (that is, for active changes in frame). Richer in structure, relativistic spinors are
columns of four components that account for both chiral states as well as both helicity states,
and while, again, each component is a scalar for diffeomorphisms, the four components
mix under Lorentz transformations. It is now easier to see where the difficulty may be
found. Indeed, considering the relativistic spinor, the passage to its polar form would be
implemented when, for the four complex components, each one is written as a product of
a module times a phase. In general, therefore, there are four different modules as well as
four different phases, all mixing between each other under Lorentz transformations [7].

Such a difficulty can be found ubiquitously in the literature, not only in the works about
the polar form, but more in general in all investigations that aim at studying spinors in terms
of tensor quantities. The idea of writing a spinor in terms of tensor quantities dates back to
Cartan himself, and it continued immediately after him with the works of Whittaker [8],
Ruse [9] and Taub [10]. In the same years, Yvon [11], and later Takabayasi [12,13] also
contributed to this enterprise. And, in more recent times, new elements were brought into
the game by Hestenes [14–18] in terms of space-time algebra. For a very comprehensive
and clear account of all these results, and a more extensively detailed source of references,
we address the interested reader to the very recent book of Zhelnorovich [19].

In any case, there remains the mentioned issue of manifest covariance in general
cases. While the cumulative results clearly support the idea that spinors, in spite of being
complex objects, can nevertheless be written in terms of real tensors, these approaches are
either tackling the problem component by component, thus lacking the manifest form of
covariance [8–11], or treating it in a manifest covariant way, although restricted to specially
relativistic situations [12–18] or performing the study for generally relativistic cases in
curved space-times, but always in a preferred basis [19]. Neither in these works, nor
anywhere else in the literature, a manifestly covariant general study is found.

In this quest for generality, the attempt that proceeded the farthest, to the best of our
knowledge, is that of Jakobi and Lochak in [20,21], where the spinor field was written in
terms of real tensors by means of the polar decomposition without the use of any preferred
basis, although, again, we have no knowledge of any attempts to investigate such polar
decomposition at a differential level. For what we can tell, it is only very recently that,
upon introduction of suitable objects called tensorial connections, it has become possible to
write the polar form of the covariant derivative of the spinor field in such a way that its
structure is manifestly covariant under general transformations [22].

Correspondingly, it has finally become possible to write the hydrodynamic form of
the Dirac equations in such a way that its structure is manifestly covariant under general
transformations, in space-times that are curved, with torsion, and in the presence of
electrodynamics [23]. In this paper, we ask whether this hydrodynamic form is unique,
and we demonstrate that this is not so. We prove that there are, in fact, 19 different
reconfigurations of the hydrodynamic form of the Dirac equations, and that such 19 systems
of field equations are the minimal ones that are equivalent to one another, in the sense
that from any one of such systems there is not a single field equation that can be removed
without also producing the loss of equivalence to the original Dirac equations.

2. Dirac Hydrodynamics
2.1. Kinematic Quantities
2.1.1. Spinor Fields in the Polar Form

We start this first section by recalling the general ideas of the conversion of the Dirac
theory in its hydrodynamic formulation. As stated in the introduction, for us, Dirac
hydrodynamics, or relativistic spinning quantum mechanics in hydrodynamic form, is
just the relativistic extension with a spin of quantum mechanics in hydrodynamic form as
it was initially conceived by Madelung. As such, it is also taken as a synonym to spinor
theory in the polar form.
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We begin the presentation by recalling the notations. First of all, we define the
Clifford matrices γa as the set of matrices verifying {γa, γb} = 2Iηab, where ηab is the
Minkowski matrix. From them, we define [γa, γb]/4 = σab verifying 2iσab = εabcdπσcd

where εabcd is the completely antisymmetric pseudo-tensor and in which the π matrix is
defined. This matrix is what is traditionally indicated by γ5 as the fifth matrix after γ1,
γ2, γ3, γ4 in Kaluza–Klein theories, at the time when the temporal coordinate was still
designated as the fourth coordinate. Nowadays, we use a zero to indicate the temporal
gamma matrix, and thus we should use a four for the fifth gamma matrix, or better
still, we should just drop an index that no longer corresponds to any actual dimension.
But even worse, in some signatures, the position of the index five, whether upper or
lower, changes the sign of the gamma matrix, with ensuing risks of errors that become
possible. To avoid the potential for mistakes, we prefer to employ a notation in which
there is no index at all. The choice of π instead of γ is explained by the fact that the
matrix is parity-odd as opposed to the usual gammas being parity-even. This is not
dissimilar to the normally accepted choice of using σ for the commutators of gamma
matrices. Identity γiγjγk = γiηjk − γjηik + γkηij + iεijkqπγq shows that any product of
more than two matrices can always be reduced to two matrices, therefore suggesting that
the set (I, γa, σab, γaπ, π) is complete, and so it is also a basis for the space of 4× 4
complex matrices. From these definitions, it is straightforward that σab are the generators of
the Lorentz algebra. Exponentiation of the generators offers Λ as the element of the Lorentz
group. We notice that Λ is a complex Lorentz transformation, as opposed to Λa

b being the
real Lorentz transformation. The two are linked by the relation ΛγbΛ−1Λa

b = γa which,
in turn, also specifies that the Clifford matrices are all constant, as is expected and well
known. With the complex Lorentz transformation Λ and a general unitary phase eiqα, we
define S = Λeiqα as the spinorial transformation. The spinorial transformation is therefore
just the product of boosts and rotations as well as a gauge shift of charge q as it is supposed
to be to account for both space-time and electrodynamic transformations.

So far, nothing is new, and, aside from the specific convention we employ, all can be
found in textbooks. With these tools, we define spinor fields as objects that, under spinorial
transformations, transform according to

ψ→Sψ and ψ→ψS−1, (1)

where ψ = ψ†γ0 is the (unique) adjunction procedure. With these adjoint spinors, we can
construct the bi-linears,

Σab = 2ψσabπψ Mab = 2iψσabψ (2)

Sa = ψγaπψ Ua = ψγaψ (3)

Θ = iψπψ Φ = ψψ (4)

which are all real tensors. We defined six of them for reasons of symmetry and simplicity,
but as it is clear from the linear independence of the Clifford matrices, they are not all
linearly independent. In fact,

Σij = − 1
2 εabij Mab, (5)

showing that the two antisymmetric tensors are just the Hodge dual of one another. By tak-
ing only one of them, Mab, for example, together with the other four bi-linears, we may
form a set of bi-linears that are all linearly independent, although not independent. Indeed,

Mab(Φ2 + Θ2) = ΦU jSkε jkab + ΘU[aSb], (6)

showing that if Φ2 + Θ2 6=0; then, Mab can also be dropped in favour of the two vectors
and the two scalars. The axial vector and the vector with the pseudo-scalar and scalar are
also not independent since
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UaUa = −SaSa = Θ2 + Φ2, (7)

UaSa = 0, (8)

and, in the case in which Φ2 + Θ2 6=0, we can see that the axial vector is space-like, while
the vector is time-like. Finally,

2σµνUµSνπψ + U2ψ = 0, (9)

iΘSµγµψ + ΦSµγµπψ + U2ψ = 0, (10)

to complete the list of identities between the bi-linears that we use below.
Now, a result that can be proven is that under the general assumption Φ2 +Θ2 6= 0, it is

always possible to write any spinor field in the polar form, which in a chiral representation
is given according to

ψ = φ e−
i
2 βπ L−1


1
0
1
0

 (11)

for a pair of functions φ and β and for some L having the structure of a spinorial transfor-
mation and such that the polar form is unique up to the discrete transformation β→ β + π
and up to the reversal of the third axis [20,21]. The three elements L, φ and β in (11) need
some explanation. After that, (11) is substituted in (4); one obtains

Θ = 2φ2 sin β, Φ = 2φ2 cos β, (12)

showing that φ and β are a real scalar and a real pseudo-scalar called the module and the
chiral angle. Equipped with the polar form, we can also normalize

Sa = 2φ2sa, Ua = 2φ2ua, (13)

where ua and sa are the velocity vector and the spin axial vector. Identities (7) and (8)
reduce to

uaua = −sasa = 1, (14)

uasa = 0, (15)

showing that the velocity has only three independent components given by the three
components of its spatial part (indeed, constraint uaua = 1 fixes the temporal component),
whereas the spin has only two independent components, assigned by the two angles that,
in the rest frame, its spatial part forms with the third axis (in fact, because of constraint
uasa = 0, the temporal component of the spin is zero in the rest frame, and due to constraint
sasa = −1, one of the spatial components is fixed). The physical interpretation of this
mathematical fact is that, in the frame at rest, there remains no spatial component of the
velocity and its temporal component is unity, and because this also implies the vanishing
of the temporal component of the spin, its spatial component, when aligned along the
third axis, selects this axis as the axis of symmetry of the system. Hence, any rotation
around this axis would have to be an irrelevant rotation, as it would be unable to have any
effect on the spinor itself. In the following sections, we still refer to rotations around the
third axis because we chose this axis for all explicit computations, although it is clear that
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from a covariant perspective, we would refer to them as rotations around the spin axis.
The remaining identities (9) and (10) are

2σµνuµsνπψ + ψ = 0, (16)

isµγµψ sin β + sµγµπψ cos β + ψ = 0, (17)

which are useful later on. As for L, we know that it has the structure of a spinorial transfor-
mation, and thus it is a product of a gauge times a Lorentz transformation. Its interpretation
is of straightforward reading. It is the specific transformation that takes an assigned spinor
into its rest frame with the spin aligned along the third axis, however general the initial
spinor is. As such, L should not be confused with S because even if mathematically they
are the same and both are a spinorial transformation, from a physical perspective, they are
very different, with S indicating the way in which spinors behave under transformations
and L indicating how any given spinor can always be seen as a suitable deformation of
its simplest rest frame spin-eigenstate form. Metaphorically, if the spinor were to be a top
spinning on a table, then S would indicate how to move from the fixed system of reference
in which the table is at rest to the rotating system of reference in which the top is at rest
while L would indicate how the top is spinning. Therefore, the advantage of writing spinor
fields in the polar form is that in their four complex components, the eight real functions are
re-organized in such a way that the two real scalars, that is, the two true degrees of freedom
(φ and β), remain isolated from the six real parameters, which can always be transferred
into the frame (encoded within L). The fact that L is the product of a gauge times a Lorentz
transformation might in principle lead us to think that it has, in total, 1 + 6 = 7 parame-
ters, and this appears to be in contradiction with the fact that it effectively has only six
parameters as we have just explained. The resolution of this paradox is that, as is clear from
(11), the action of a gauge transformation is indistinguishable from the action of a rotation
around the third axis. The consequence is that there is a redundancy between the phase
and the angle of rotation around the third axis, so that the a priori seven parameters are in
fact reduced to six parameters alone. If the total parameters of the combined gauge and
Lorentz transformations are essentially six and one is encoded by the gauge transformation,
then there can be no more than five parameters that remain in the Lorentz transformation,
and this is precisely what happens. The five parameters are given by the three rapidities of
the velocity vector and the two Euler angles of the spin axial vector, as we discussed above.
This redundancy should not be surprising, and, indeed, it is rather common. An identical
situation happens in the Standard Model, where the U(1)× SU(2) group has four parame-
ters, but the hypercharge and the third component of the isospin combine to form a single
parameter, so that the entire group does not have four but three Goldstone bosons solely.
We notice that this is more than an example; it is a true mathematical analogy. Indeed,
the fact that the parameters of L can always be transferred into the frame means that they
are the Goldstone bosons associated to the spinor field by definition. The Goldstone bosons
we have here play for the spinor field exactly the same role that the Goldstone bosons in
the Standard Model play for the Higgs field as demonstrated in reference [22]. We return
back to this after discussing what happens at the differential level.

For now, we notice that the preferred frame mentioned in [19] is the frame in which
L = I with the spinor at rest and in the spin eigenstate. The generality achieved in [20,21]
is hence due to the L operator.

2.1.2. Tensorial Connections

For general spinor fields, the spinorial covariant derivative is defined according to

∇µψ = ∂µψ + Cµψ (18)

in terms of the spinorial connection Cµ, which is itself defined by its transformation law

Cµ→S
(
Cµ − S−1∂µS

)
S−1, (19)
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where S is the spinorial transformation law. This spinorial connection can be decomposed
according to

Cµ = 1
2 Cab

µσab + iqAµI, (20)

where Cab
µ is the spin connection of the tetrads of the space-time and Aµ is the gauge

potential. We do not provide, in the present work, the details of the explicit form of the
spin connection written in terms of the tetrad fields because this is very standard material
of any introductory course of General Relativity in the tetradic formalism [19].

Now, when in the spinorial covariant derivative the spinor field is written in the polar
form, something interesting starts to emerge. To see what, recall that one can always write

L−1∂µL = iq∂µξI+ 1
2 ∂µξijσ

ij (21)

for some ∂µξ and ∂µξij which are in fact the Goldstone fields of the spinor. In (21), the
redundancy between phase and angle of rotation around the third axis shows that the
apparent seven Goldstone fields are effectively six Goldstone fields only, since ∂µξ12 can al-
ways be re-absorbed in a redefinition of q∂µξ in general (in fact, component ∂µξ12 multiplies
σ12 while q∂µξ multiplies the identity matrix, and because for rest frame spin-eigenstates
the action of σ12 is equivalent to that of the identity matrix by definition, we have compo-
nents ∂µξ12 and q∂µξ always displaying some redundancy, as we also discussed before).
In q∂µξ, the presence of the charge has been made explicit so as to simplify the definition
of quantities

q(∂µξ − Aµ)≡Pµ, (22)

∂µξij − Cijµ≡Rijµ, (23)

since now q can be collected in the definition of Pµ in (22). It is now possible to see that,
after that the Goldstone fields are transferred into the frame, they combine with gauge
potential and spin connection to become the longitudinal components of the Pµ and Rijµ
objects, which then turn into a real vector and a real tensor called gauge and space-time
tensorial connections, as it has been demonstrated in [22]. With (22) and (23), we finally have

∇µψ = (− i
2∇µβπ +∇µ ln φI− iPµI− 1

2 Rijµσij)ψ (24)

as the polar form of the spinor field covariant derivative. From it, we can deduce that

∇µsi = Rjiµsj ∇µui = Rjiµuj (25)

are valid as general identities. Recall that rotations around the spin axis are unable to
have effects on any component of si and ui and therefore on ∇νsi and ∇νui in general.
Because of (25), this means that the components of Rabν that correspond to the rotations
around the spin axis remain undetermined. By using (25), we can write

Rabµ≡Rabµ − ua∇µub + ub∇µua − sb∇µsa + sa∇µsb − (uasb − ubsa)∇µuksk +

+ua∇µub − ub∇µua + sb∇µsa − sa∇µsb + (uasb − ubsa)∇µuksk ≡
≡ ua∇µub − ub∇µua + sb∇µsa − sa∇µsb + (uasb − ubsa)∇µuksk +

+ 1
2 Rijµεijcdεabpqscudspuq, (26)

and therefore one can always write

Rabµ = ua∇µub − ub∇µua + sb∇µsa − sa∇µsb + (uasb − ubsa)∇µuksk + 2εabijuisjVµ (27)

for some vector Vµ = 1
4 Rijµεijcducsd that is no more specified. This vector is precisely what

represents the components of Rabν that correspond to rotations around the spin axis, as
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is clear from the fact that 2Vµ = R12µ whenever the spinor field is in its rest frame with the
spin aligned along the third axis. As we commented in the previous sub-section, a general
spinor field can always be seen as the simplest spinor field at rest and with the spin aligned
along the third axis after a suitable deformation, and as we see now, such a deformation
L has the structure of a spinorial transformation in which generator ij has a parameter
whose derivative with respect to the µth coordinate is given by component Rijµ of the
tensorial connection. As deformation L can be interpreted like a strain, tensorial connection
Rijµ is interpretable like the strain-rate tensor. This analogy is very strong if we consider
that Rijµ in (27) can be written in terms of derivatives of spin and velocity, and that the
derivative of velocity is the same object with which the strain rate tensor is constructed
in continuum mechanics. Together, gauge and space-time tensorial connections Rijµ and
Pµ have a total of 24 + 4 = 28 components, so that once we subtract the four components
that cannot be determined, we remain with an effective total of 24 components. These
24 components, added to the 4× 2 = 8 components of ∇µφ and ∇µβ, make up for the full
32 components of the spinor field covariant derivative. The full counting of components
is perfectly matched. As for the parallel with the Standard Model that we discussed in
the previous sub-section, we can say that the tensorial connections Rijµ and Pµ are just the
geometric and electrodynamic analog of vector bosons W±ν and Zν and the frame in which
the spinor field is at rest and with spin along the third axis is the analog of the unitary
gauge [22]. As we said, these analogies are due to a strict mathematical parallel between
the polar form of spinor fields and the Higgs field in the Standard Model, a parallel holding
up until symmetry breaking.

To complete the comparison with previous works, we can finally say that it is pre-
cisely the definition of the tensorial connection that allowed the results of Jakobi and
Lochak [20,21] on the polar form of the spinor field to be extended to its differential
structures [22]. And from this, we can now move to the dynamics.

2.2. Dynamical Equations

In the previous sub-section, we introduced the differential structures, the gauge and
space-time tensorial connections, with which to define the covariant derivative of spinor
fields in the polar form. Readers may have noticed that everything has been performed
by taking into account the tetradic structure, and therefore the metric structure, of the
space-time itself. Nevertheless, we neglected all torsional degrees of freedom. A reader
that cares about differential geometry in its most general form might now complain that
torsion should be allowed instead. In order for this to be achieved, one can simply notice
that, because torsion is a true tensor, it is always possible to decompose the most general
connection into the torsionless connection plus the torsional contributions. Therefore,
the most general differential geometry with torsion is always equivalent to the differential
geometry with no torsion plus an additional field representing the torsion tensor. As a
consequence, full generality can be restored in the dynamics by the addition of the torsion
field. Because torsion couples to spin, which, in the case of Dirac spinors, is completely
antisymmetric, torsion has a completely antisymmetric part only, which is equivalent to
the Hodge dual of an axial vector. Hence, in the dynamics, we add torsion in the form of
an axial vector field. The reader interested in more details can find them in [24].

Therefore, the dynamics of the spinor field are given here in terms of Dirac equations,

iγµ∇µψ− XWµγµπψ−mψ = 0, (28)

with Wµ being the axial vector torsion and X being the coupling constant of the torsion–spin
interaction. Now, by multiplying (28) on the left with I, or γa, or σab, or γaπ, or π, and then,
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in each case, also with ψ, we obtain five equations that, after splitting real and imaginary
parts, produce ten equations that are all real and tensorial in structure. They are given by

∇µUµ = 0, (29)
i
2 (ψγµπ∇µψ−∇µψγµπψ)− XWσUσ = 0, (30)

∇[αUν] + iεανµρ(ψγρπ∇µψ−∇µψγρπψ)− 2XWσUρεανσρ − 2mMαν = 0; (31)

∇µSµ − 2mΘ = 0, (32)
i
2 (ψγµ∇µψ−∇µψγµψ)− XWσSσ −mΦ = 0, (33)

∇µSρεµραν + i(ψγ[α∇ν]ψ−∇[νψγα]ψ) + 2XW[αSν] = 0; (34)

i(ψ∇αψ−∇αψψ)−∇µ Mµα − XWσ Mµνεµνσα − 2mUα = 0, (35)

(∇αψπψ− ψπ∇αψ)− 1
2∇µ Mρσερσµα + 2XWµ Mµα = 0; (36)

∇αΦ− 2(ψσµα∇µψ−∇µψσµαψ) + 2XΘWα = 0, (37)

∇νΘ− 2i(ψσµνπ∇µψ−∇µψσµνπψ)− 2XΦWν + 2mSν = 0; (38)

which are the Gordon decompositions of Dirac equations. Among them, the best known
(what in quantum field theory is called the Gordon decomposition in a strict sense) is (35).

Plugging into all of them the polar form of the spinor field and its covariant derivative
allows us the obtention of

∇µUµ = 0, (39)

(∇µβ− 2XWµ + 1
2 εµανρRανρ)Uµ + 2PµSµ = 0, (40)

∇[αUν] + εανµρ(∇µβ− 2XWµ)Uρ − 1
2 Rij

µεijρκUκεανµρ + 2εανµρPµSρ − 2mMαν = 0; (41)

∇µSµ − 2mΘ = 0, (42)

(∇µβ− 2XWµ + 1
2 εµανρRανρ)Sµ + 2PµUµ − 2mΦ = 0, (43)

∇[αSν] + εανµρ(∇µβ− 2XWµ)Sρ − 1
2 Rij

µεijρκSκεανµρ + 2εανµρPµUρ = 0; (44)

∇µ Mµα − 2XWσΣσα + 1
2 Rijα Mij − 2PαΦ + 2mUα = 0, (45)

∇µΣµα + 2XWµ Mµα +
1
2 RijαΣij + 2PαΘ = 0; (46)

∇αΦ + (2XWα − 1
2 εαµνρRµνρ)Θ + R σ

ασ Φ + 2Pµ Mµα = 0, (47)

∇νΘ− (2XWν − 1
2 ενµσρRµσρ)Φ + R σ

νσ Θ− 2PµΣµν + 2mSν = 0; (48)

which are the Gordon decompositions in the polar form. The equivalent of (35) is (45),
and now we can see that this is precisely the Gordon decomposition in a strict sense of
QFT because in the absense of torsion and for Rijα equal to zero, it can be written as
PαΦ = mUα +∇µ Mµα/2, telling us that Pα should be recognized as the momentum of
the particles given in terms of kinematic momentum mUα plus ∇µ Mµα/2 and therefore
specifying that the angular momentum is the sum of the orbital angular momentum and
the spin contribution [25].
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The latter two, after a proper diagonalization, offer

∇µβ− 2XWµ + Bµ − 2Pιu[ιsµ] + 2msµ cos β = 0, (49)

∇µ ln φ2 + Rµ − 2Pρuνsαεµρνα + 2msµ sin β = 0, (50)

specifying all derivatives of both degrees of freedom in terms of the trace R a
νa = Rν and

the Hodge dual εναπιRαπι/2 = Bν as well as Pµ and the torsion of the space-time. By means
of Identities (16) and (17), one can prove that these two equations imply Dirac Equation (28)
in the polar form, and thus in general. Hence, (49) and (50) are equivalent to the Dirac
equation [23].

Equations (49) and (50) can then be called Dirac equations in the polar form. They
express the Dirac dynamics by means of the degrees of freedom φ2 and β supplemented
by uα and sα, all of which have a clear meaning. Specifically, chiral angle β is the phase
difference between chiral parts: sα is the spin, module squared φ2 is the density, uα is the
velocity of the matter distribution described by the spinor field. The necessary condition for
the non-relativistic limit is to have β = 0 while the classical approximation is implemented
by asking sα → 0 [23]. As for density φ2 and velocity uα, they are exactly the density
and velocity one would have in fluid mechanics. Thus, Equations (49) and (50) are what
expresses the Dirac dynamics as a type of hydrodynamics, therefore extending to the
relativistic case with spin the hydrodynamic formulation of quantum mechanics that was
originally given by Madelung.

3. The 19 Formulations

We observed that the Dirac theory can be written in a hydrodynamic formulation. Our
goal now is to find all ways in which this can be achieved, that is, find all manners to write
a covariant set of field equations like (49) and (50).

To make things easier, we start by introducing the two vectors

2Eµ = Bµ − 2XWµ +∇µβ + 2msµ cos β, (51)

2Fµ = Rµ +∇µ ln φ2 + 2msµ sin β, (52)

which, admittedly, is a definition that may appear arbitrary now, but which is essential
to simplify all computations later. In fact, when in the full set of Gordon decompositions
(39) and (48), we also substitute the bi-linear spinors in the polar form, using the above
definitions. We obtain, respectively, the following sets:

Fµuµ = 0, (53)

Eµuµ + Pµsµ = 0, (54)

εανµρEµuρ + F[αuν] + εανµρPµsρ = 0; (55)

Fµsµ = 0, (56)

Eµsµ + Pµuµ = 0, (57)

εανµρEµsρ + F[αsν] + εανµρPµuρ = 0; (58)

Fµujskεjkµα + Eµu[µsα] − Pα = 0, (59)

Fµu[µsα] − Eµujskεjkµα = 0; (60)

Fµ − Pρuνsαεµρνα = 0, (61)

Eµ − Pιu[ιsµ] = 0; (62)
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as four groups of hydrodynamic field equations. The last group is, of course, (49) and (50),
which we have already demonstrated to be equivalent to the Dirac equation. Therefore, any
group that is proven to be equivalent to (61) and (62) is equivalent to the Dirac equation.
In fact, to be more precise, since the Dirac equation is already implying all groups, all we
need to achieve is prove that a group implies (61) and (62) to show the equivalence. This
can be easily achieved with a formal tensor algebra. For instance, we take (59) and (60),
and then, from (59), we isolate Pα, while projecting from (60) along uα and sα, obtaining

Pα = Fiujskεijkα + Eiu[isα], (63)

Eµujskεjkµα = 0, (64)

Fµuµ = 0, (65)

Fµsµ = 0 (66)

to be used in (61) and (62). By substituting (63) and repeatedly using (64), (65) and (66), one
can see that, in fact, (61) and (62) are verified. Therefore, (59) and (60) do imply (61) and (62).
A similar proof can also be achieved for the first two groups. As a consequence, groups
((53)-(54)-(55)), ((56)-(57)-(58)), ((59)-(60)), ((61)-(62)) are equivalent to one another, and each
to the Dirac equations, as it has already been discussed in [26]. These are already four ways
in which the Dirac equations are written in a hydrodynamic form. Each one, consisting of
exactly eight equations, is also the most stringent to be equivalent to the Dirac equation.

Nevertheless, we may drop the strict equivalence to find other sets of hydrodynamic
forms equivalent to the Dirac equation up to redundancies. To achieve this, we choose the
unitary gauge u0 = 1 and s3 = 1, obtaining, respectively for all groups, and in order within
a single group, the following equations:

F0 = 0, (67)

E0 + P3 = 0, (68)

F1 + P2 = 0, F2 − P1 = 0, F3 = 0, E3 + P0 = 0, E2 = 0, E1 = 0 (69)

from the first group;

F3 = 0, (70)

E3 + P0 = 0, (71)

E2 = 0, E1 = 0, F0 = 0, E0 + P3 = 0, F1 + P2 = 0, F2 − P1 = 0 (72)

from the second group;

E3 + P0 = 0, F2 − P1 = 0, F1 + P2 = 0, E0 + P3 = 0, (73)

F3 = 0, E2 = 0, E1 = 0, F0 = 0 (74)

from the third group;

F0 = 0, F1 + P2 = 0, F2 − P1 = 0, F3 = 0, (75)

E0 + P3 = 0, E1 = 0, E2 = 0, E3 + P0 = 0 (76)
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from the fourth group. As it is clear after some scrambling, all groups contain the same
equations, proving again that they are all equivalent. However, now one can achieve more,
because any grouping that would re-cover these eight equations would also obtain the validity
of the Dirac equation in the unitary gauge, and hence in general. For example, we consider
the equations given by (53), (56), (59), (62). They, respectively, yield (67), (70), (73), (76),
which do recover all equations, with equations E0 + P3 = 0 and E3 + P0 = 0 repeated
twice. Consequently, the set ((53), (56), (59), (62)) is equivalent to the Dirac equation with
two redundant equations. Exactly the same can be said for the set ((54), (57), (60), (61)).
Analogous reasonings would help us see that there are other sets of equations equivalent
to the Dirac equation with a different number of redundant equations. All in all, we have
the following list of sets:

1. ((53), (56), (59), (62)), ((54), (57), (60), (61)) with two;
2. ((53), (55), (59)), ((54), (55), (60)), ((54), (55), (61)), ((53), (55), (62)), ((56), (58), (59)), ((57),

(58), (60)), ((57), (58), (61)), ((56), (58), (62)) with three;
3. ((55), (58)) with four;
4. ((55), (59), (61)), ((55), (60), (62)), ((58), (59), (61)), ((58), (60), (62)) with six;

all equivalent to the Dirac equation and where the last number indicates the number of
redundant equations that each set has.

These 15 groups, added to the 4 groups seen before, amount to a total of 19 groups that
are equivalent to the Dirac equation. And they are the smallest sets to be equivalent to the
Dirac equation, in the sense that in none of them we can remove an equation without losing
the equivalence to the Dirac equation in spite of the fact that there might be some component
of a covariant equation that is redundant. For instance, in set ((53), (55), (59)), the equations
given by E3 + P0 = 0, F2 − P1 = 0 and F1 + P2 = 0 are redundant, but removing them
would mean removing Equation (59) and therefore also equation E0 + P3 = 0 which is not
redundant, so that the equivalence to the Dirac equation will be lost. While all of the above
sets are the smallest in this sense, this is not a property of any possible set. For example, the set
given by the divergences and curls of velocity and spin ((53), (56), (55), (58)) is equivalent to
the Dirac equation with six redundant equations, but two Equations (53) and (56) are fully
redundant and they could be removed altogether, leaving a set that is still equivalent to the
Dirac equation. The largest set would be produced if we consider all equations, obtaining a
set with 24 redundant equations. There is, of course, no need to perform that, and hence
the selection of the 19 smallest sets is a measure of the fact that the work was performed
accurately enough to maintain a certain degree of simplicity.

The importance of selecting such sets can be judged by the fact that some of them
might be remarkably easy to be interpreted. For instance, set ((55), (58)) consists of only
curls of velocity and spin, and the curl is a concept with an easy visualization. If instead
one is less at ease with the curl and more at ease with the velocity, it might be preferable
to consider the divergence and curl of the velocity vector and take a system like ((53), (55),
(59)) since Equation (59) is the one providing the momentum of the field [27], also easily
visualizable. No matter the personal taste, all these sets are helpful for a visual interpretation
of relativistic quantum mechanics as a special type of fluid, and, as a consequence of this
fact, they are all necessary instruments for the investigation of various manifestly covariant
spin-related properties of the de Broglie–Bohm version of quantum mechanics [27], so central
in contemporary physics.

4. Conclusions

In this paper, we considered the general geometric construction of spinor fields re-formulated
in the context of polar variables. After extending the formulation to all differential structures with
the introduction of the tensorial connection, we re-wrote the Dirac differential field equations
in a hydrodynamic form. In achieving this, we acquired the possibility to see that the Dirac
equations are equivalent to the four groups ((53)-(54)-(55)), ((56)-(57)-(58)), ((59)-(60)), ((61)-(62)),
but also to the eight groups ((53)-(55)-(59)), ((54)-(55)-(60)), ((54)-(55)-(61)), ((53)-(55)-(62)),
((56)-(58)-(59)), ((57)-(58)-(60)), ((57)-(58)-(61)), ((56)-(58)-(62)) up to three redundant compo-
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nents of the field equations, to the four groups ((55)-(59)-(61)), ((55)-(60)-(62)), ((58)-(59)-
(61)), ((58)-(60)-(62)) up to six redundant components, to the two groups ((53)-(56)-(59)-(62)),
((54)-(57)-(60)-(61)) up to two redundant components, and to the one group (55)-(58) up to
four redundant components, for a total of nineteen groups of field equations constituting
the minimal sets, in the sense that no covariant equation can be removed by any of them
without losing equivalence.

All these 19 sets are the smallest to be equivalent to the Dirac equations, converting the
quantum mechanics of the spinning relativistic particle into hydrodynamic form, the only
form that is well-suited to render quantum mechanics visually interpretable, in the spirit
that was first followed by de Broglie and Bohm. So what next?

There are two main objectives that would have to be achieved to bring this treatment to
an acceptable level of completion, the first of which being the fact that writing everything in
hydrodynamic form, treating the spinor field as one special type of fluid, does not in itself
imply consistency. In fact, that specific type of fluid may still have problems, as pointed
out in [28–30]. More has to be achieved to make sure that, seen as a special fluid, the spinor
field is well defined.

The second problem is also a problem of the de Broglie–Bohm interpretation, and that
is the fact that we still do not know how exactly we can treat multi-particle systems in
relativistic contexts, and, more generally, we do not know how to make a second-quantized
version of it. This problem has been open since the 1960s, and we are not trying to solve
it here.

We hope, however, that with such a variety of formulations, at least some problems
may be of easier solution in the future.
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