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Abstract: A total perfect Roman dominating function (TPRDF) on a graph G = (V, E) is a function f
from V to {0, 1, 2} satisfying (i) every vertex v with f (v) = 0 is a neighbor of exactly one vertex u
with f (u) = 2; in addition, (ii) the subgraph of G that is induced by the vertices with nonzero weight
has no isolated vertex. The weight of a TPRDF f is ∑v∈V f (v). The total perfect Roman domination
number of G, denoted by γ

p
tR(G), is the minimum weight of a TPRDF on G. In this paper, we initiated

the study of total perfect Roman domination. We characterized graphs with the largest-possible
γ

p
tR(G). We proved that total perfect Roman domination is NP-complete for chordal graphs, bipartite

graphs, and for planar bipartite graphs. Finally, we related γ
p
tR(G) to perfect domination γp(G) by

proving γ
p
tR(G) ≤ 3γp(G) for every graph G, and we characterized trees T of order n ≥ 3 for which

γ
p
tR(T) = 3γp(T). This notion can be utilized to develop a defensive strategy with some properties.

Keywords: vertex domination; total Roman domination; perfect Roman domination; NP-completeness

1. Introduction

Roman domination was sparked by defensive measures taken to defend the Roman
dynasty. Constantine, who was born in 272 and died in 337 AD, decreed that every city in
the empire should be stationed by at most two legions. Furthermore, every city without a
legion must be close to a city with two armies, so if a city with no army was attacked, then
the city with two armies could send one of its armies to the city under attack. Stewart [1]
and ReVelle and Rosing [2,3] discussed Roman domination as a mathematical concept,
which was developed later by Cockayne et al. [4]. It is clear that the above defending
strategy is not enough to protect the empire if more than one attack occurs at the same time.
This raised the need to a stronger and more-efficient defending strategy, and it motivated
researchers to introduce and investigate different variants of Roman domination. Since then,
over 100 papers on Roman domination and its variants have been published. Perfect Roman
domination [5,6], Italian domination [7,8], perfect Italian domination [9], double-Roman
domination [10], perfect double-Roman domination [11], double-Italian domination [12],
total Roman domination [13,14], vertex–edge Roman domination [15], and vertex–edge
perfect Roman domination [16] are a few examples of Roman domination variants.

This work was motivated by two previously introduced variants, namely perfect
Roman domination and total Roman domination. Our variant, total perfect Roman domi-
nation, combines those two variants, and it gives a stronger defending strategy than perfect
Roman domination does with less than the expected extra cost. Total perfect Roman domi-
nation gives extra security compared to what perfect Roman domination does by requiring
every vertex (city) to be secured by a neighbor with a legion, so if multiple attacks occur on
the city, then its neighbor can send a legion to it.

All graphs in this work are finite, simple, and undirected. We say that the vertex v
is a neighbor of a vertex u or v and u are adjacent if vu ∈ E. For v ∈ V(G) and a subset
X ⊆ V(G), we denote the set of all edges vx with x ∈ X by E(v, X). The open neighborhood
of a vertex v ∈ V(G) is the set N(v) := {u ∈ V|vu ∈ E(G)}, and the closed neighborhood of
v is the set N[v] := N(v) ∪ {v}. The degree of a vertex v ∈ V(G) is |N(v)|, and it is denoted
by dG(v) or d(v) if G is known. The maximum degree of G is ∆(G) := maxv∈V(G) d(v). The
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minimum degree of G is denoted by δ(G) and defined as the minimum degree of a vertex
in G, i.e., δ(G) = minv∈V(G) d(v). The length of a path P is |E(P)|. A graph is connected
if, for any two vertices in the graph, there exists a path between them. The length of a
shortest path between two vertices u and v in a connected graph G is the distance between
them, and it is denoted by distG(u, v). Let G be a connected graph. The diameter of G is
diam(G) := max{dist(u, v)|(u, v) ∈ V(G)×V(G)}. A path P in G is called a diametral path
if it is a shortest path between its ends and the length of P is equal to diam(G).

A vertex v ∈ V(G) is a leaf if it is a neighbor for exactly one vertex in G. A vertex
in G is called a support vertex if it is adjacent to a leaf. A vertex in G is called a strong
support vertex if it is a support vertex and adjacent to at least two leaves, and it is called a
weak support vertex if it is a support vertex and adjacent to exactly one leaf. An edge uv
is a pendant edge if u or v is a leaf. An isolated vertex vertex v is a vertex with d(v) = 0. A
cycle with n edges is denoted by Cn. A graph is called a star if it is connected and contains
exactly one non-leaf vertex. A subdivided star is a graph obtained from a star graph by
subdividing each edge once. A double-star is a connected graph with exactly two vertices
with degree greater than one (those two vertices are necessarily adjacent). The graph that
is obtained from a graph G by adding a pendant edge to each vertex in G is called the
corona of G, and it is denoted by corona(G). A cycle C in a graph G has a chord if there
is an edge joining non-consecutive vertices of C. A graph G is chordal if every cycle of
length four or more has a chord. A subset A ⊆ V(G) is called a clique if, for every v, u ∈ A,
vu ∈ E(G). The chromatic number of a graph G is the minimum number of colors needed
to color the vertices of G such that no adjacent vertices receive the same color. A graph G
is called perfect if the chromatic number equals the cardinality of a maximum clique for
every induced subgraph of G. A subset A ⊆ V(G) is called packing if distG(u, v) ≥ 3 for
any distinct vertices u, v ∈ A.

Any function f from V(G) to {0, 1, 2} is represented by the ordered partition (V f
0 , V f

1 , V f
2 ),

where V f
j = {u ∈ V| f (u) = j}, j ∈ {0, 1, 2}. We sometimes omit f and write (V0, V1, V2)

if f is known from the context. The weight w( f ) of the function f is the sum ∑v∈V(G) f (v).
If H is a subgraph of G, we denote the sum ∑v∈V(H) f (v) by f (H), and it is called the
restriction of f on H.

A function f : V −→ {0, 1, 2} is a Roman dominating function on G, abbreviated as the
RD-function, if for every v ∈ V0, N(v) ∩ V2 6= ∅. The Roman domination number of G is
γR(G) := min{w( f )| f is an RD-function onG}.

A set B ⊆ V(G) is called a perfect dominating set, abbreviated as PDS, of G, if for every
v ∈ V(G)\B, |N(v) ∩ B| = 1. The perfect domination number of G is γp(G) := min{|B| |
B is a PDS of G}. A PDS S of G with |S| = γp(G) is denoted by the γp(G)-set. Perfect

domination was investigated under a variety of terminology. Perhaps Biggs [17] was the
first one who studied perfect domination in graphs, which Biggs called perfect code.

A function f from V(G) to {0, 1, 2} is a perfect Roman dominating function on G, abbre-
viated as the PRD-function, if for all vertices v ∈ V0, |N(v) ∩V2| = 1. The perfect Roman
domination number of G, introduced in [5], is γ

p
R(G) := min{w( f )| f is a PRD-function onG}.

We refer the reader to [18,19] for recent work on perfect Roman domination.
A function f from V(G) to {0, 1, 2} is a total Roman dominating function on G, ab-

breviated as the TRD-function, if for all v ∈ V0, N(v) ∩ V2 6= ∅ and δ(G[V1 ∪ V2]) ≥ 1.
The total Roman domination number of G is γtR(G) := min{w( f )| f is a TRD-function on G}.
Total Roman domination was introduced in [13] as a special case of the more general
setting introduced in [20]. For recent work on total Roman domination, we refer the reader
to [21–23].

Definition 1. Let G = (V, E) be a graph with no vertex v with d(v) = 0. A function f : V −→
{0, 1, 2} is a total perfect Roman dominating function, abbreviated as TPRDF, if every vertex
v ∈ V0 is adjacent to exactly one neighbor u ∈ V2 and the induced subgraph G[V1 ∪ V2] has
no vertex v with d(v) = 0. The total perfect Roman domination number of G is γ

p
tR(G) :=

min{w( f )| f is a TPRDF onG}.
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This paper includes several symmetrical graphs; some symmetrical graphs, such as
paths, cycles, and some corona graphs, attain the largest possible total perfect Roman
domination number. Other symmetrical graphs, namely the complete multipartite graphs
with a big enough number of vertices, are used to show that the inequality γtR(G) <
γ

p
R(G) < γ

p
tR(G) is valid for some graphs. Due to the importance of symmetrical graphs

in practical problems, we believe that this work will attract researchers who investigate
different graph parameters on symmetrical graphs. See, for example, [24,25].

In Figure 1, the Roman Empire regions are shown along with two labeling functions,
one in blue and the other in red. Formally, let f be the map defined by setting f (Britain) =
f (Gaul) = f (Rome) = f (North A f rica) = f (Constantinople) = f (Egypt) = 0 and
f (Iberia) = f (Asia Minor) = 2; let g be the map defined by setting g(Britain) = g(Iberia) =
g(North A f rica) = g(Egypt) = g(Asia Minor) = 0, g(Rome) = 1 and g(Constantinople) =
g(Gaul) = 2. Then f is a RD-function, which is also an PRD-function, but it is not a TPRDF.
The map g is a TPRDF.

Figure 1. Roman, perfect Roman, and total perfect Roman dominating functions for the Roman
Empire.

It is clear that γ
p
tR(G) ≤ n for any graph G of order n, as the function that assigns a

value of 1 to every vertex in G is a TPRDF on G. It is also clear that every TPRDF on G is a
PRD-function and a TRD-function.

Proposition 1. Let G be a graph. Then:

(1) γ
p
R(G) ≤ γ

p
tR(G);

(2) γtR(G) ≤ γ
p
tR(G).

If G = Cn, where n = 3k and k ∈ Z+, then γ
p
R(C

n) = d 2n
3 e =

2n
3 [26], and γtR(Cn) =

n [13]. As γtR(Cn) ≤ γ
p
tR(C

n) ≤ n, γ
p
tR(C

n) = n. Thus, γ
p
R(C

n) < γ
p
tR(C

n).
We will give an example of a graph G such that γtR(G) < γ

p
R(G) < γ

p
tR(G), but we

first need the following proposition.
Let Km1,m2,··· ,mr be the complete r-partite graph with parts A1, A2, · · · , Ar. Fix the

notation so that m1 ≤ m2 ≤ · · · ≤ mr.

Proposition 2. Let G = Km1,m2,··· ,mr and r ≥ 2.

(1) If m1 = 1, then γ
p
tR(Km1,m2,··· ,mr ) = 2 when n = 2 and γ

p
tR(Km1,m2,··· ,mr ) = 3 otherwise.

(2) If m1 ≥ 2, then

γ
p
tR(G) =

{
4, if r = 2,
m1 + 2, if r ≥ 3.
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Proof. (1) If n = 2, then G = P2 and γ
p
tR(P2) = 2. Otherwise, assign 2 to the unique

vertex in A1, assign 1 to one vertex in A2, and assign 0 to the other vertices. Therefore,
γ

p
tR(Km1,m2,··· ,mr ) ≤ 3. It is straightforward to check that γ

p
tR(Km1,m2,··· ,mr ) ≥ 3. Thus, the

equality holds.
(2) Assume that r = 2. Assign 2 to one vertex in A1; assign 2 to one vertex in A2;

assign 0 to the other vertices of G. This is a TPRDF of weight 4, so γ
p
tR(G) ≤ 4. Assume

there is a TPRDF f on G with w( f ) ≤ 3. Then, there exists a vertex v ∈ V(G) such that
f (v) = 0. We can assume that v ∈ A1. Then, there is u ∈ A2 with f (u) = 2. Let x be a
vertex in A2\{u}. This vertex exists as 2 ≤ m1 ≤ m2. If f (x) = 0, then there exists a vertex
in A1 labeled 2, which contradicts the assumption that w( f ) < 4. Thus, f (x) ≥ 1. As
w( f ) < 4, all vertices in A1 are labeled 0. Thus, G[V1 ∪V2] has a vertex v with d(v) = 0, a
contradiction. Therefore, γ

p
tR(G) = 4.

Assume that r ≥ 3. Assign 2 to one vertex in A1; assign 1 to the other vertices in A1;
assign 1 to one vertex in A2; assign 0 to the other vertices of G. This is a TPRDF of weight
m1 + 2. Thus, γ

p
tR(G) ≤ m1 + 2. Assume that there exists a TPRDF f with w( f ) < m1 + 2.

As |G| > m1 + 2, there exists a vertex v ∈ Ai with f (v) = 0 for some i ∈ [r]. Therefore,
there exists u ∈ Aj, with f (u) = 2 for some j 6= i. Assume that Aj contains a vertex x with
f (x) = 0, then there exists l ∈ [r]\{j} and y ∈ Al for which f (y) = 2. If l = i, then for all
z ∈ V(G)\(Ai ∪ Aj), f (z) ≥ 1, a contradiction with the assumption that w( f ) < m1 + 2.
Therefore, l 6= i, a contradiction, as v is adjacent to two vertices labeled 2. Thus, for all
x ∈ Aj, f (x) ≥ 1, but this is a contradiction with the assumption that w( f ) < m1 + 2.
Hence, γ

p
tR(G) = m1 + 2.

Proposition 3. There are graphs G for which γtR(G) < γ
p
R(G) < γ

p
tR(G).

Proof. Let G be the complete tripartite graph Km,m,m where m ≥ 5. Denote the parts of G
by A, B, and C; see Figure 2. Define a TRD-function f on G by assigning 2 to an arbitrary
vertex in A, assigning 2 to an arbitrary node in B, and assigning 0 to other nodes of G. One
can check that f gives the best-possible weight, so γtR(G) = 4. Define a PRD-function
f on G by assigning 2 to an arbitrary vertex in A, assigning 1 to the other vertices in A,
and assigning 0 to all vertices in B ∪ C. Then, γ

p
R(G) ≤ m + 1. Assume there exists a

PRD-function g on G with w(g) < m + 1. Assume that every part contains a vertex labeled
0, say a1 ∈ A, b1 ∈ B, c1 ∈ C. Then, a1 is adjacent to a vertex in B ∪ C, say in B, labeled
2. Similarly, b1 has a neighbor in A ∪ C, say in A, labeled 2. Now, c1 is adjacent to at least
two vertices labeled 2, a contradiction. Thus, Vg

0 ∩ D = 0 for some D ∈ {A, B, C}. As
w(g) < m + 1, g(v) = 1 for every v ∈ D and g(v) = 0 to every v ∈ V\D, a contradiction.
Thus, γ

p
R(G) = m + 1. We show in Proposition 2 that γ

p
tR(G) = m + 2.

Proposition 4. For any connected graph G of order n ≥ 2, we have γ
p
R(G) ≤ γ

p
tR(G) ≤

2γ
p
R(G) − 1. Moreover, for a graph G of order n ≥ 3, γ

p
tR(G) = 2γ

p
R(G) − 1 if and only if

∆(G) = n− 1.

Proof. The lower bound follows from Proposition 1. Let f be a PRD-function with w( f ) =
γ

p
R(G). Choose f such that |V f

2 | is the maximum possible. If V f
2 = ∅, then V f

0 = ∅, and

thus, V(G) = V f
1 and γ

p
R(G) = n. Therefore, γ

p
tR(G) = n ≤ 2n− 2 = 2γ

p
R − 2 as n ≥ 2.

Now, assume that V f
2 6= ∅. Starting with the vertex set V f

1 , if v is an isolated vertex in

G[V f
1 ∪V f

2 ], perform the following. Pick an arbitrary neighbor u of v in V f
0 . Let f1 be the

mapping obtained from f by changing the labeling of u to 1. Repeat if G[V f1
1 ∪ V f1

2 ] has
a vertex v with d(v) = 0. This procedure will stop after a finite number of steps, and the
output is a TPRDF g. Now,

γ
p
tR(G) ≤ w(g) ≤ w( f ) + |V f

1 |+ |V
f

2 | < w( f ) + |V f
1 |+ 2|V f

2 | = 2γ
p
R(G).



Symmetry 2023, 15, 1676 5 of 15

Therefore, γ
p
tR(G) ≤ 2γ

p
R(G)− 1. Assume that γ

p
tR(G) = 2γ

p
R(G)− 1, then |V f

2 | = 1.

Let V f
2 = {w}. Therefore, all vertices in V f

0 are dominated by w. If V f
1 = ∅, then d(w) =

n− 1 = ∆(G). Assume V f
1 6= ∅, and let x ∈ V f

1 . We claim that x is a neighbor for a vertex

in V f
0 , so assume not. As G is connected, x is a neighbor for a vertex y ∈ V f

1 ∪V f
2 ; if y = w,

we can change the labeling of x to 0 and obtain a PRD-function h with w(h) < w( f ), a
contradiction; thus, xw /∈ E(G) for all x ∈ V f

1 , if y ∈ V f
1 , then we can reassign a value of

2 to x and reassign a value of 0 to y to obtain a PRD-function q with w(q) = w( f ) and
|Vq

2 | > |V
f

2 |, a contradiction. Thus, the claim holds. Therefore, every v ∈ V f
1 is a neighbor

of some u ∈ V f
0 . Now, γ

p
tR(G) ≤ w(g) ≤ w( f ) + |V f

1 | = 2w( f )− 2 = 2γ
p
R − 2 < 2γ

p
R − 1,

a contradiction. Thus, if γ
p
tR(G) = 2γ

p
R(G)− 1, then ∆(G) = n− 1. Conversely, assume

that n ≥ 3 and ∆(G) = n− 1. Then, γ
p
R(G) = 2 and γ

p
tR(G) = 3. Therefore, γ

p
tR(G) =

2γ
p
R(G)− 1.

Figure 2. The complete tripartite graph K5,5,5.

2. Graphs with Largest-Possible γ
p
tR(G)

In this section, we characterize graphs G with the greatest-possible γ
p
tR(G). It is clear

that γ
p
tR(G) ≤ n as we can simply assign a value of 1 to every vertex in the graph. We

characterize graphs attaining this upper bound.

Theorem 1. Let G be a graph. Then, γ
p
tR(G) = |G| if and only if γtR(G) = |G|.

Proof. The sufficient condition is a direct as γtR(G) ≤ γ
p
tR(G) ≤ n for any graph G. Now,

assume that γ
p
tR(G) = n, and assume for contradiction that γtR(G) < n. Let f be a

TRD-function on G such that |V0| is as minimum as possible. As γ
p
tR(G) = n, f is not

a TPRDF. Therefore, there exists v ∈ V(G) such that f (v) = 0 and |N(v) ∩ V2| ≥ 2, say
N(v) ∩ V2 = {u1, · · · , uk}, k ≥ 2. Observe that N(ui) ∩ (V1 ∪ V2) 6= ∅ as f is a TRD-
function.

Claim 1. For all i ∈ [k], |N(ui) ∩V0| ≥ 3.

Proof. Let i ∈ [k]. Assume that |N(ui) ∩V0| = 1. Then, N(ui) ∩V0 = {v}. Define a TRD-
function g by setting g(ui) = 1 and g(x) = f (x) for every x ∈ V\{ui}. Then, w(g) < w( f ),
which is a contradiction. Thus, |N(ui) ∩V0| ≥ 2.
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Assume that |N(ui) ∩ V0| = 2. Then, N(ui) ∩ V0 = {v, yi} for some yi ∈ V\{v}.
Define a TRD-function h by setting h(ui) = h(yi) = 1 and h(x) = f (x) for every x ∈
V\{ui, yi}. Then, h and f have the same weight and |Vh

0 | < |V0|, a contradiction. Thus,
|N(ui) ∩V0| ≥ 3.

Fix any i ∈ [k]. Define a TPRDF q on G by setting q(ui) = f (ui) = 2 and q(x) =

f (x) = 0 for every x ∈ N(ui) ∩V f
0 , and set q(x) = 1 for the other vertices of G. Now, every

vertex in Vq
0 is adjacent to exactly one neighbor in Vq

2 , and G[Vq
1 ∪Vq

2 ] has no vertex v with
d(v) = 0. Therefore, w(q) < n, a contradiction. Therefore, γtR(G) = n, as desired.

Remark 1. We proved in Claim 1 that |N(ui) ∩V0| ≥ 3 for all i ∈ [k], but it is enough to show
that |N(ui) ∩V0| ≥ 2.

Let G be the family of graphs that is obtained from a four-cycle v1v2v3v4v1 by adding
k1 leaves to v3 and k2 leaves to v4, where k1 + k2 ≥ 1, then subdividing each pendant edge
one time. LetH be the family of graphs that is obtained from a double-star by subdividing
the non-pendant edge t ≥ 0 times and subdividing each pendant edge once. Let C be the
family of graphs that satisfy one of the following conditions:

(1) G is a cycle or a path;
(2) G = corona(F) for some graph F;
(3) G is a subdivided star;
(4) G ∈ G ∪H.

Theorem 2 ([13]). Let G be a connected graph of order n ≥ 2. Then, γtR(G) = n if and only if
G ∈ C.

From Theorem 2 and Theorem 1, we obtain the following result.

Theorem 3. Let G be a connected graph of order n ≥ 2. Then, γ
p
tR(G) = n if and only if G ∈ C.

We give examples of classes of graphs where the tight upper bound of γ
p
tR(G) is n.

A subset A ⊆ V(G) is called an independent set if no two vertices in A are adjacent.
A graph G is called a split graph if its vertices can be partitioned into a clique and an
independent set.

Corollary 1. For every positive even integer n, there exists a split graph G of order n such that
γ

p
tR(G) = n.

Proof. Let k := n
2 . Let G be the split graph obtained from the disjoint union of a complete

graph with the set of vertices {v1, v2, · · · , vk} and an empty graph with the set of vertices
{u1, u2, · · · , uk} by adding the set of edges {viui|i ∈ [k]}. Observe that G = corona(Kk).
From Theorem 3, γ

p
tR(G) = n.

Since split graphs are chordal and the latter graph is perfect, n is a tight upper bound
for split graphs, chordal graphs, and perfect graphs.

3. Complexity

In this section, we prove that total perfect Roman domination for chordal graphs
and that for planar bipartite graphs are NP-complete. We define the following decision
problem.

TPRD
Instance: Graph G = (V, E) and a positive integer k ≤ |V|.
Question: Does G have a TPRDF f with w( f ) ≤ k?

The following decision problem is a well-known NP-complete problem [27].
Exact cover (XC)
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Instance: A set X of size q and a collection C of subsets of X.
Question: Is there a sub-collection C´ of C such that every element of X appears in exactly
one element of C´?

We transform the XC to TPRD.

Theorem 4. TPRD is NP-complete for chordal graphs.

Proof. If f : V(G) −→ {0, 1, 2} is a function and k ≤ |V| is an integer, we can check in
polynomial time if f is a TPRDF and w( f ) ≤ k. Therefore, the TPRD problem is in the NP
class.

Let (X, C) be an arbitrary instance of the XC, where X = {x1, · · · , xq} and C =
{C1, · · · , Ct}. Let H be a clique graph with V(H) = X. Let Qi be the graph obtained from
the cycle siticisi by adding a leaf c′i adjacent to ci and a leaf t′i adjacent to ti. Let Q be the
disjoint union of Qi, i ∈ [t]. Finally, let G be the graph obtained from H and Q by adding
the set of edges cixj if xj ∈ Ci; see Figure 3. It is simple to see that G is a chordal graph. Let
k = 4t. We show that (X, C) has an exact cover if and only if G admits a TPRDF f with
w( f ) ≤ k.

Assume that (X, C) has an exact cover C′. Define f : V(G) −→ {0, 1, 2} as follows. Set
f (xi) = 0 for every i ∈ [q]; if Ci ∈ C′; set f (ci) = 2, f (ti) = f (t′i) = 1, and f (si) = f (c′i) = 0;
if Ci /∈ C′, set f (ci) = f (c′i) = 1, f (ti) = 2, and f (t′i) = f (si) = 0. Since C′ is an exact cover,
each vertex xi is adjacent to exactly one vertex labeled 2, and it easy to check that every
vertex u ∈ Q with f (u) = 0 is adjacent to exactly one vertex labeled 2, while G[V1 ∪V2] has
no vertex v with d(v) = 0. Thus, f is a TPRDF on G with w( f ) = k.

Now, assume that G admits a TPRDF f with w( f ) ≤ k. Observe that f (Qi) ≥ 4 for
all i ∈ [t], so f (Q) ≥ 4t. as w( f ) ≤ 4t, then w( f ) = 4t and f (Qi) = 4 for all i ∈ [t], so
f (xi) = 0. Thus, for every i ∈ [q], xi is adjacent to exactly one vertex labeled 2, and this
neighbor is obviously in the set {c1, · · · , ct}. Let C′ = {Ci ∈ C| f (ci) = 2}. Then, C′ is an
exact cover.

Figure 3. The chordal graph G.

Theorem 5. TPRD is NP-complete for bipartite graphs.

Proof. We have seen that TPRD is in the NP class. Let X = {x1, · · · , xq} be a set and
C = {C1, · · · , Ct} be a collection of subsets of X. Let H be the graph with V(H) =
{x1, · · · , xq, b1, · · · , bq, d1, · · · , d4, a}, and E(H) = {xibi, bia, dja|i ∈ [q], j ∈ [4]}. For every
i ∈ [t], let Qi be the graph with V(Qi) = {ci, si, s′i, ti, ui} and E(Qi) = {cisi, sis′i, siti, tiui, uici}.
Let Q be the disjoint union of Qi, i ∈ [t]. Let G be the graph obtained from H and Q by
adding the set of edges xicj if and only if xi ∈ Cj; see Figure 4. It is simple to see that G is
a bipartite graph. Set k = 4t + 3. We show that (X, C) has an exact cover if and only if G
admits a TPRDF f with w( f ) ≤ k.

Assume that (X, C) has an exact cover C′. Define a TPRDF f on G by setting f (xi) =
f (bi) = 0 for all i ∈ [q]; set f (a) = 2, set f (d4) = 1, and set f (di) = 0 for all i ∈ [3].
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If Ci ∈ C′, set f (ci) = f (si) = 2 and set f (s′i) = f (ti) = f (ui) = 0. If Ci /∈ C′, set
f (ci) = f (s′i) = 0, set f (si) = 2, and set f (ti) = f (ui) = 1. Since C′ is an exact cover, every
vertex xi, i ∈ [q], is adjacent to exactly one neighbor labeled 2. It easy to check that every
vertex labeled 0 is adjacent to exactly one neighbor labeled 2, and G[V1 ∪V2] has no vertex
v with d(v) = 0. Thus, f is a TPRDF of weight w( f ) = 4t + 3 = k.

Conversely, assume that G admits a TPRDF f with w( f ) ≤ k. Observe that f (H) ≥ 3
and f (Qi) ≥ 4 for all i ∈ [t], so w( f ) ≥ k. Then, w( f ) = k, and therefore, f (H) = 3
and f (Qi) = 4 for all i ∈ [t]. As 4 > 3, there exists i ∈ [4] such that f (di) = 0, so
f (a) = 2. As G[V1 ∪ V2] has no vertex v with d(v) = 0, a is adjacent to a vertex labeled
1. Therefore, f (xi) = 0 for all i ∈ [q] and f (bi) 6= 2 for all i ∈ [q]. Thus, for all i ∈ [q], xi
is adjacent to exactly one vertex labeled 2, and this vertex is in the set {c1, · · · , ct}. Then,
C′ := {Ci ∈ C| f (ci) = 2} is a solution.

Figure 4. The bipartite graph G.

Exact Three-Cover (X3C)
Instance: A set X of size 3q and a collection C of three-element subsets of X.
Question: Is there a sub-collection C´ of C such that every element of X appears in exactly
one element of C´?

The exact three-cover is NP-complete [28].
Every instance of X3C corresponds to a bipartite graph B with the parts X and C,

where xiCj ∈ E(B) if and only if xi ∈ Cj. The instance (X, C) is called planar if B is a planar
graph. The Planar Exact Three-Cover ( P-X3C) is NP-complete [29].

P-X3C
Instance: A set X of size 3q, a collection C of three-element subsets of X; the associated
graph B is planar.
Question: Is there a sub-collection C´ of C such that every element of X appears in exactly
one element of C´?

If we use an instance of P-X3C in the proof of Theorem 5, the constructed graph G is a
planar bipartite graph. A similar argument can be used to show that the instance of P-X3C
has an exact cover if and only if G admits a TPRDF f with w( f ) ≤ 4t + 3. Thus, we have
the following corollary.

Corollary 2. TPRD is NP-complete for planar bipartite graphs.

4. γ
p
tR(G) and γp(G)

In this section, we relate γ
p
tR(G) to γp(G), and we characterize trees T for which

γ
p
tR(T) = 3γp(T).

Proposition 5. Let G be a graph with δ(G) ≥ 1. Then, γ
p
tR(G) ≤ 3γp(G). Moreover, if

γ
p
tR(G) = 3γp(G), then every PDS D with |D| = γp(G) is a packing in G.

Proof. Let D be a PDS with |D| = γp(G). Assign a value of 2 to every vertex in D. For
every vertex v ∈ D with d(v) = 0, assign a value of 1 to an arbitrary neighbor u ∈ V(G)\D
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of v, and assign a value of 0 to the other vertices of G. The result is a TPRDF f with
w( f ) ≤ 2|D|+ |D| = 3γp(G). Thus, γ

p
tR(G) ≤ 3γp(G).

Now, assume γ
p
tR(G) = 3γp(G) and D is not a packing in G. Then, there exist distinct

vertices u, v ∈ D such that distG(u, v) ≤ 2. Choose u, v ∈ D such that distG(u, v) is as small
as possible. If distG(u, v) = 2, then the common neighbor of u and v is not in D and it is
dominated by two vertices in D, a contradiction. Therefore, u and v are neighbors, and
thus, u and v are not isolated vertices in D. We can use the same argument in the above
paragraph to find a TPRDF f with w( f ) ≤ 2|D|+ |D| − 2 < 3γp(G), which contradicts the
assumption. Thus, the second statement holds.

The upper bound in Proposition 5 is sharp. If G is a star graph K1,t with t ≥ 2, then
γ

p
tR(G) = 3 = 3γp(G).

Let D := {v1, · · · , vk} be a PDS of a graph G with |D| = γp(G). For every i ∈ [k],
let Vi = NG[vi]. Every vertex in V\D is adjacent to exactly one vertex in D, and from
Proposition 5, D is a packing in G. Thus, {V1, · · · , Vk} is a partition of V. We call it the
partition associated with D.

Theorem 6. Let G be a connected graph of order n ≥ 3 with δ(G) ≥ 1. If γ
p
tR(G) = 3γp(G) and

D is a PDS with |D| = γp(G), then the partition {V1, V2, · · · , Vk} associated with D satisfies the
following statements:

(a) For all i ∈ [k], |Vi| ≥ 3;
(b) If a vertex v in Vi is adjacent to parts V′1, · · ·V′m, where m ≥ 2, |V′j | = 3 for all j ∈ [m] and

Vi /∈ {V′1, · · · , V′m}, then ∑(|E(v, Vj)| − 1) ≥ m− 1, where the sum is taken over all parts
Vj satisfying |E(v, Vj)| ≥ 2 and |Vj| ≥ 4.

Proof. Assume that γ
p
tR(G) = 3γp(G), and assume that D is a perfect domination set with

|D| = γp(G). Observe that, for every i ∈ [k], |Vi| 6= 1 as G is connected. Therefore, |Vi| ≥ 2
for all i ∈ [k]. Assume that there exists i ∈ [k] such that |Vi| = 2. We define a TPRDF f on G.
For each i ∈ [k] with |Vi| = 2, assign 1 to every vertex in Vi. For each i ∈ [k] with |Vi| ≥ 3,
assign 2 to vi, assign 1 to an arbitrary neighbor of vi, and assign 0 to the other vertices in Vi.
Thus, γ

p
tR(G) ≤ w( f ) ≤ 2+ 3(k− 1) < 3|D| = 3γp(G), a contradiction. Therefore, |Vi| ≥ 3

for all i ∈ [k], and thus, the first condition holds.
For the second condition, assume that there exists a vertex v in Vi such that v is adjacent

to u1 ∈ V′1, · · · , um ∈ V′m, where m ≥ 2, |V′j | = 3 for all j ∈ [m] and Vi /∈ {V′1, · · · , V′m}. As
D is a packing, {u1, · · · , um} ∩ {v1, · · · , vk} = ∅. Let q := |{Vj | |E(v, Vj)| ≥ 2 and |Vj| ≥
4}|, and let s := |{Vj | |E(v, Vj)| ≤ 1 and|Vj| ≥ 4}|. Assume for contradiction that
∑(|E(v, Vj)| − 1) < m − 1, where the sum is over all Vj satisfying |E(v, Vj)| ≥ 2 and
|Vj| ≥ 4. Define a TPRDF f as follows. If |Vi| = 3, assign 2 to v and 1 to the other vertices
in Vi. If |Vi| ≥ 4, assign 2 to v and vi, assign 1 to the other neighbors of v in Vi (if there is
any), and assign 0 to the other vertices in Vi. If |Vj| ≥ 4 and E(v, Vj) = ∅, then assign 2 to
vj and assign a value of 1 to an arbitrary neighbor of vj and assign 0 to the other vertices
of Vj. If |Vj| ≥ 4 and E(v, Vj) 6= ∅, j 6= i, then assign a value of 2 to vj, assign 1 to every
neighbor of v in Vj, and assign 0 to the other vertices in Vj. Assign 0 to every vertex in
{u1, · · · , um}, and assign 1 to each of the other vertices of ∪l∈[m]V′l . If |Vj| = 3, j 6= i and
Vj /∈ {V′1, · · ·V′m}, assign 1 to every vertex in Vj. Thus,

γ
p
tR(G) ≤ w( f )

≤ 2m + 3s + 3q + ∑(|E(v, Vj)| − 1) + 3(k−m− q− s) + 1

< 2m + m− 1 + 3k− 3m + 1

= 3k

= γp(G),
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where the sum ∑(|E(v, Vj)| − 1) is over all parts Vj satisfying |E(v, Vj)| ≥ 2 and |Vj| ≥
4. This contradicts the assumption that γ

p
tR(G) = 3γp(G). Thus, the second condition

holds.

We remark that the previous theorem is a one-way direction, and it is not reversible.
Consider the graph given in Figure 5. Let D be the set of all support vertices in G, then D is
a PDS. Therefore, γp(G) ≤ 7, and it is not difficult to check that γp(G) = 7 and D is the
unique PDS with |D| = γp(G). Observe that the partition associated with D satisfies the
two conditions in Theorem 6. The labeling in Figure 5 gives a TPRDF on G with the weight
equal to 20. Thus, γ

p
tR(G) < 3γp(G).

Figure 5. A graph G with γ
p
tR(G) < 3γp(G).

While we could not give a characterization for graphs G for which γ
p
tR(G) = 3γp(G),

we give next a constructive characterization for trees T for which γ
p
tR(T) = 3γp(T).

Definition 2. Let G = (V, E) be a graph. The function f : V −→ {0, 1, 2} is called nearly
TPRDF on G with respect to v ∈ V(G) if the following three conditions hold:

(1) For every u ∈ V \ {v} with f (u) = 0, there exists exactly one vertex w ∈ N(u) with
f (w) = 2;

(2) For every u ∈ V \ {v} with f (u) ≥ 1, there exists a vertex w ∈ N(u) with f (w) ≥ 1;
(3) f (v) ≥ 1 or there exists exactly one vertex w ∈ N(v) with f (w) = 2.

Let γ
p
tR(G, v) := min{w( f )| f be a nearly TPRDF on G with respect to v}.

Observe that every TPRDF on G is a nearly TPRDF on G with respect to v, where v is
any vertex in G. Therefore, γ

p
tR(G, v) ≤ γ

p
tR(G), where v is any vertex in G. Let W1(G) =

{v ∈ V(G)|γp
tR(G, v) = γ

p
tR(G)}. Let W2(G) = {x ∈ V(G)|x /∈ D for some γp(G)-set D}.

Definition 3. Let G be a graph, and v ∈ V(G). We say that v has property A in G if there
exists a TPRDF f on G such that w( f ) = γ

p
tR(G) and f (v) = 2. Let W3(G) = {v ∈

V(G)|v not have Property A in G}.

Let T be the family of trees Tk that can be constructed from a sequence of trees
T1, · · · , Tk (k ≥ 1), where T1 = P3, and if k ≥ 2, Ti+1 is obtained from Ti by one of the
following three operations, where 1 ≤ i ≤ k− 1:

Operation 1. Attaching a new vertex y to a strong support vertex x ∈ Ti.
Operation 2. Adding a star K1,3 to Ti by joining a leaf in K1,3 to a vertex x ∈ W1(Ti) ∩
W2(Ti).
Operation 3. Attaching a path P3 to a vertex x ∈W1(Ti) ∩W3(Ti).

Theorem 7. If T ∈ T , then γ
p
tR(T) = 3γp(T).

Proof. Let Tk ∈ T , then Tk is obtained from a sequence T1, · · · , Tk as described above. We
proceed by induction on k. If k = 1, then T1 = P3 and γ

p
tR(P3) = 3γp(P3). This establishes

the base step. Assume that k ≥ 2 and the statement holds for every i where 1 ≤ i ≤ k− 1.
Therefore, γ

p
tR(Tk−1) = 3γp(Tk−1).
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Claim 2. If Tk is obtained from Tk−1 by Operation 1, then γ
p
tR(Tk) = 3γp(Tk).

Proof. It is clear that γp(Tk) = γp(Tk−1) and γ
p
tR(Tk) ≥ γ

p
tR(Tk−1). Therefore, γ

p
tR(Tk) ≥

γ
p
tR(Tk−1) = 3γp(Tk−1) = 3γp(Tk). Thus, γ

p
tR(Tk) = 3γp(Tk), and we are done.

Claim 3. If Tk is obtained from Tk−1 by Operation 2, then γ
p
tR(Tk) = 3γp(Tk).

Proof. Let V(K1,3) = {y, y1, y2, y3}, where xy1 ∈ E(Tk) and d(y) = 3. Let D be a γp(Tk−1)-
set such that x /∈ D. We know that D exists as x ∈W2(Tk−1). It is clear that D∪{y} is a PDS
of Tk. Therefore, γp(Tk) ≤ γp(Tk−1) + 1. Let f be a TPRDF on Tk with w( f ) = γ

p
tR(Tk). It is

clear that f (y) + f (y1) + f (y2) + f (y3) ≥ 3. If f (x) ≥ 1, then the restriction of f on Tk−1 is
a nearly TPRDF on Tk−1 with respect to x. As x ∈ W1(Tk−1), γ

p
tR(Tk−1) = γ

p
tR(Tk−1, x) ≤

γ
p
tR(Tk)− 3. Now,

γ
p
tR(Tk)− 3 ≥ γ

p
tR(Tk−1)

= 3γp(Tk−1)

≥ 3γp(Tk)− 3.

Thus, γ
p
tR(Tk) = 3γp(Tk). Therefore, we may assume that f (x) = 0. If f (y1) 6= 2, then

the restriction of f on Tk−1 is a nearly TPRDF on Tk−1 with respect to x. Similar to the
above argument, we obtain γ

p
tR(Tk) = 3γp(Tk). Therefore, we may assume that f (y1) = 2,

so f (y) + f (y1) + f (y2) + f (y3) ≥ 4. Define a nearly TPRDF g on Tk−1 with respect to x by
setting g(x) = 1 and g(u) = f (u) for every u ∈ Tk−1 \ {x}. Therefore, w(g) ≤ γ

p
tR(Tk)− 3.

By using an argument similar to the above, we obtain γ
p
tR(Tk) = 3γp(Tk), and we are

done.

Claim 4. If Tk is obtained from Tk−1 by Operation 3, then γ
p
tR(Tk) = 3γp(Tk).

Proof. Let P3 = y1y2y3, where xy3 ∈ Tk. Let D be a γp(Tk−1)-set. If x ∈ D, then D ∪ {y1}
is a PDS of Tk; if x /∈ D, then D ∪ {y2} is a PDS of Tk. Thus, γp(Tk) ≤ γp(Tk−1) + 1.

Let h be a TPRDF on Tk with w(h) = γ
p
tR(Tk). It is clear that h(y1) + h(y2) ≥ 2.

Assume that h(y1) + h(y2) + h(y3) = 2. Then, y1, y2 are assigned 1 under h, and y3 is
assigned 0 under h, so h(x) = 2, so the restriction of h on Tk−1 is a TPRDF on Tk−1. As
x ∈W3(Tk−1), γ

p
tR(Tk) ≥ γ

p
tR(Tk−1) + 3. Now,

γ
p
tR(Tk) ≥ γ

p
tR(Tk−1) + 3

= 3γp(Tk−1) + 3

≥ 3γp(Tk).

Thus, γ
p
tR(Tk) = 3γp(Tk), as desired. We may assume now that h(y1) + h(y2) + h(y3) ≥ 3.

If h(x) ≥ 1, then the restriction of h on Tk−1 is a nearly TPRDF with respect to x. As
x ∈W1(Tk−1), γ

p
tR(Tk) ≥ γ

p
tR(Tk−1)+ 3. Similar to the above, we obtain γ

p
tR(Tk) = 3γp(Tk).

If h(x) = 0 and h(y3) 6= 2, then the restriction of h on Tk−1 is a nearly TPRDF with respect
to x; thus γ

p
tR(Tk) ≥ γ

p
tR(Tk−1) + 3. Again, we obtain γ

p
tR(Tk) = 3γp(Tk). If h(x) = 0 and

h(y3) = 2, then h(y1) + h(y2) + h(y3) = 4; define a nearly TPRDF g on Tk−1 with respect to
x by setting g(x) = 1 and g(u) = h(u) for all u ∈ Tk−1 \ {x}, then γ

p
tR(Tk) ≥ γ

p
tR(Tk−1) + 3.

Thus, we obtain γ
p
tR(Tk) = 3γp(Tk), as desired.

Theorem 8. If γ
p
tR(T) = 3γp(T) for some tree T of order n ≥ 3, then T ∈ T .

Proof. We proceed by induction on n. If n = 3, then T = P3. It is clear that γ
p
tR(P3) =

3γp(P3) and P3 ∈ T . This establishes the base step. Let n ≥ 4, and assume that the
statement holds for every k, 3 ≤ k < n, that is if T′ is a tree of order k and γ

p
tR(T

′) = 3γp(T′),
then T′ ∈ T . Let T be a tree of order n and γ

p
tR(T) = 3γp(T). Let f be a TPRDF on T
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with w( f ) = γ
p
tR(T). If diam(T) = 2, then T is a star graph, so T is obtained from P3

by iteratively applying Operation 1. Thus, T ∈ T . If diam(T) = 3, then T is a double-
star graph, and it is clear that γ

p
tR(T) < 3γp(T), so we must have diam(T) ≥ 4. Let

P := v1v2 · · · vr be a diametral path in T, so r ≥ 5. Root the tree at vr.

Claim 5. If d(v2) ≥ 4, then T ∈ T .

Proof. Since P is a diametral path, v2 is adjacent to at least three leaves, and v3 is the
only non-leaf neighbor of v2, it is clear that γp(T − v1) = γp(T). Let g be a TPRDF on
T − v1 with w(g) = γ

p
tR(T − v1) and g(v2) be the maximum possible. Clearly g(v2) = 2.

Define a TPRDF h on T by setting f (v1) = 0 and f (u) = g(u) for every u ∈ T− v1. Then,
γ

p
tR(T) ≤ γ

p
tR(T − v1). Now,

γ
p
tR(T − v1) ≥ γ

p
tR(T)

= 3γp(T)

= 3γp(T − v1).

Thus, γ
p
tR(T − v1) = 3γp(T − v1). From the induction hypothesis, T − v1 ∈ T , and T

is obtained from T − v1 by applying Operation 1. Thus, T ∈ T , as desired.

Claim 6. If d(v2) = 3, then T ∈ T .

Proof. Denote the leaf adjacent to v2 that is different from v1 by y. Assume that d(v3) ≥ 3.
Then, v3 has a neighbor v /∈ {v2, v4}. As P is a diametral path, v is either a support vertex
or a leaf. Let T1 = T − {y, v1, v2}. Assume that v is a strong support vertex or a leaf.
Let D be a γp(T)-set. It is clear that v2 ∈ D, and it is not difficult to see that v3 ∈ D.
Therefore, D \ {v2} is a PDS of T1, and therefore, γp(T1) ≤ γp(T)− 1. Fix a TPRDF g on
T1 with w(g) = γ

p
tR(T1) and g(v3) the maximum possible. Clearly, g(v3) ≥ 1. Define a

TPRDF f on T by setting f (v1) = f (y) = 0, f (v2) = 2, and f (u) = g(u) for every u ∈ T1,
so γ

p
tR(T) ≤ γ

p
tR(T1) + 2. Now, γ

p
tR(T) ≤ γ

p
tR(T1) + 2 ≤ 3γp(T1) + 2 ≤ 3γp(T) − 1, a

contradiction. Therefore, we may assume that v is a weak support vertex. Denote the
leaf adjacent to v by z. Let T2 = T − {v, z}. It is simple to see that γp(T2) ≤ γp(T)− 1.
Let g be a TPRDF on T2 such that w(g) = γ

p
tR(T2). We can extend g to a TPRDF on T by

setting g(v) = g(z) = 1, so γ
p
tR(T) ≤ γ

p
tR(T2) + 2, which results in a contradiction, as in

the previous case. Thus, we must have d(v3) = 2.
Let D be a γp(T)-set such that D contains as much support vertices as possible; clearly

v2 ∈ D. Let T3 = T − {y, v1, v2, v3}. Let g be a TPRDF on T3; define a TPRDF f on T by
setting f (y) = f (v1) = 0, f (v2) = 2, f (v3) = 1, and f (u) = g(u) for every u ∈ V(T3).
Therefore, γ

p
tR(T) ≤ γ

p
tR(T3) + 3. If v4 ∈ D or {v3, v4} ∩ D = ∅, then D ∩V(T3) is a PDS

of T3. Therefore, γp(T3) ≤ γp(T)− 1. Therefore,

γ
p
tR(T3) ≥ γ

p
tR(T)− 3

= 3γp(T)− 3

≥ 3γp(T3).

Thus, γ
p
tR(T3) = 3γp(T3). We may assume now that v3 ∈ D and v4 /∈ D. Clearly, v4

cannot be adjacent to a leaf or a strong support vertex. If v4 is adjacent to a weak support
vertex u, then u is a neighbor of a leaf w ∈ D; now, (D \ {v2, v3, w}) ∪ {u} is a PDS of T3.
Therefore, γp(T3) ≤ γp(T)− 2, which results in γ

p
tR(T3) > 3γp(T3), a contradiction. If

v4u ∈ E for some u, where Tu is a tree with diam = 2, then it is not difficult to see that there
exists a PDS D′ of T3 containing u (and it does not contain v4) and |D′| ≤ |D| − 1. Therefore,
again, we obtain γ

p
tR(T3) = 3γp(T3). It remains the case that d(v4) = 2. We claim that this

case is impossible, so assume on the contrary that d(v4) = 2. Let T4 = T− {y, v1, v2, v3, v4}.
As v3 ∈ D and v4 /∈ D, D \ {v2, v3} is a PDS of T4, so γp(T4) ≤ γp(T)− 2. Let g be a TPRDF
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on T4; define a TPRDF f on T by setting f (y) = f (v1) = 0, f (v2) = 2, f (v3) = f (v4) = 1.
Then, γ

p
tR(T) ≤ γ

p
tR(T4) + 4. Now,

γ
p
tR(T) ≤ γ

p
tR(T4) + 4

≤ 3γp(T4) + 4

≤ 3γp(T)− 2,

a contradiction. Hence, T is obtained from T3 by joining a star graph K1,3 to v4, and
γ

p
tR(T3) = 3γp(T3). From the induction hypothesis, T3 ∈ T .

It remains to show that v4 ∈W1(T3)∩W2(T3). Assume that v4 /∈W1(T3). Then, there
exists a nearly TPRDF g on T3 with respect to v4 with w(g) < γ

p
tR(T3). Define a TPRDF f

on T by setting f (y) = f (v1) = 0, f (v2) = 2, f (v3) = 1, and f (u) = g(u) for every u ∈ T3.
Therefore, γ

p
tR(T) ≤ γ

p
tR(T3) + 2 = 3γp(T3) + 2, which results in a contradiction. Thus,

v4 ∈ W1(T3). Assume that v4 /∈ W2(T3). Then, v4 ∈ D′ for every γp(T3)-set D′. Let D be
a γp(T)-set such that D contains as much support vertices as possible. Clearly v2 ∈ D.
Assume that v4 ∈ D. Then, v3 ∈ D. Now, D ∩V(T3) is a PDS of T3, so γp(T3) ≤ γp(T)− 2.
Then,

3γ
p
tR(T3) ≤ 3γp(T)− 6

= γ
p
tR(T)− 6

≤ γ
p
tR(T3)− 3,

a contradiction. Therefore, assume that v4 /∈ D. If v3 ∈ D, we have seen before that
there exists a PDS D′ of T3 with v4 /∈ D′ and |D′| ≤ |D| − 1; as v4 /∈ W2(T3), we obtain
γp(T3) ≤ γp(T)− 2, which again leads to a contradiction. If v3 /∈ D, then D ∩V(T3) is a
PDS of T3, but it is not a γp(T3)-set, so γp(T3) ≤ γp(T)− 2, which results in a contradiction.
Hence, v4 ∈W2(T3), as desired.

Claim 7. If d(v2) = 2 then T ∈ T .

Proof. We show first that d(v3) = 2. Assume on the contrary that d(v3) ≥ 3. Then, v3
is adjacent to a vertex v /∈ {v2, v4}, and v is either a support vertex or a leaf. Let T1 =
T − {v1, v2}. It is not difficult to see that γp(T1) ≤ γp(T)− 1 and γ

p
tR(T) ≤ γ

p
tR(T1) + 2.

Now, 3γp(T1) ≤ 3γp(T)− 3 = γ
p
tR(T)− 3 ≤ γ

p
tR(T1)− 1, a contradiction. Thus, d(v3) = 2.

Let D be a γp(T)-set. We show that having v4 /∈ D and v3 ∈ D is not possible.
Therefore, assume that v4 /∈ D and v3 ∈ D. Let T2 = T − {v1, v2}. It is simple to see that
γp(T2) ≤ γ(T)− 1 and γ

p
tR(T) ≤ γ

p
tR(T2) + 2, which results in a contradiction, as desired.

Let T3 = T − {v1, v2, v3}. If v4 ∈ D, then D ∩ V(T3) is a PDS of T3, so γp(T3) ≤
γp(T)− 1. If v4 /∈ D, then v3 /∈ D; again, D ∩V(T3) is a PDS of T3, so we obtain γp(T3) ≤
γp(T)− 1. It is not difficult to see that γ

p
tR(T) ≤ γ

p
tR(T3) + 3. Now,

γ
p
tR(T) ≤ γ

p
tR(T3) + 3

≤ 3γp(T3) + 3

≤ 3γp(T);

thus, γ
p
tR(T3) = 3γp(T3). From the induction hypothesis, T3 ∈ T .

It remains to show that v4 ∈ W1(T3) ∩W3(T3). Assume on the contrary that v4 /∈
W1(T3). Then, there exists a nearly TPRDF g on T3 with respect to v4 with w(g) ≤ γp(T3)−
1. Define a TPRDF f on T by setting f (v1) = 0, f (v2) = 2, f (v3) = 1, and f (u) = g(u) for
every u ∈ V(T3). Now,

γ
p
tR(T) ≤ w(g) + 3

≤ γ
p
tR(T3) + 2

= 3γp(T3) + 2

≤ 3γp(T)− 1,
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a contradiction. Thus, v4 ∈W1(T3). Assume on the contrary that v4 /∈W3(T3). Then, there
exists a TPRDF g on T3 with w(g) = γ

p
tR(T3) and g(v4) = 2. Define a TPRDF f on T by

setting f (v1) = f (v2) = 1, f (v3) = 0, and f (u) = g(u) for every u ∈ V(T3). Therefore,
γ

p
tR(T) ≤ γ

p
tR(T3) + 2, which results in a contradiction. Thus, v4 ∈W3(T3).

We obtain the following main result from Theorems 7 and 8.

Theorem 9. Let T be a tree with |T| ≥ 3. Then, γ
p
tR(T) = 3γp(T) if and only if T ∈ T .

5. Conclusions

In this paper, we introduced a Roman domination variant called total perfect Roman
domination. This variant combines two previously introduced Roman domination vari-
ants named total Roman domination and perfect Roman domination. In this paper, we
determined the tight upper bound for the total perfect Roman domination number, and we
characterized graphs witnessing this bound. We also proved that the total perfect Roman
domination problem is NP-complete for chordal graphs, bipartite graphs, and planar bipar-
tite graphs. We showed that, for any graph, the total perfect Roman domination number is
bounded above by three-times the perfect domination number, and we characterized trees
attaining this bound.

6. Open Problems

We end this research with the following problems:
Problem 1: Characterize graphs G for which γ

p
tR(G) = 3γp(G).

Problem 2: Let k > 1. Characterize graphs G for which γ
p
tR(G) = 2γ

p
R(G)− k.
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