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Abstract: Powered exoskeleton rehabilitation is an effective way to help stroke patients recover
their motor abilities. Bionic structures and human-like control strategies can be used to enhance
both the safety and efficacy of exoskeletons. However, the motion characteristics of the shoulder
complex are not sufficiently considered. In this paper, we designed a 7-degrees-of-freedom (DOF)
upper limb rehabilitation exoskeleton, FREE (functional rehabilitation exoskeleton). The mechanical
structures of the shoulder and forearm of FREE are in accordance with human anatomy, and can
be used to perform a wide range of synergistic motion of multiple joints while keeping a safe
distance from the patient’s head. A multiple-input-multiple-output (MIMO) shoulder girdle motion
prediction model was developed to satisfy the synergy between humans and exoskeletons. Moreover,
a constrained task priority and projected gradient-based inverse kinematics algorithm (CTPPG-IK)
was proposed to achieve assistance with scapulohumeral rhythm. A motion capture system was used
to collect different activities of daily life (ADL) motion data to validate the proposed algorithm. The
experimental results show that the accuracy of the prediction model is higher than that of existing
models, and the inverse kinematics algorithm can handle the end-effector task and joint space with a
maximum angle error of 3.04× 10−3 rad.

Keywords: rehabilitation robotics; exoskeletons; inverse kinematics; scapulohumeral rhythm

1. Introduction

Stroke has been a widespread and serious global healthcare problem, with the highest
rate of disability for a single disease. There were 13.7-million new cases of stroke worldwide
in 2016, and this number has continued to rise [1]. The most common and widely recognized
impairment following stroke is motor impairment, and rehabilitation is an effective way to
help patients regain their motor abilities [2]. To date, several rehabilitation robots have been
used to improve both motor control and strength in post-stroke upper extremity paralysis,
which can help speed up neural remodeling significantly, and appear to be safe [3–6].

The upper limb is one of the many redundant subsystems of the human body and is
commonly considered to have 7 DOF, consisting of three at the shoulder, one at the elbow,
and three at the wrist. Positioning the wrist in space and orienting the palm is a task that
requires only 6 DOF [7]. Mechanical engineers have drawn inspiration from human upper
limb to design spherical–roll–spherical (SRS) robots such as KUKA IIWA and Franka Panda.
However, the acromioclavicular joint in the shoulder actually provides additional degrees
of freedom, a feature that is often overlooked in the design of exoskeletons. To ensure a safe
and comfortable human–robot interface, precise alignment between the exoskeletal and
anatomical joint axes throughout movement phases is critical. This prevents the generation
of harmful tangential forces on soft tissues and joints, minimizing the risk of discomfort
or injury. There are some exoskeletons that use passive self-alignment to achieve center
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alignment of the shoulders. ASSISTON-SE is equipped with a 3RRP parallel back-drivable
mechanism, allowing for passive translational movements of the center of the GH joint
and enabling independent active control of these DOFs [8]. NESM-γ has an adjustable
trunk link with passive ball joints at the two ends and connects the back of the user and the
robot, allowing for unconstrained movements of the scapula [9]. Based on the concept of
posture synergies, a semi-actuated upper limb exoskeleton Armule was designed, which
achieves 5 DOF motion of the upper limb with two motors [10,11]. The above-mentioned
exoskeletons are adjustable according to the user characteristics, provide repetitive active
and passive assistance, accelerate neural remodeling, and record user motion data, but there
are also limitations. For example, exoskeletons do not fully match to the upper limb kinetic
chain, resulting in insufficient active degrees of freedom, safety, sensing and learning
capabilities, and comfort.Therefore, the design objectives of the exoskeleton mainly include
the following four points: (1) redundant active degrees of freedom, (2) bionic structure,
(3) non-collision with the user, and (4) torque sensing and control [12,13].

Nevertheless, the passive alignment method may have problems, such as lack of
adaptability, low comfort, and a complicated process for putting it on and taking it off, so
only a few exoskeletons have active shoulder compensation mechanisms currently [14,15].
This limitation affects the patient’s ability to perform functional movements in rehabilita-
tion training, potentially causing discomfort and compensatory movements. Furthermore,
realizing the intuitive and ergonomic interaction between the user and exoskeleton can
significantly enhance the rehabilitation outcomes. One key requirement is that the ex-
oskeleton generates natural and anthropomorphic movements [16]. Human upper limb
movements not only focus on the hand’s motion but also the coordination between joints.
In the realm of robot kinematics, they correspond to task space and joint space movements,
respectively [17].

Rehabilitation exoskeletons are highly coupled to human limbs; thus, the correspond-
ing kinematics approach deserves more consideration. There are several approaches to the
inverse kinematics (IK) of exoskeletons, including analytic geometry methods, learning-
based methods, and differential kinematics. Analytic methods based on the task space
are efficient and fast [18–21]. These methods require the parameterization of the upper
limb in advance. Learning-based methods are usually computed in the joint space, enable
exoskeletons to learn and reproduce the patient’s movements in an unstructured environ-
ment, and imitate human movement habits [22–24]. This method is applicable to nonstrict
motion trajectories and require significant computational resources during the training
phase. Differential kinematics can be combined with the gradient projection method to
complete end-effector tasks and optimize the joint motions of redundant robots [25–27].
A kinematically redundant robot is a mechanism that has more DOF than are required
to perform a given task. The upper limbs are redundant with respect to the 6 DOF of
the hand, so upper limb exoskeletons should also be kinematically redundant for flexible
manipulation. For these robots, the problem generally cannot be solved analytically and
has an infinite number of solutions, so numerical methods are usually used to solve local
optimization problems under joint angle constraints [28,29]. Most of the existing research
studies assisted patients with tasks of the hand but did not take into account the movement
patterns of the upper limb. Scapulohumeral rhythm is a kinematic interaction between the
scapula and humerus, and results in non-coincidence between the center of the exoskeletal
shoulder and the humeral origin. In the absence of kinematic restrictions, exoskeletons may
compress or pull patients and cause pain. Therefore, the IK which unifies end-effector tasks
and synergistic movement among links is worth researching. However, few studies have
integrated scapulohumeral rhythm and kinematic approaches. The relative inclination
angle and geodesics in Riemannian space were used to plan human-like paths [30].

Overall, the main contribution of this paper is as follows:

1. A multiple-input multiple-output (MIMO) shoulder girdle motion prediction model is
proposed. It can be used to estimate elevation/depression and protraction/retraction
angles of the shoulder girdle based on the humerus orientation.
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2. An IK algorithm that integrates the gradient projection method and task priority is
proposed and validated. It enables FREE to achieve human-like shoulder movement.

2. System Design

The FREE exoskeleton was developed to assist patients with functional rehabilitation
training after stroke. Seven motors shown in Figure 1 were configured to achieve shoulder
joint, elbow joint and forearm motion after compromises. The exoskeleton is capable of
shoulder girdle elevation/depression and forward extension/retraction; shoulder joint
abduction/adduction and flexion/extension; glenohumeral (GH) joint self-rotation; elbow
flexion/extension; and forearm pronation/supination. To increase the applicability of
the exoskeleton, the upper arm and forearm were designed as a split structure for length
adjustment. To improve the stiffness of the exoskeleton and reduce its mass, the body was
mainly made of aluminum material and carbon fiber tubes.

Figure 1. FREE exoskeleton prototype and its simplified model.

J1–J5 were used to construct the exoskeleton shoulder joint. The GH joint is a visual
characterization of shoulder motion. Almost all voluntary movements of the shoulder
joint involve movement at the GH joint; this requires additional degrees of freedom to
ensure that the GH joint is in central alignment with the exoskeleton shoulder during
rehabilitation training [31]. To achieve synchronization between the exoskeleton and
shoulder without overlap, a parallelogram was used for translation of the axis of rotation
of the scapulohumeral out of the patient’s body.

The 3D model of FREE is shown in Figure 2a. In order to achieve a wide range of
ROM, FREE adopts a serial chain with three revolute joints that encircle the upper arm for
the ball-and-socket joint to match GH. The angle between the two adjacent axes is set at
4π/9 rad to ensure sufficient manipulability of shoulder. In order to achieve a greater level
of horizontal extension, the upper arm linkage exists a π/6 rad bend. This configuration
places the singularities at the edge of the ROM while leaving a safety distance of more than
40 mm between the human and exoskeleton. A new linkage structure was developed to
achieve pronation/supination of the forearm shown in Figure 2b. This structure consists of
only five connecting links, which can translate the forearm rotation axis into the isometric
plane beyond exoskeleton links. Compared to ARMin [32], this structure weighs only 210 g
with the same range of motion (approximately 8π/9 rad), dramatically reducing weight
while having lower structural complexity.

The controller was designed based on the industrial PC CX6015-0100 (Beckhoff Au-
tomation Inc., Verl, Germany) under the software environment of TwinCAT3, and the
hardware architecture is shown in Figure 3. Both the control algorithm and the communi-
cation cycle were strictly kept to 1 ms.
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Figure 2. (a) A 3D model of FREE and DH parameters of the shoulder joint. (b) Details of a
forearm mechanism that implements a translational axis of rotation. (c) Exploded view of the
joint configuration.

Figure 3. Hardware and communication architecture of FREE.

3. Kinematics Algorithm

Human upper limbs are able to perform various movements dexterously thanks to its
kinematic redundancy. In order to match the kinematics of the patient’s upper extremity,
the designed exoskeleton contains seven joints with redundant degrees of freedom. Af-
ter planning the path of a set of rehabilitation motions, the joint angles are calculated by IK.
Although the analytical geometry method is fast and always finds a usable solution, it is
applicable only to robots of a specific configuration and is incompatible with the constraints
of the joint space. For FREE, the ball-and-socket joint was placed at the midpoint of the
kinematic chain; it is difficult to decouple the position from orientation. In addition, it
is difficult to obtain the analytical solution of a redundant exoskeleton in the absence of
an arm angle constraint, in advance. In this section, a model is constructed to predict the
motion of the shoulder girdle for the constraint of scapulohumeral rhythm. A task priority
and projected gradient-based IK solution method is proposed and prioritized for multiple
tasks to improve the human–robot coordination during rehabilitation training.

3.1. Human Shoulder Kinematics

In order to coordinate movements between exoskeletons and patients, it is of the
utmost importance to clarify the kinematic properties of the human upper limb, especially
the shoulder complex. The shoulder complex consists of four sub-joints. Though each joint
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has independent degrees of freedom, the shoulder complex can be considered a compound
mechanism, where all four joints must properly interact for normal shoulder motion to
occur. A case in point for this interaction is the scapulohumeral rhythm, which is the
relationship between the elevation of the scapulohumeral joint and the upward rotation
of the scapula. Reference [30] used two polynomials to describe the relationship between
the polar angle of the humerus and the elevation/depression and protraction/retraction
of the scapulohumeral joint; however, this description is not comprehensive. In addition,
movements of the shoulder girdle are associated with ϕaz in Figure 4. As the humerus of
the upper arm moves, the scapulohumeral follows fixed patterns. Reference [33] shows
that using several independent regression models may not be able to accurately describe
the movement of the scapula and humerus bones. They maintain a non-linear relationship
in multiple dimensions of motion.

Figure 4. The scapulohumeral joint and humerus are reduced to vectors, and the direction is
described by the spherical coordinate parameter. ϕed and ϕpr represent the elevation/depression
inclination of the y-axis and the protraction/retraction inclination of the x-axis, respectively, around
the scapulohumeral’s fixed coordinate system. ϕpo and ϕaz represent the polar and azimuthal
humerus angles in the torso coordinate system.

The coupled movements of the shoulder joint result in a nonlinear relationship between
the movement angles of the humerus and scapulohumeral. One common approach to
dealing with multi-input multi-output regression problems is to build multiple multi-input
single-output models and predict each variable separately. We trained and merged two
BP neural networks but the prediction performance for ϕpr was suboptimal. In order to
improve prediction accuracy, the relationship can be abstracted into a MIMO model that
takes into account the potential correlations between different outputs; however, it has
not currently been applied in the human joint angles prediction domain. Xu presented a
MLS-SVR multi-output algorithm, in a multi-output setting with a strong generalization
capability [34]. Considering the limited amount of data and the requirement for a smooth fit,
MLS-SVR was chosen as a predictor of the rotation angles of the shoulder girdle. A motion
capture system can be used to record the movements of the upper limbs and calculate the
four predefined sets of angles. Let y = [ϕed, ϕpr] ∈ Rn×m, x = [ϕed, ϕpr] ∈ Rn×p, where
n is the sample size, and m and p represents the number of dimensions for the output
and input variables, respectively. The multi-output regression is regarded as finding the
mapping between an input matrix [ϕpo, ϕaz] and an output matrix [ϕed, ϕpr].

In order to achieve accurate prediction of shoulder joint angles, the optimal parameters
of prediction model need to be solved. The goal of the MLS-SVR algorithm is to find a
function f (x) = ϕ(x)TW + b that has the maximum deviation from the actual observed
output and is as flat as possible, where W ∈ Rh×l , b ∈ Rl , l is the dimension of the output
variable, and ϕ(x) is a a mapping function to achieve the linear regression of data in high-
dimensional space. The element wi ∈ Rh of W can be written as wi = w0 + vi. w0 represents
the mean vector, while small values of the vector vi ∈ Rh indicate that the different outputs
are similar to one another. The flatness of the function f (x) can be obtained by minimizing
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the value of the parameters wT
0 w0 and trace (VTV), which is equivalent to finding a small

value for W, where V = (v1, v2, . . . , vl) ∈ Rh×l . Therefore, the optimization problem could
be attained by minimizing the following objective function while satisfying the constraint:

minJ (w0, V, Ξ) =
1
2

wT
0 w0 +

γ′′

2l
trace

(
VTV

)
+

γ′

2
trace

(
ΞTΞ

)
(1)

s.t. y = ZTW + repmat
(

bT, l, 1
)
+ Ξ (2)

where Ξ = (ξ1, ξ2, . . . , ξl) ∈ Rn×l consists of slack variables, b = (b1, b2, . . . , bl) ∈ Rl , γ′

and γ′′ are hyper-parameters, Z = (ϕ(x1), ϕ(x2), . . . , ϕ(xn)) ∈ Rh×n. The optimization in
Equations (1) and (2) can be made into a Lagrange function as follows:

L(w0, V, b, Ξ, A) = J (w0, V, Ξ)− trace(AT(ZTW + repmat
(

bT, n, 1
)
+ Ξ− y)) (3)

where A = (α1, α2, . . . , αm) ∈ Rl×m is a matrix consisting of Lagrange multipliers. Af-
ter eliminating W and Ξ according to the KKT condition, the following linear equation
system can be determined: [

0l×l NT

N M

][
b
α

]
=

[
0l
y

]
(4)

where N = blockdiag(1n, 1n, . . . , 1n) ∈ Rln×l , Ω = repmat(K̃, l, l) ∈ Rln×ln,
M = Ω + (γ′)−1 Iln + (l/γ′′)Q ∈ Rln×ln is a positive definite matrix, K̃ = ZTZ ∈ Rn×n is a
matrix that contains the kernel function, and Q = blockdiag(K̃, K̃, . . . , K̃) ∈ Rln×ln,
α =

(
αT

1 , αT
2 , . . . , αT

m
)T ∈ Rml . However, solving the linear equation system (4) directly

is difficult because it is not positively definite. Therefore, the equation was reformulated
into the following equation:[

G 0l×ln
0ln×l M

][
b

M−1Nb + α

]
=

[
NTM−1y

y

]
(5)

where G = N>M−1N ∈ Rl×l is a positive definite matrix. Then, the solution b̃ and α̃ can be
calculated by b̃ = G−1NTH−1y and α̃ = M−1(y− Nb), and the MLS-SVR decision function
can be obtained as follows:

f̃ (x) = ϕ(x)TW̃ + b̃T

= ϕ(x)Trepmat(w̃0, 1, l) + ϕ(x)TṼ + b̃T

= ϕ(x)Trepmat

(
l

∑
k=1

ZTα̃k, 1, l

)
+

l
γ′′

ϕ(x)TZÃ + b̃T

= repmat

(
l

∑
j=1

n

∑
i=1

α̃ijK(x, xi), 1, l

)
+

l
γ′′

n

∑
i=1

α̃iK(x, xi) + b̃T

(6)

In this study, the RBF (radial basis function) kernel was used because it has only
one hyper-parameter and is computationally efficient: K(x, xi) = exp(−σ‖x− xi‖)2, σ > 0.
This approach can be used to predict ϕpr and ϕed. They can be set as the target angles of θ1
and θ2, and θ1 and θ2 are actual joint values of exoskeletons. In addition, in order to reduce
jitter in the prediction results and to prevent drastic changes in the angular velocities of
the joints, a zero-phase low-pass filter was added after the prediction model. The cutoff
frequency was set to 15 Hz.



Symmetry 2023, 15, 1657 7 of 17

3.2. Robot Kinematics

The standard Denavit–Hartenberg (SDH) convention is a widely used approach for
robot modeling. However, it suffers from a significant drawback when dealing with
robots that have tree-like or closed-chain structures, where some links may possess more
than one axis of rotation. In such cases, employing the SDH method to establish link
coordinate systems can lead to ambiguities. FREE features a closed-chain structure in
its shoulder girdle. Consequently, the local coordinate system of each link of FREE was
established according to the modified Denavit–Hartenberg (MDH) convention. Figure 5
shows the parallelogram structure of exoskeleton shoulder. Because of the presence of the
parallelogram linkage at the shoulder girdle, the exoskeleton is modeled differently from
the joint kinematics of the open-chain robot. Assuming a local coordinate system attached
to the fixed end of the parallelogram, the linkage relative to the fixed end only changes its
position but not its orientation during the motion of the mechanism.

Figure 5. Spatial joint vector for the parallelogram joint.

The body twist can be defined as the spatial velocity in the body frame, expressed as

Vb =

[
ωb
vb

]
=

[ oω
oω× oρ

]
θ̇ (7)

where Vb is the spatial velocity of body B with respect to a fixed frame. ωb and vb are the
angular and linear velocity vectors of the instant point on the rigid body, respectively. oω
and oρ are the direction and location vectors of the rotational axis with respect to the fixed
frame, respectively. θ̇ is the angular velocity of the link with respect to the rotational axis.
When the parallelogram rotates, the link adjacent to the fixed end rotates at an angular
velocity θ̇, and the link opposite to the fixed end rotates at an angular velocity−θ̇. Therefore,
the kinematic rotation of the parallelogram mechanism can be rewritten as

Vb =

[ oωad
oρad × oωad

]
θ̇ +

[ oωop
oρop × oωop

]
(−θ̇)

=

[
0

(oρop − oρad)× oω

]
θ̇

= o ŝp θ̇

(8)

where oωad, oρad, oωop, and oρop are the direction and location vectors of the joint axis of
each link adjacent to and opposite to the fixed end. o ŝp is the spatial vector on the output
side of the parallelogram. oω is the component of spatial velocity. Determining the end
effector motion from a given joint motion is the subject of the forward kinematics problem.
The MDH parameters of FREE are shown in Table 1.
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Table 1. MDH parameters table.

i ai di αi θi

1 0 0 π θ1
2′ 0 0 −π/2 θ2
2 rotates with −θ2
3 0 0 −5π/6 θ3
4 0 0 4π/9 θ4
5 0 −0.563 −4π/9 θ5
6 0 0.508 π/6 θ6
7 0 0.333 π/2 θ7

By using IK, the angle of each robot joint can be solved, given the position and direction
of the endpoint. However, for redundant robots, the Jacobi matrix is not a square, and
thus the inverse matrix cannot be directly solved. One solution is to use pseudo-inverse
substitution. At the velocity level, they are expressed in a vector called the Jacobian IK
(J-IK) form as

ẋ = Jθ̇ (9)

θ̇ = J† ẋ (10)

where ẋ is the m-dimensional linear and rotational velocities vector of the end effector, and
θ̇ is the n-dimensional joint angles vector. J is the m× n robot Jacobian matrix, and the
n× n matrix J† is the pseudo-inverse of J, also called the Moore–Penrose inverse of J. It
can be computed as J† = JT(J JT)−1. The pseudo-inverse gives the best possible solution
to Equation (7) in the sense of least squares; however, the pseudo-inverse has stability
problems in the region adjacent to the singularity. If the configuration is close to the
singularity, then the pseudo-inverse method will lead to drastic changes in the joint angles,
exceeding even the limit of joint velocity, even if the desired speed is extremely small.

The damped least squares method (DLS) avoids many of the singularity problems of
the pseudo-inverse method and gives a numerically stable solution, which was first used
for IK by Nakamura [35]. Thus, J† was rewritten as J†

D:

J†
D = JT

(
J JT + λ2 I

)−1
(11)

The pseudo-inverse solution of Equation (8) minimizes the two-norm number of
the joint velocity vector; however, the posture of the exoskeleton in this case may not
match the current posture of the patient’s upper limb. For rehabilitation exoskeletons, it is
clearly important to maintain kinematic consistency with the patient’s upper extremities.
The redundant exoskeleton design can achieve this requirement. The projected gradient
method was first proposed to solve IK with the pseudo-inverse [36]. The discrete form is
used in place of the differential form for computational convenience as

∆θ = J†
D∆x + k(I − J†

D J)ξ1 (12)

where ξ1 is an arbitrary vector, and I is a n× n identity matrix. (I − J† J) is an operator
which projects ξ1 onto the null space of the Jacobian J such that ξ1 can be interpreted as a
desired velocity behavior that is only effective in the null space and does not interfere with
task achievement. While FREE has 7 degrees of freedom, it has insufficient redundancy
to perform the end-effector task after constraining both joint angles of the shoulder girdle
mechanism. This is equivalent to controlling the remaining five joints to complete 6 DOF
end-effector tasks. Under constraints of certain subtasks, if all the variables orientation and
position are used to calculate the joint angles, it may cause a mismatch between the task and
redundant degrees of freedom, and thus the solution will fail. Orientation-related tasks and
position-related tasks are decoupled at the human wrist. In ADL motions, position-related
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tasks affect the distance error of the motions, while orientation-related tasks are related
to human habits and comfort. For example, a user always grasps a bottle in the habitual
posture, but this can be performed by grasping either the top or the bottom of the bottle
to complete the task. Exoskeletons should perform shoulder assist and forearm posture
tasks while maximizing the position of the end effector. Orientation errors between the end
effector of the exoskeleton and patient’s wrist may lead to discomfort and injury. Therefore,
exoskeletons should perform suitable orientation-related tasks while maximizing shoulder
assistance and minimizing the position error of the end effector. For this scenario, we use
priority-based task control with task orientation as the main priority and the task position
as the secondary priority, while introducing constraints on the human shoulder. Therefore,
the end-effector task can be divided into orientation-related and position-related tasks [37],
with orientation-related tasks having a higher priority in this study:

∆θ = J†
ω∆xω + k(I − J†

ω Jω)(∇Hshr(θ) + ξv) (13)

Hshr(θ) =
1
2

2

∑
i=1

(
θi − θ̂i

)2
(14)

where the first term on the right side corresponds to the high-priority orientation task,
and the second term corresponds to the sub-priority task containing the end position and
shoulder constraints. J†

ω and J†
v are the first and last three rows of J†

D, which are associated
with the angular and linear velocities, respectively. xω and xv are the first and last three
rows of x, which are associated with the orientation and position, respectively. ξv = J†

v ∆xv
represents the spatial vector of the linear velocities subtask. Hshr(θ) represents the joint
space loss function, which is used to regulate the synchronized motion of the exoskeleton
with the user’s shoulder; shr is short for shoulder. ∇Hshr(θ) = k(θ − θ̂) represents the gra-
dient of Hshr(θ); when Hshr(θ) 6= 0, this term adjusts the angle of the shoulder movement
in the direction of the gradient. θ̂i represents the desired shoulder girdle movement angle,
i.e., the previously mentioned ϕed and ϕpr. The weight factor is fixed to k = 1 in this study.
The pseudocode is given below, where ori is short for orientation and tol is a small positive
tolerance of task error. The complete pseudocode is given in Algorithm 1:

Algorithm 1 Constrained task-priority and projected-gradient IK algorithm (CTPPG-IK).

1: while eori > tolori && ejoint > toljoint1 && ejoint > toljoint2 do
2: compute ∆xi, J†

D(θi), ϕed, ϕpr, ∆xω, ∆xv, J†
ω, J†

v
3: θ̂ = [ϕed, ϕpr]T

4: ξv = J†
v ∆xv

5: ∇Hshr(θ) = [k(θi − θ̂), 0, 0, 0, 0, 0]T

6: ∆θi = J†
ω∆xω + k(I − J†

ω Jω)(∇Hshr(θ) + ξv)
7: θi+1 = θi + ∆θi
8: compute xi+1
9: eori = ||xω(i+1) − xω(i)||

10: [ejoint1, ejoint2]
T = [I2×2, 02×5]θi+1 − θ̂

11: i = i + 1
12: end while

3.3. Convert Generated Motion to Exoskeleton Motion

In an ideal scenario, it is expected for the motion of the user’s upper limb and the
exoskeleton to be perfectly synchronized. However, due to the presence of redundant
DOF, using the markers set on the user’s wrist to obtain the Cartesian trajectory of the
end effector and solving for the joint angles vector θ of the exoskeleton cannot guarantee
motion synchrony. The goal of this study is to accurately predict the shoulder joint angle
and enable human-like auxiliary movements for the exoskeleton; motions in the upper limb
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configuration space can be mapped to the exoskeleton configuration space by the analytical
geometry method. The shoulder complex, upper arm and forearm, which make up the
human upper limb, can be simplified as three vectors in series. The simplified systems are
shown in Figure 6.

Figure 6. The (left) figure is used to represent a simplified model of upper limb kinematics. Acronyms
vcs, vse, and vew represent the shoulder girdle vector, upper arm vector, and forearm vector, respec-
tively. Exoskeleton in the (right) image shows the equivalent kinematic chain and the local coordinate
system of each link. The x-axis is shown in red, the y-axis in green, and the z-axis in blue. The red
dots are reflectable markers. The circle with the dotted profile represents markers affixed to the back
side (front view obscured).

The origins of the local coordinate of link 1 and link 2 are coincident and denoted as
O12. Similarly, the origin of the local coordinate of link 3, link 4, and link 5 are coincident
and denoted as O345. When z1 is aligned with the center of the ball on the shoulder
girdle, the user’s upper arm and forearm lengths are parallel and congruent to those of
the FREE. The vector set of FREE is equivalent to those of the upper limb in kinematics,
and Oc, Os, Oe, and Ow coincide with O12, O345, O6, and O7, respectively. The coordinates
of Oc can be calculated by the least squares method using the data of the GH center. The
orientation and position transform can be obtained by a homogeneous rotation matrix of
MDH as follows:

Ti−1
i =

[ n
0 R n

0 P
0 1

]
=


cθi −sθi 0 ai

cαisθi cαicθi −sαi −disαi
sαisθi sαicθi cαi dicαi

0 0 0 1

 (15)

The coordinates of points Oc, Os, Oe, and Ow in the world coordinate system can
be directly obtained by the motion capture system. The vector vcs, vse, and vew can be
calculated by taking the difference between adjacent reference points. According to the
principle of motion synchrony, it is easy to observe that the shoulder girdle angles of FREE
θ1b and θ2b correspond to those of the user ϕed and ϕpr, respectively. θib represents the
baseline angle of each joint of the exoskeleton. θ1b and θ2b can be calculated by bringing
them into forward kinematics calculations as shown in the following formula:

vcs = T0
2 (1 : 3, 4) (16)

Similarly, θ3b, θ4b and θ5b can be calculated by vse as follows:

vse = T2
5 (1 : 3, 4) (17)

θ6b is the angle between vse and vew, and θ7b is the angle between vse and vew as
follows:

θ6b = π/2− 〈xs, xe〉
‖xs‖‖xe‖

, θ7b =
〈ze, zw〉
‖ze‖‖zw‖

(18)
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This calculation method has a clear geometric meaning and ensures both the consis-
tency of the end trajectories and the synchronization of the kinematic chains. The calculated
θib is the baseline joint angles vector, which can be used to calculate the error of the shoulder
angles prediction model. By calculating the forward kinematics through θib, the obtained
trajectory can be considered the baseline trajectory. This trajectory can be used to calculate
the end-effect error.

4. Experiments and Results

To validate the proposed human-like kinematics algorithm, our experimental objec-
tives are twofold: (1) assess the precision of the shoulder girdle motion prediction model,
and (2) examine the ability of FREE to achieve rehabilitation actions while simultaneously
satisfying both shoulder and end-effector constraints by utilizing the joint angles calculated
by the prediction model.

4.1. Experimental Protocol

Users of different body sizes have different shoulder rhythms, which lead to variability
in the prediction model parameters. In order to make the prediction model as accurate
as possible in predicting the shoulder girdle angle for a specific user, one right-handed
healthy subject (male, age: 24 years, height: 177 cm, weight: 60.5 kg) volunteered to
participate in the study. The testing was performed with the informed consent of the
volunteer and in a protocol approved by the Declaration of Helsinki. This experiment is
a benign behavioral intervention for adults. The experiment was completed in a quiet
indoor environment and was completely free of charge. Volunteers were fully informed
of the procedure and content of the experiment, and they signed an informed agreement.
To ensure the rigor of the experiment and the accuracy of the results, the definition of a
joint coordinate system for the shoulder, elbow, and wrist, proposed by the Standardization
and Terminology Committee (STC) of the International Society of Biomechanics (ISB),
was used [38]. An optical motion capture system with eight cameras (Mars2H, Nokov,
sampling rate 60 Hz) was used to record the data of motions and reflectable marker
points as the reference sensing method. The volunteers performed four ADL motions in
Figure 7: reaching to the mouth (drinking/eating), cleaning the table, touching the head,
and arm cycling.

Figure 7. Four ADL motions.

The first three motions have a small ROM and a fixed pattern, and the last motion
includes a larger ROM amplitude. Data containing information from a wide ROM helped
identify relatively accurate humeral–clavicular kinematic patterns at the baseline. In order
to avoid occlusion of the markers and ensure no data loss, movements in the experiment
were performed at a slower pace compared to those in daily life. The volunteer was asked to
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complete each movement ten times in sequence within a two-minute time frame to ensure
the continuity of data. During the whole process, the volunteers tried to keep the torso
as immobile as possible. The experiment was conducted twice, with one dataset used for
training the prediction model and the other dataset used to generate reference movements.

4.2. Data Processing and Analysis Criteria

To compute the values of α and b to predict cleaning, drinking, and arm circulation,
the data of these three motions were used to train the predictive models as shown in
Equation (3). After training was completed, to evaluate the performance of the shoulder
girdle angles prediction model, R-square and RMSE indices were used. In order to validate
the performance of the algorithms, the analytic geometry method was used to solve the
predefined movement angles of the subject’s upper limbs at first. Next, forward kinematics
calculations were performed, and the desired task trajectory was obtained based on the
kinematic agreement between the subject and the exoskeleton. Lastly, J-IK and CTPPG-
IK were used to calculate the joint space angle and compare the performance of both.
The computation of kinematics and data processing in the simulation environment were
completed offline. Then, we saved each set of joint angles in .csv format in the industrial
PC and used the position control mode on the exoskeleton for experimental validation.
The maximum joint space error of θ1 and θ2 are Eθ1 and Eθ2 . The maximum orientation
error of the end effector is Eω.

4.3. Results and Discussion

Figure 8 shows the rotation angles of the volunteer’s shoulder girdle during different
motions relative to the angles predicted by MLS-SVR. The sky blue and dark blue lines
represent the measurement data of the motion capture system, the orange and red lines
represent the output angles of the prediction model, respectively. Figure 9 shows the
estimation accuracy of θ1 and θ2. R-square values of θ1 exceeded 0.8 in all three movements,
indicating that the prediction model was more accurate for elevation/depression than the
shoulder girdle protraction/retraction.

Figure 8. Comparison of actual and predicted angles of shoulder girdle rotation during three
ADL motions.
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Figure 9. Prediction accuracy of θ1 and θ2. (a) reflects association between measured angle and angle
predicted represented by MLS-SVR by variance motion for R-square, (b) reflects the RMSE between
the corresponding angles.

The R-square of θ2 is 0.952 in cleaning, and 0.592 and 0.621 in drinking and arm
cycling, respectively. Figure 9b also shows fluctuations in the prediction of θ2. Through
the analysis of the raw data, it could be found that θ1 has uniform periodic variation in
the drinking and arm cycling, while θ2 has a significant decrease in cycling consistency.
Shoulder joint elevation is small, and the motion is dominated by anterior protraction and
retraction during cleaning motion, thus causing the R-square deviation of θ2 in each group.
The ROM of arm cycling is larger than the first two sets of motions, which is a reason for its
higher RMSE.

CLEVERarm developed two polynomial models relating the movements of the GH cen-
ter and arm elevations, employed through elevation/depression and protraction/retraction
experiments [30]. However, there is a strong correlation between the elevation/depression
angle and the type of movement. In addition, that study differed from this paper in that
the center of motion of the shoulder girdle was set on the axis of symmetry of the coronal
plane. The polynomial models were retained, and the parameters were re-fitted using the
data for the touching head action, and used as a reference as follows:

ϕed = 4.33× 10−3ε3 − 6.86× 10−2ε2 + 0.062ε + 0.05 (19)

ϕpr = −1.89× 10−5ε4 + 4.53× 10−5ε3 − 3.72× 10−2ε2 + 0.014ε− 0.194 (20)

where ε = ϕpo. Figure 10 shows the comparison of the MLS-SVR model and the poly-
nomials model during the touching head movement. The figure on the left shows the
prediction performance of the two models of θ1. The RMSEs of θ1 errors of the MLS-SVR
and polynomial model were 0.0201 rad and 0.0242 rad, and the maximum errors were
0.0275 rad and 0.0543 rad, respectively. Both models were able to predict θ1 relatively
accurately, with the MLS-SVR model having slightly higher precision. In the right figure,
the reference angle θ2 was between −0.15 rad and −0.03 rad. The RMSEs of θ2 errors of
the MLS-SVR and polynomial model were 0.0125 rad and 0.0237 rad, and the maximum
errors were 0.0218 rad and 0.0565 rad, respectively. The two indicators of the polynomial
model are approximately twice those of the MLS-SVR model, and the maximum error is
approximately 57.6% of the range of motion. Therefore, the MLS-SVR model has a signif-
icantly superior predictive performance. When considering both dimensions of motion,
the MLS-SVR model shows better prediction precision.
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Figure 10. Comparison of MLS-SVR model and polynomial model on shoulder girdle elevation angle
during touching head movement.

Figure 11 shows the joint space angle errors using the J-IK algorithm and the CTPPG-
IK algorithm for a segment of the volunteer head-touching trajectory, where θerror = θid − θi.
These errors represent the differences between these two algorithms and the baseline joint
angles θid mentioned in Section 3, respectively. We set the joint space convergence threshold
to 3.5 × 10−3 rad, so the exoskeleton is guaranteed to have a small error in tracking the
shoulder girdle rotation angles predicted by the humerus. In contrast, the joint angles error
calculated by J-IK is several orders of magnitude higher than that of CTPPG-IK, and the
absolute values of the maximum errors for θ1 and θ2 are 0.4707 rad and 0.1190 rad, respec-
tively. CTPPG-IK is a closed-loop method for adjusting the shoulder girdle orientation for
the next cycle based on the predicted humeral spherical coordinate angles for θ1 and θ2 in
the previous sampling cycle. In contrast, the joint rotation angles calculated by J-IK are the
least two parametric solutions of the solution space, and each joint needs an angle as small
as possible to achieve the end-effector task.

Figure 11. Comparison of errors calculated by J-IK and CTPPG-IK during head-touching task. The left
y-axes in the figure represent the scale of the solid line CTPPG-IK, which are colored blue. The right
y-axes represent the scale of the dot-dash line J-IK, which are colored red.

The performance metrics comparative experiments are shown in Table 2. The maxi-
mum of the joint space error of J-IK is much larger than that of CTPPG-IK. The maximum
values of Eθ1 and Eθ2 by CTPPG-IK are 2.07× 10−3 and 3.04× 10−3 rad during arm cycling,
respectively, which proves that CTPPG-IK has good performance in tracking the shoulder
rhythm of the subject. The maximum values of Eθ1 and Eθ2 by J-IK are 2.98 × 10−1 rad and
1.79× 10−1 rad, representing the motion mismatch of the shoulder joints of the subject with
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the exoskeleton’s shoulder girdle. The joint space error of J-IK increases as the shoulder
girdle moves away from the initial position due to the cumulative error caused by the least
squares solution.

Table 2. Performance metrics results.

Motion Algorithm Eθ1 Eθ2 Eω

Cleaning J-IK 1.52 × 10−1 1.47 × 10−1 2.77 × 10−6

CTPPG-IK 2.84 × 10−4 6.65 × 10−4 7.58 × 10−6

Drinking J-IK 2.47 × 10−1 1.27 × 10−1 3.19 × 10−6

CTPPG-IK 1.61 × 10−3 4.15 × 10−4 1.46 × 10−5

Arm J-IK 2.98 × 10−1 1.79 × 10−1 3.66 × 10−6

Cycling CTPPG-IK 2.07 × 10−3 3.04 × 10−3 1.89 × 10−5

5. Discussion

Nowadays, researchers in the literature have significantly explored intelligent tech-
niques to solve the non-closed form equations for IK problems of more than 4-DOFs
manipulators, such as genetic algorithms [39], Bayesian optimization [40], particle swarm
optimization [41], and artificial neural networks [42]. In general, evolutionary algorithms
are good choices for applications where a real-time solution is needed. Artificial neural
networks are a good choice for applications where a more accurate solution is needed.
However, these methods could be computationally expensive and may not always con-
verge to the global optimum solution. Additionally, neural networks need a significant
amount of training data and computing resources. Compared to these methods, the al-
gorithm proposed in this paper takes into account the constraints of scapulohumeral
rhythm. By projecting the predicted shoulder angles into null space, this algorithm typ-
ically requires only 2–5 iterations to determine joint angles that satisfy the constraints.
The algorithm has a well-defined mathematical formulation and can meet the requirements
for real-time computation.

While we employed the DLS method to mitigate excessive joint velocities near singu-
lar points and did not observe significant issues in the current experiments, constraints
on velocity aspects should still be incorporated to enhance safety during practical use.
Furthermore, 7 DOF is not redundant enough for the dexterous manipulation of the upper
limb. We contemplate the addition of more joints to better align the exoskeleton with upper
limb movements.

6. Conclusions

We designed a 7-degrees-of-freedom upper limb rehabilitation exoskeleton, FREE,
which can be used to conduct a variety of rehabilitation training and improve the synergy
of movement. A MIMO prediction model was used to predict shoulder girdle motion by
scapulohumeral orientation. Only the elevation angle of the upper arm is the input in the
existing model. In this study, both the impact of upper arm movement on the shoulder
girdle elevation/depression and the protraction/retraction were simultaneously considered
to establish a MIMO model to predict shoulder girdle angles. A human-like CTPPG-IK
algorithm based on differential kinematics was proposed to handle multiple constraints
in exoskeleton assistance. The CTPPG-IK algorithm combines the gradient-projection
method with task priority-based control, which ensures both the degree of completion of
the rehabilitation motions and the natural shoulder motion. The maximum errors of θ1
and θ2 are 2.07 × 10−3 and 3.04 × 10−3 rad, respectively. And most importantly, based on
CTPPG-IK, FREE can be used to customize shoulder motion to match the characteristics
of wearers.

In the future, an online parameter identification method will be developed to obtain
both the shoulder girdle rotation center coordinate and scapulohumeral rhythm. In ad-
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dition, the configuration parameters of FREE will be optimized according to the Asian
body shape to match more wearers. Currently, experiments are not being conducted with
users wearing FREE. We will conduct actual rehabilitation experiments after refining the
compliant control.
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