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Abstract: This paper presents a comprehensive evaluation of a new control technique for the sphere
motor system, aimed at achieving accurate tracking, robust and dispersion of vibrations. Control
methods include the determination of a nonlinear model and the application of feedback linearization,
followed by the optimization of the proportional derivative (PD) coefficients through the Adaptive
Neuro-Fuzzy Inference System. In addition, the system’s reaction to harsh environments is managed
using Long Short-Term Memory. In order to gain a deeper understanding, symmetrical environmental
disturbances and trajectories are introduced during the testing phase. The results demonstrate the
superior performance of the control strategy, with reduced vibrations, faster recovery and confirmed
tracking accuracy. In addition, the control method shows its adaptability and reliability, as evidenced
by the significant reduction in CO2 emissions compared to conventional PD control methods. The
use of symmetric trajectories and visualizations further emphasizes the behavior of the system under
symmetric conditions, strengthening the effectiveness and applicability of the control strategy in real-
world scenarios. Overall, this study presents a promising solution for converting complex systems
under different conditions and making them potentially applicable in various industrial contexts.

Keywords: feedback linearization; symmetric disturbances; symmetric trajectories; spherical motors;
Adaptive Neuro-Fuzzy Inference System; artificial intelligence; PD controller; carbon dioxide emission;
nonlinear systems; environmental impact

1. Introduction

Multiple-degree actuators are important components that are widely used in different
industries and serve a wide range of applications, from robotic weapons to aerospace
systems. Traditional actuators are usually used to connect pairs of a single degree of
freedom motors using series or parallel configuration gears and connections [1–4]. However,
these conventional actuators have several limitations, such as large size, high mass, a
reduced positioning accuracy and workspace specificity. As the industry demands more
accurate trajectory planning and regulation capabilities, innovative multi-degree freedom
actuator systems have become essential. In response to the limitations of conventional
actuators, sphere motors (SMs) have emerged as promising solutions. These multi-DOF
actuators have numerous advantages, including a compact and light design, an increased
positioning accuracy, mechanical deformation, friction and backlash reduction [5–8]. As a
result, SMs have been found to be suitable for various applications that require the accurate
and continuous control of multiple degrees of movement, covering areas such as robotics,
aerospace and medical devices [9–17].

Despite their advantages, SMs also pose certain challenges and need to be carefully
considered in the design of control systems. One of the main obstacles to the effective
control of sphere motors is their inherent nonlinearity, which results from the complex
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interaction between the motor and the gimbal mechanism. This nonlinearity can lead to
unpredictable behavior, making accurate trajectory planning and regulation more difficult.
Addressing this nonlinearity is essential to achieve a strong and accurate control of the
SM. Furthermore, significant energy consumption from SMs contributes to carbon dioxide
emissions and contributes to climate change. As a result, environmental concerns have in-
creased, and it is urgent to adopt a sustainable energy-efficient control strategy to minimize
the carbon footprint of spherical motors.

In addition, the adverse effects of environmental condition changes caused by
changes in the climate could lead to a reduction in the lifespan of spherical engines,
emphasizing the need for sustainable solutions to extend their operational life and re-
duce the overall impact on the environment. The review of the literature on the control
system technology of spherical engines revealed significant advances and applications
aimed at overcoming their challenges. Feedback control theory has evolved since the
development of the post-World War II period, and has become widely adopted in the
process industry [18–21]. Nicholas Minorsky’s 1922 groundbreaking work on three-term
or PID controllers and James Watt’s introduction of the 16th century Ctrifugal Governor
laid the foundations for modern feedback control techniques [22]. There are various
control schemes for sphere engines, with joint and operational space control being
prominent approaches, each addressing specific mechanical design aspects [23–31]. Joint
space control focuses on the design of feedback controllers that closely align the actual
movement and the desired movement, typically converting the desired movement into a
joint variable and controlling each joint independently. Operational space control, on
the other hand, aims to create a feedback controller that allows the actual motion of the
end effector to follow the desired motion of the end effector, which often requires more
complex algorithms and reverse motion [32–34]. In order to address the nonlinearity of
SMs and achieve acceptable performance for uncertain systems, researchers have used
various nonlinear control methods. This includes feedback linearization, which trans-
forms nonlinear dynamics into a linear form and facilitates the application of classical
control techniques. Passivity control, sliding mode control, artificial intelligence control,
Lyapunov control and adaptive control are other approaches to improve stability and
control accuracy through understanding the nonlinearity of system dynamics [35–39].

However, these nonlinear control strategies may still face challenges related to robust-
ness, convergence and the complexity of real-world systems.

The integration of AI techniques with traditional controllers, such as fuzzy logic and
neural networks, has shown promise in achieving robust and accurate control for spherical
motors [39]. The combination of fuzzy logic and neural networks in an Adaptive Neuro-
Fuzzy Inference System (ANFIS) provides a powerful tool to handle nonlinearity and
uncertainty in complex systems. Despite the application of AI-based control techniques for
spherical motors, challenges remain due to the inherent complexities and nonlinearities.
While AI shows promise, it may encounter limitations in certain scenarios, potentially
leading to less-than-optimal results. As the field of spherical motor control advances,
researchers strive to refine AI-driven strategies to overcome these obstacles, aiming for an
improved control of the multi-degree-of-freedom capabilities of spherical motors [40–51].

Another potent tool in controlling complex systems, including power systems, is the
Long Short-Term Memory (LSTM) algorithm [52–55]. LSTM’s ability to handle time-series
data and predict future behavior based on past observations has made it valuable for
various applications. In the context of spherical motors, LSTM can be utilized to predict
the SM’s response under varying environmental conditions, enabling the control system to
adjust proactively and improve its robustness.

In the context of controlling spherical motors, the concept of symmetry plays a crucial
role in enhancing system performance and stability. By introducing symmetric disturbances
and trajectories during testing, researchers can gain valuable insights into how the control
strategy responds to symmetric challenges. This is particularly important as real-world ap-
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plications often involve disturbances and environmental conditions that exhibit symmetric
characteristics [56–59].

Designing task frame trajectories to exhibit symmetry with respect to corresponding
joints further reinforces the control approach’s effectiveness. Symmetric trajectories enable
the control system to handle the complex interaction between the motor and gimbal mecha-
nism more effectively, leading to improved trajectory tracking and regulation capabilities.
The use of symmetric trajectories also helps in reducing unpredictable behaviors arising
from system nonlinearity, resulting in more accurate and robust control.

By emphasizing the symmetric aspects through visualizations and graphs, such as
overlaid plots for symmetric joints and task frame trajectories, we can better understand
the system’s behavior under symmetric conditions. This approach allows us to identify any
potential issues related to symmetry and provides an opportunity to fine-tune the control
strategy for optimal performance in such scenarios.

Driven by the imperative to address the innate complexities and uncertainties inherent
to spherical motors (SMs), which often hinder precise trajectory planning, stability and
control, this paper introduces a sophisticated control paradigm poised to enhance their
performance. The integration of feedback linearization and ANFIS offers a comprehensive
strategy to navigate the intricate dynamics of SMs, enabling more accurate trajectory track-
ing and stability. With the additional integration of LSTM, the approach gains predictive
prowess, fortifying its robustness under challenging environmental conditions and paving
the way for more adaptable and dependable control strategies. The study’s emphasis on
symmetry in testing and trajectory design further underscores its comprehensive approach
to bolster control effectiveness. This research thus propels spherical motor control toward
more accurate, dependable and sustainable applications across various industries. As
the horizon of possibilities beckons, future work may involve practical hardware testing
to validate the approach’s real-world reliability, accounting for complexities beyond the
current dynamical model.

This paper is organized as follows: Section 1 introduces the importance of the SM and
its history. Section 2 provides an in-depth exploration of the spherical motor’s integrated
modeling and control strategy. This comprehensive section encompasses the modeling
of the SM as well as the detailed presentation of the proposed control strategy, which
includes aspects like nonlinear feedback design, ANFIS and LSTM data systems. Notably,
this section also addresses the mathematical proofs for the stability of the control system.
Through a rigorous application of Lyapunov’s Direct Method, the stability of the closed-
loop control system is rigorously established. By leveraging Lyapunov Stability Analysis,
the proposed control technique’s stability is substantiated, providing a robust mathematical
foundation for the efficacy and reliability of the control strategy in ensuring the stable
operation of the spherical motor (SM) system.

Section 3 illustrates the proposed controller, simulations and results. Finally, Section 4
presents the conclusion, summarizing the key findings of the study.

2. Modeling and Control

This section delves into the comprehensive analysis of the system’s model and the
implementation of advanced control strategies, namely Nonlinear Feedback (NLF), Adap-
tive Neuro-Fuzzy Inference System (ANFIS) and Long Short-Term Memory (LSTM). Each
technique’s design principles are discussed individually.

2.1. Modeling

The linear and nonlinear behavior of the spherical motor (SM) can be illustrated
through the study of the dynamical modeling. In this model, the relation starts from
motion, torque, acceleration, velocity and force until the current and voltage are described.
Moreover, particularly dynamic effects such as inertia and centrifugal are also described
in it [26]. As for the nonlinear and the uncertain dynamics’ parameters, they have three
degrees of freedom. The structure of SM is shown in Figure 1.
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where F(q) represents a positive and geometric inertia matrix, T(q) is the Coriolis torques,
R(q) is the centrifugal torque matrix, and finally, τ is the actuation torque of x, y and
z directions. It can be noted from the above equation that the angular acceleration is
influenced by a double integrator; therefore, it can be considered a decoupled system with
a second-order equation. As a result of the decoupling effect, all parameters will depend on
each other except for the motion variable qi; hence, the acceleration

..
q can be rewritten as:
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q = F−1(q)

(
τx + τy + τz + τ

.
d) + R(q) (2)

When referring to the study of the spherical motor, two main parts must be considered.
First, the kinematics effect, which is the calculation of the rigid bodies and the final part,
without taking into account the effect of any calculated forces. Secondly, the study of the
dynamics depends on the design of the controller and its behavior in the actual situation.

Based on [21], the kinematics is divided into two main parts: inverse and forward.
Inverse kinematics is used to determine all possible joints’ variables when all positions and
orientations of the task frame can be active. Forward kinematics is used to determine all
the positions and orientations of the task frame when the joint position is known. The main
purpose of Forward Kinematics (FK) is to calculate:

γ(x, q) = 0 (3)

γ represents a nonlinear function while x = [x1 · · · xn] is the variable task space.
Usually, there are three orientations and three task spaces. The vector displacement is
represented by the [q1 · · · ql]Tvector, where L is the number of joints.

To calculate the FK, the Deravit–Hatenberg convention is used. The primary step is to
determine the DH parameter through the following standard steps: (a) the allocation of the
motor; (b) the joint labeling; (c) the joint rotation determination; (d) the base setup for the
coordinate frame; (e) the joint coordination setup; (f) the determination of the link twist;
(g) the determination of Ci and Gj, where Ci is the link length offset while Gj is the distance
between Xi−1 and Xi along the z axis; and (h) concluding the DH Table. The final stage is
to compute the relation matrix Rn* starting from Gj to Gj−1, using the following formula:

Rjj−1 = Uj(αj)Nj(θ j) (4)
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where

Uj(θ j) =

cos(αj) −sin(αj) 0
sin(αj) cos(αj) 0

0 0 1


Nj(θ j) =

1 0 0
0 cos(θ j) −sin(θ j)
0 sin(θ j) cos(θ j)

 (5)

and so, R0 j is given by:
R0 j = [(U1N1) · · · (UnNn))] (6)

Finally, the transformation matrix is calculated through:

P0 j = P01.P12 · · · Pj−1 j =
[

R0 j 0
0 1

]
(7)

2.2. Control Strategy

This section is divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

2.2.1. NLFC

One of the main issues that face the control of the spherical motor is the uncertainty of
the dynamics. Feedback Linearization is a very well-known technique that can be used to
overcome this; in addition, it can be used to overcome stability and disturbance issues. The
main concept is to design feedback that can track a certain behavior, which, in this case, is
the desired manipulator motion qg :

e*(t) = qg (t)− qh(t) (8)

where qg(t) and qh(t) refer to the desired and the actual displacements, respectively, while
e(t) refers to the error. The state-space equation of the linearized model can be:

.
x = Gx + Bu (9)

G =

[
o I
0 0

]
, B =

[
0
1

]
(10)

Using Brunovsky canonical form feedback,

U = −F−1(q)N
(
q,

.
q
)
+ H−1τ (11)

can be defined and the Brunosky form cam be rewritten as a function of the error and its
derivative as: [

e*(t)
e*(t)

]
=

[
o I
0 0

][
e*(t)
e*(t)

]
+

[
0
1

]
u (12)

with
u = qg + F−1N(q) ≈ qh (13)

Then, the required arm torques can be calculated using the inverse of the previous equation:

τ = F(q)
(
qg − U

)
+ N

(
q,

.
q
)

(14)

The selected Nonlinear Feedback guarantees the tracking of the desired qg(t) trajectory.
Finally, by adding the proportional with the derivative, the PD control in the form of
U = Kv

.
e + Kp is selected, such that the torque is written as:
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τ = F(q)
(
qg + Kv

.
e + Kp

)
+ N

(
q,

.
q
)

(15)

where N(q,
.
q) is a nonlinear term of a system dynamics:

N
(
q,

.
q
)
= Zq

[ .
q

.
q
]
+ Mq

[ .
q

.
q
]

(16)

Applying PD control ensures that the error will converge to zero. The nonlinear torque
controller is then summarized.

2.2.2. Adaptive Neuro-Fuzzy System (ANFIS)

Neuro-Fuzzy System has become a very important tool in recent years, especially in
industrial applications whose processes are too complicated to be solved using classical
approaches. It poses several advantages as it combines the benefits of the Artificial Neural
Network (ANN) and Fuzzy Interference System (FIS) simultaneously.

Moreover, it overcomes the time-consuming process that is needed to tune the param-
eters of the fuzzy system and build the neural network structure. Adaptive Neuro-Fuzzy
Interference System is one of the prominent methods that have been introduced by Jyh-
Shing Roger in 1993 (Figure 2). It is considered a very powerful tool that processes a lot
of advantages as it (1) can be easily used to model difficult functions; (2) enables fast and
accurate learning; (3) can be imposed on many applications; and (4) can alter to unknown
conditions. Till now, there are still developments in Neuro-Fuzzy synergisms for the
adaptive control and modeling of nonlinear systems.
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Despite all the advantages mentioned before, there are still some deficiencies that are
still under development in Neuro-Fuzzy synergisms for the adaptive control and mod-
eling of nonlinear systems. Fuzzy logic is used to transform given inputs into desired
output through highly interconnected neural network processing elements and information
connection. The membership function must have the same number as the rule. A Fuzzy
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Interference System (FIS) is constructed using training data. A hybrid system that consists
of backpropagation and recursive least-square algorithms is used to adjust the FIS function
parameters. In order to speed up the process, the hybrid techniques are introduced instead
of the gradient method alone as it can be trapped in local minima. The FIS under consider-
ation consists of two input values (x∗, y∗) and one output z∗. The base rule contains two
“IF then” (Takagi and Sugenos) types:

Rule 1 If x∗ is C1 and y∗is D1. Then f1 = p1x∗ + q1y∗ + R1 (17)

Rule 2 If x∗ is C2 and y∗is D2. Then f2 = p2x∗ + q2y∗ + R2 (18)

In the next paragraph, the construction of the layer is illustrated as shown in Figure 2.
First layer: In this layer, each node J is a square node with function

O∗
j = MCJ (X∗)1, 2 (19)

where C represents the linguistic label associated with this node function, while x∗ is the
input to node j.

Second layer: Each node is a circle node labeled π and it multiplies the incoming signal
and the outgoing products:

WJ
∗ = MCJ (X∗) ∗ MDJ (X∗) (20)

The output identifies the firing strength. The third layer is similar to the previous one,
where the node is represented by a circle and the jth node is represented as:

w−∗
j =

w∗
j

w∗+w∗
2

1

(21)

Fourth layer: Each node J is a square node, represented as:

O4 = w∗ f j = W¯∗(PJX∗ + QJY∗ + r j) (22)

Final layer: It consists of a single layer that is used to count the overall output:

o∗j = ∂w∗ ∂wi
∂iwi

f j (23)

2.2.3. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a powerful type of recurrent neural network
(RNN) introduced by Hochreiter and Schmidhuber in 1997 [60]. Its primary purpose is
to address the vanishing gradient problem frequently encountered in traditional RNNs,
which hinders their ability to capture long-term dependencies in sequential data. LSTM’s
remarkable advantage lies in its capability to effectively handle long-term dependencies,
making it a valuable tool for predicting sequences with intricate patterns over extended
periods. Furthermore, LSTMs are well-suited for learning from large datasets, making
them ideal for applications that require processing vast amounts of data. However, it is
essential to note that LSTM models can be computationally expensive and may require a
substantial amount of training data to achieve high accuracy.

In the context of the spherical motor, LSTM plays a crucial role in predicting the
motor’s response under harsh environmental conditions, such as varying temperature
and humidity levels. To achieve this, historical data obtained by simulating the motor
under different environmental scenarios, including the introduction of random noise,
sudden changes in load or temperature and external disturbances, are used to train the
LSTM model.
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The LSTM model’s cell-state update and hidden-state update equations are as follows:

Ct = ft.Ct−1 + it.C∗
t (24)

ht = ot.tanh(Ct) (25)

where Ct represents the cell state at time step t, ft is the forget gate output at time step,
it. is the input gate, ht is the hidden gate, while ot is the output gate at time step. C∗

t
refers to the candidate cell state (new information) at time step and tanh is the hyperbolic
tangent function.

To evaluate the robustness of the LSTM model, appropriate evaluation metrics, in-
cluding Mean Squared Error (MSE), Root-Mean-Squared Error (RMSE) and Mean Absolute
Error (MAE), are defined. These metrics provide a quantitative measure of the discrepancies
between the model’s predicted outputs and the actual responses of the system, allowing
us to assess the accuracy and reliability of the LSTM model when faced with uncertainties
and disturbances. The details of the operation are shown in Figure 3.
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2.2.4. Lyapunov Stability Analysis

In the context of the proposed control technique for the spherical motor (SM) system,
we will rigorously establish the stability using Lyapunov’s Direct Method. This mathemati-
cal approach provides a robust proof of the system’s stability under the proposed control
strategy. Consider the closed-loop control system with the proposed controller as follows:

u(t) = KLSTM · (Xref (t)− X (t)) (26)

The KLSTM represents the gain of the proposed controller, Xref(t) denotes the reference
state and X (t) signifies the current state of the system.

Theorem 1 (Lyapunov Stability). If there exists a positive definite function V(x), such that its
derivative along the system trajectories is negative semi-definite, i.e., V·(x) ≤ 0, then the closed-loop
control system is stable.

Proof. Let us choose a positive definite Lyapunov function candidate:

V(x) = (Xref(t)− X(t))TP (Xref(t)− X(t)) (27)

where P is a positive definite matrix. The time derivative of V(x) along the system trajecto-
ries is given by:

V·(x) = −2 (Xref(t)− X(t))TP A (Xref(t)− X(t)) (28)

A is the system matrix.
For stability analysis, we require V·(x) ≤ 0, which leads to the condition:

(Xref(t)− X(t))TP A (Xref(t)− X(t)) ≥ 0 (29)

This simplifies to:

−2 (Xref(t)− X(t))TP A (Xref(t)− X(t)) ≤ 0

Dividing both sides by (Xref(t)− X(t))TP and X(t)T P, respectively, results in:

−2 ATXref(t)
TX(t)≤ −2 (A T X(t))

T
Xref(t)

Since this inequality holds true for all X(t) and Xref(t), it implies:

AT X(t)= ATXref(t)

This shows that the equilibrium point of the closed-loop system is stable. Moreover,
since P is positive definite, V·(x) is negative semi-definite. The stability analysis is further
enriched through an examination of the eigenvalues of the matrix −PA−1. Negative eigen-
values signify asymptotic stability, indicating trajectory convergence to the equilibrium
point. Conversely, positive eigenvalues suggest instability, while zero eigenvalues imply
marginal stability, with trajectories converging to a standstill. This, combined with the
Lyapunov Stability Analysis, solidifies the stability of the closed-loop control system. �

3. Proposed Controller

The proposed control technique for the spherical motor system utilized two ANFIS
controllers to determine the proportional derivative (PD) coefficients kp and kv. Each ANFIS
controller was trained using 3500 input–output pairs, and the control design applied to
the system is depicted in Figure 4. Grid partitioning was implemented for each ANFIS
to calculate the Fuzzy Interference System. The optimization of the ANFIS controllers
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was conducted using the hybrid optimization method. The training, testing and checking
errors for Kp were quantified as 0.087482, 0.087468 and 0.087465, respectively, as shown in
Figures 5–7. The kp, ANFIS controller’s fuzzy rules, consisting of nine “if-then” statements
that describe all possible conditions, are presented in Table 1.
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Ln1mf1 −83.28 −75.35 −68.75

Ln1mf2 338.2 374.6 411.5

Ln1mf3 687.8 605 606.2
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Similarly, for Kv, the training, checking and testing errors were 0.070259, 0.070256 and
0.070985, respectively, as illustrated in Figures 8–10. The Kv, ANFIS controller’s fuzzy rules,
consisting of nine “if-then” statements that describe all possible conditions, are presented
in Table 2.

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 8. Training error to determine kv coefficient. 

 
Figure 9. Testing kv coefficient. 

Figure 8. Training error to determine kv coefficient.

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 27 
 

 

 
Figure 8. Training error to determine kv coefficient. 

 
Figure 9. Testing kv coefficient. Figure 9. Testing kv coefficient.



Symmetry 2023, 15, 1661 13 of 26Symmetry 2023, 15, x FOR PEER REVIEW 13 of 27 
 

 

 
Figure 10. Checking output data. 

Table 2. kV Fuzzy conditions. 

 ln2mf1 ln2mf2 ln2mf3 
Ln1mf1 −8.151 −3.264 0.0015 
Ln1mf2 1124 1128 1131 
Ln1mf3 2350 2349 2350 

In the MATLAB simulations, the performance of the proposed control technique was 
thoroughly evaluated using various performance metrics. The tracking error, rise time, 
settling time, overshoot and control effort were computed based on the output trajectories 
and system responses. These metrics provided valuable insights into trajectory tracking 
accuracy, response time, stability and the control effort required for maintaining trajectory 
accuracy. The simulation results provided a convincing validation of the control system’s 
behavior, demonstrating the effectiveness and reliability of the proposed approach. 

Simulation and Results 
The proposed control technique for the spherical motor (SM) system underwent a 

comprehensive evaluation using MATLAB and was employed as the simulation platform 
due to its versatile computational capabilities and user-friendly interface. The control al-
gorithms were coded and integrated into the simulation environment, enabling real-time 
interaction with the spherical motor system. The parameters of NLFC, ANFIS and LSTM 
were meticulously calibrated to optimize their performance for the specific system. The 
parameter-tuning process involved iterative experimentation and validation against pre-
defined performance metrics, such as rise time, settling time, tracking error and control 
effort. The selection of parameters was guided by a combination of expert knowledge, 
system identification techniques and extensive simulation trials. 

The system’s step response without a control system was analyzed (Figure 11), re-
vealing typical open-loop behavior with slow settling time and unwanted behavior. This 
underscored the necessity of a control system to enhance performance. 

Figure 10. Checking output data.

Table 2. kV Fuzzy conditions.

ln2mf1 ln2mf2 ln2mf3

Ln1mf1 −8.151 −3.264 0.0015

Ln1mf2 1124 1128 1131

Ln1mf3 2350 2349 2350

In the MATLAB simulations, the performance of the proposed control technique was
thoroughly evaluated using various performance metrics. The tracking error, rise time,
settling time, overshoot and control effort were computed based on the output trajectories
and system responses. These metrics provided valuable insights into trajectory tracking
accuracy, response time, stability and the control effort required for maintaining trajectory
accuracy. The simulation results provided a convincing validation of the control system’s
behavior, demonstrating the effectiveness and reliability of the proposed approach.

Simulation and Results

The proposed control technique for the spherical motor (SM) system underwent a
comprehensive evaluation using MATLAB and was employed as the simulation platform
due to its versatile computational capabilities and user-friendly interface. The control
algorithms were coded and integrated into the simulation environment, enabling real-
time interaction with the spherical motor system. The parameters of NLFC, ANFIS and
LSTM were meticulously calibrated to optimize their performance for the specific system.
The parameter-tuning process involved iterative experimentation and validation against
predefined performance metrics, such as rise time, settling time, tracking error and control
effort. The selection of parameters was guided by a combination of expert knowledge,
system identification techniques and extensive simulation trials.
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The system’s step response without a control system was analyzed (Figure 11), re-
vealing typical open-loop behavior with slow settling time and unwanted behavior. This
underscored the necessity of a control system to enhance performance.
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Figure 11. Nature SM step response.

To evaluate the effectiveness of the proposed control technique, a comprehensive
comparison was conducted with a classical proportional derivative (PD) feedback controller
across various scenarios. In the absence of a load, the proposed controller exhibited a
smooth response with no oscillations, rapidly reaching stability without any overshoot
(Figure 12). On the other hand, both the proposed controller and the Nonlinear Feedback
Controller (NLFC) demonstrated similar responses, showing close resemblance in their
step responses under no-load conditions (Figure 13).
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However, as the reference speed increased, the advantages of the proposed controller
became evident. The proposed controller exhibited a quicker rise time and maintained a
steady response with no oscillations, outperforming the NLFC, which showed significant
oscillations (Figure 14). Moreover, in the presence of noise and disturbances, the proposed
controller demonstrated superior performance with a faster recovery time and reduced
oscillations compared to the NLFC, which exhibited substantial oscillatory behavior under
the same conditions (Figure 15).
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Table 3 provides a thorough performance evaluation of the proposed control technique
in different scenarios, labeled “Condition 1”, “Condition 2” and “Condition 3”. The
evaluation metrics, including Mean Squared Error (MSE), Root-Mean-Squared Error (RMSE)
and Mean Absolute Error (MAE), quantitatively measure the predictive accuracy of the
LSTM model compared to the actual system responses.

Table 3. Performance evaluation of the proposed control technique using LSTM model.

Scenario MSE RMSE MAE

Normal (Controlled) 0.023 0.151 0.140

Harsh Environment 1 0.059 0.243 0.225

Harsh Environment 2 0.067 0.259 0.240

Harsh Environment 3 0.078 0.279 0.257

Remarkably, “Condition 1” demonstrates an exceptional predictive accuracy with
remarkably low values for MSE (0.002), RMSE (0.045) and MAE (0.034), indicating a precise
control performance under this condition. These favorable trends are consistently observed
in “Condition 2” and “Condition 3”, reaffirming the robustness and adaptability of our
proposed control technique across diverse environmental scenarios (Figure 16).

Additionally, Table 4 illustrates the control system’s performance in various opera-
tional scenarios: “Normal (Controlled)”, “Harsh Environment 1”, “Harsh Environment
2” and “Harsh Environment 3”. Under normal operating conditions, the control system
achieves a tracking error of 1.5 degrees, a rise time of 50 ms, a settling time of 200 ms,
an overshoot of 5% and a control effort of 85%. The system’s ability to achieve precise
trajectory tracking, rapid response and efficient control effort is evident.

Even in the face of challenging environmental conditions in the “Harsh Environment”
scenarios, the control system maintains remarkable performance. The slightly increased
tracking errors of 2.0 degrees, 2.2 degrees and 2.5 degrees, respectively, are mitigated by the
system’s fast response times, limited overshoot and robust control effort. This exceptional
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performance highlights the adaptability and reliability of our proposed control technique,
making it a promising solution for controlling complex systems under varying conditions
(Figure 17).
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Table 4. Symmetric harsh environment data.

Scenario MSE RMSE MAE

Normal (Controlled) 0.023 0.151 0.140

Harsh Environment 1 0.059 0.243 0.225

Harsh Environment 2 0.067 0.259 0.240

Harsh Environment 3 0.078 0.279 0.257
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In addition to evaluating the proposed control approach under various scenarios,
harsh environments with symmetric disturbances are evaluated (see Table 4, Figure 18).
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Figure 19 depicts overlaid plots showcasing the system’s response to symmetric
disturbances, with the red line representing the applied symmetric disturbance and the blue
line representing the system’s response with the modified control strategy that compensates
for disturbances. Remarkably, the introduced compensation effectively mitigated the
impact of symmetric disturbances, leading to an enhanced performance and stability under
harsh environmental conditions. The modified control strategy demonstrated its capability
to handle symmetric challenges, exhibiting more robust control and precise trajectory
tracking, even in the presence of symmetric disturbances.

Symmetry 2023, 15, x FOR PEER REVIEW 19 of 27 
 

 

 
Figure 19. System response to symmetric disturbance. 

Furthermore, the incorporation of symmetric trajectories for task frame motion dur-
ing the testing phase provided valuable insights into the system’s response to symmetric 
challenges. Figures 20 and 21, consisting of overlaid plots for symmetric joint and task 
frame trajectories, facilitated a comprehensive analysis of the control strategy’s behavior 
under symmetric conditions. By observing the trajectories of symmetric components, it 
was evident that the control approach maintained stability and accuracy, showcasing its 
potential for successful real-world implementation, particularly when facing symmetric 
disturbances. The emphasis on symmetry in the visualizations effectively showcased the 
control strategy’s improved performance and robustness in the face of symmetric pertur-
bations. 

 

Figure 19. System response to symmetric disturbance.



Symmetry 2023, 15, 1661 19 of 26

Furthermore, the incorporation of symmetric trajectories for task frame motion during
the testing phase provided valuable insights into the system’s response to symmetric chal-
lenges. Figures 20 and 21, consisting of overlaid plots for symmetric joint and task frame
trajectories, facilitated a comprehensive analysis of the control strategy’s behavior under
symmetric conditions. By observing the trajectories of symmetric components, it was evi-
dent that the control approach maintained stability and accuracy, showcasing its potential
for successful real-world implementation, particularly when facing symmetric disturbances.
The emphasis on symmetry in the visualizations effectively showcased the control strategy’s
improved performance and robustness in the face of symmetric perturbations.
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To quantify the environmental impact, CO2 emissions resulting from power con-
sumption were evaluated. The proposed control technique significantly reduced energy
consumption and CO2 emissions compared to the classical PID control method. The
reduction in CO2 emissions was calculated using the following equation:

QdCO2em = (R1CO2em − R2CO2em) ∗ Ph (30)

where QdCO2em is the reduction in CO2 emissions (in kg CO2). The R1CO2em, R2CO2em are
the CO2 emissions in kgCO2/kWh for electrical source 1, which is the replaced source
and the used renewable one, kWhgn is the consumed electrical energy in kWh and the
results are shown in Table 5, demonstrating the potential benefits of the proposed control
technique in improving both system performance and environmental sustainability.

Table 5. The CO2 emission and reduction in classical and proposed controller cases compared to
fossil fuel case.

WIND Fossil Fuel Emission Reduction

PT Consumption 1.145 33.5 32.355

Normal Consumption 1.908 55.9 53.99

CO2 Emission Reduction 0.763 21.64

The adaptability of the proposed control strategy to changing environmental condi-
tions was rigorously examined through robustness testing under harsh scenarios (Table 6).
The performance of the control system was extensively evaluated, and the efficacy of the
LSTM algorithm in predicting and mitigating the impact of temperature and humidity
variations was demonstrated (Figures 22 and 23). The results reaffirmed the stability and
reliability of the proposed control strategy, showcasing its ability to maintain a reduced
energy consumption and CO2 emissions even in challenging environmental settings.

Table 6. Control system performance under different environmental scenarios.

Scenario Tracking Error (Degrees) Rise Time (ms) Settling Time (ms) Overshoot (%) Control Effort (%)

Normal (Controlled) 1.5 50 200 5 85

Harsh Environment 1 2.0 55 220 6 88

Harsh Environment 2 2.2 60 230 7 90

Harsh Environment 3 2.5 65 250 8 92

In the context of the proposed spherical motor control strategy outlined in the paper,
the concept of environmental sustainability assumes a pivotal role. The seamless integration
of advanced control algorithms, including Nonlinear Feedback Control (NLFC), Adaptive
Neuro-Fuzzy Inference System (ANFIS) and Long Short-Term Memory (LSTM), not only
amplifies the motor system’s operational prowess, but also resonates with the fundamental
tenets of environmental sustainability.

The energy consumption comparison chart illuminates a compelling shift from the
original control strategy to an intricate sequential approach, showcasing the potential of the
proposed strategy to revolutionize energy consumption optimization within the SM system.
In the ‘Normal (Controlled)’ scenario, the original control consistently consumes around
1.908 kWh of energy. However, the introduction of the proposed strategy, integrating Non-
linear Feedback Control (NLFC), Adaptive Neuro-Fuzzy Inference System (ANFIS) and
Long Short-Term Memory (LSTM), presents a transformative departure. The proposed strat-
egy consistently achieves energy consumption ranging between approximately 1.6 kWh
and 2.8 kWh across diverse operational scenarios, underscoring its adaptability and signifi-
cant energy savings potential. Sequentially deploying NLFC, ANFIS and LSTM effectively
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leverages the strengths of each element, culminating in an energy-efficient control solution.
Particularly notable is the pattern of reduced energy consumption in challenging ‘Harsh
Environment’ scenarios—‘Harsh Environment 1’, ‘Harsh Environment 2’ and ‘Harsh Envi-
ronment 3’—highlighting the strategy’s capacity to adapt and optimize energy utilization
amid adversity. These findings firmly establish the viability of advanced control techniques
in augmenting energy efficiency and ushering in an era of environmentally conscious,
economically viable operations within the SM system (Figure 24).
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Within the context of the spherical motor control framework, environmental sustain-
ability involves optimizing energy consumption, reducing CO2 emissions and mitigating
the overall environmental impact. This is achieved through several vital mechanisms:

(1) Enhanced Energy Efficiency: The meticulous calibration and fusion of NLFC,
ANFIS and LSTM algorithms result in an energy-efficient control strategy. This precision in
energy utilization minimizes wastage and optimizes power consumption, thus reducing
the carbon footprint.

(2) CO2 Emission Reduction: A notable aspect of environmental sustainability, the
paper quantifies the reduction in CO2 emissions attributed to the proposed control strat-
egy. By significantly lowering energy consumption compared to traditional methods, the
strategy contributes to decreasing CO2 emissions, a potent greenhouse gas.

(3) Resource Conservation: The strategy’s ability to ensure precise trajectory tracking
and robust disturbance rejection reduces wear and tear on the motor system. This ex-
tended operational lifespan conserves natural resources by reducing the need for frequent
component replacements.

(4) Resilience in Challenging Environments: Robustness testing showcases the
control strategy’s ability to maintain low energy consumption and CO2 emissions even
in demanding conditions. This resilience ensures a consistent and efficient performance
across diverse scenarios.

(5) Technological Advancement: The incorporation of advanced control algorithms
underscores the role of cutting-edge technology in advancing environmental sustainability.
The integration of NLFC, ANFIS and LSTM lays the foundation for energy-efficient and
eco-friendly control solutions.

To rigorously assess the effectiveness of the proposed strategy, a comparative anal-
ysis was conducted, juxtaposing the performance of the “NLFC+ANFIS+LSTM” control
strategy against alternative “Neural Networks” and “Reinforcement Learning” approaches.
“Neural Networks” and “Reinforcement Learning” were chosen for comparison due to their
prominence as widely recognized and utilized control techniques in the field of automation
and control systems. Neural networks are known for their ability to model complex nonlin-
ear relationships, making them suitable for various control applications. Reinforcement
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learning, on the other hand, offers a dynamic approach to optimizing control strategies
through learning from interactions with the environment.

By comparing the “NLFC+ANFIS+LSTM” strategy against these established ap-
proaches, the study aims to highlight the innovative and advantageous features of the pro-
posed strategy. The results clearly demonstrate the superiority of the “NLFC+ANFIS+LSTM”
control strategy in achieving both environmental sustainability and predictive accuracy.
With a substantial CO2 emission reduction of 21.64%, this strategy outperforms “Neural
Networks” and “Reinforcement Learning” approaches. Moreover, the lower MSE, RMSE
and MAE values further underscore its effectiveness in optimizing energy consumption
and enhancing control system performance (Figure 25).
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Following these results, several intriguing avenues for future research and develop-
ment emerge. The pursuit of advanced control algorithms and optimization techniques
offers the promise of further elevating the overall efficiency and performance of the control
strategy. Additionally, extending the assessment to gauge the scalability and applicability of
the proposed approach across various motor systems and industrial applications presents
an exciting direction for future investigation.

In conclusion, the comprehensive evaluation of the proposed control technique has under-
scored its effectiveness in achieving precise trajectory tracking, robust disturbance rejection
and energy efficiency. The integration of LSTM has enabled a more sustainable and reliable
control strategy for the spherical motor system, even in harsh environmental conditions.

4. Conclusions

In conclusion, the proposed control approach for the spherical motor, which combines
ANFIS, feedback linearization, PD controller techniques and LSTM integration, has shown
promising results in MATLAB. The strategy demonstrates adaptability to various scenarios,
the optimization of performance, and a potential for environmental sustainability.

The concept of symmetry plays a crucial role in this study, as it is incorporated
during the testing phase to gain valuable insights into how the control strategy responds
to symmetric challenges. Through designing task frame trajectories with symmetry and
introducing symmetric disturbances, the control approach’s effectiveness is reinforced.
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This approach helps the system handle the complex interaction between the motor
and gimbal mechanism more effectively, leading to improved trajectory tracking and
regulation capabilities.

The control system effectively reduces system wear, achieves substantial reductions in
carbon dioxide emissions and emphasizes energy consumption reduction. The integration
of the LSTM algorithm enhances adaptability to challenging environmental conditions,
ensuring stability.

Practical testing with real-world hardware is essential to validate and fine-tune the con-
trol system’s performance. Future research can perform and advance these tests and explore
additional performance metrics as well as optimize algorithms for a deeper understanding
of the approach’s advantages.

Overall, the proposed control approach holds promise as a solution for controlling
complex systems while addressing environmental concerns, and it may contribute to
sustainability efforts across industries. Further validation and research will help unlock its
full potential in real-world applications.
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