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Abstract: The fractional Schrödinger–Korteweg-de Vries (S-KdV) equation is an important math-
ematical model that incorporates the nonlinear dynamics of the KdV equation with the quantum
mechanical effects described by the Schrödinger equation. Motivated by the several applications of
the mentioned evolution equation, in this investigation, the Laplace residual power series method
(LRPSM) is employed to analyze the fractional S-KdV equation in the framework of the Caputo
operator. By incorporating both the Caputo operator and fractional derivatives into the mentioned
evolution equation, we can account for memory effects and non-local behavior. The LRPSM is a
powerful analytical technique for the solution of fractional differential equations and therefore it is
adapted in our current study. In this study, we prove that the combination of the residual power series
expansion with the Laplace transform yields precise and efficient solutions. Moreover, we investigate
the behavior and properties of the (un)symmetric solutions to the fractional S-KdV equation using
extensive numerical simulations and by considering various fractional orders and initial fractional
values. The results contribute to the greater comprehension of the interplay between quantum
mechanics and nonlinear dynamics in fractional systems and shed light on wave phenomena and
symmetry soliton solutions in such equations. In addition, the proposed method successfully solves
fractional differential equations with the Caputo operator, providing a valuable computational instru-
ment for the analysis of complex physical systems. Moreover, the obtained results can describe many
of the mysteries associated with the mechanism of nonlinear wave propagation in plasma physics.

Keywords: Laplace transform; fractional Schrödinger–KdV equation; residual power series;
Caputo operator

1. Introduction

Fractional calculus (FC) has emerged as a powerful mathematical tool to describe
phenomena involving non-local and memory-dependent effects. It has many applications
in various scientific disciplines, from physics and engineering to economics and biology.
The theory and applications of fractional differential equations (DEs) have been extensively
studied and developed over the years, contributing to a deeper understanding of complex
systems. Many papers have been published on this topic due to its importance in the
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in-depth explanation of many mysterious phenomena in various physics problems [1,2].
Some of the most important books published on this subject are the books of Kilbas et al. [3]
and Baleanu et al. [4], which provide comprehensive insights into the application and
theory of fractional DEs. These books serve as valuable references for researchers and
practitioners seeking to explore the interdisciplinary nature of FC. The work of Caputo [5],
and Riemann [6] laid the foundations for the development of FC, introducing fundamental
concepts and mathematical techniques.

The introduction of fractional derivatives by Liouville [7] paved the way for further
advancements in the field. The works of Podlubny [8] and Miller and Ross [9] delved into
the theory of FC and provided detailed explanations of fractional DEs. These resources
have been crucial in establishing the theoretical framework for the study of fractional
systems. The practical applications of FC are wide-ranging. For instance, Li et al. [10]
applied fractional diffusion equations to signal smoothing, demonstrating their effective-
ness in signal processing. Lin [11] contributed to the concept of global existence and chaos
control in fractional DEs, shedding light on the behavior of complex dynamical systems.
Additionally, Veeresha et al. [12] used a modified homotopy analysis transform method to
solve a smoking epidemic model of fractional order, highlighting the relevance of FC in
modeling real-world phenomena [13–19].

The nonlinear Schrödinger equation (NLSE) is a fundamental equation in nonlinear
optics, quantum mechanics and the physics of plasma, describing the dynamics of mod-
ulated wave propagation in nonlinear media. It is a partial DE incorporating dispersion
and nonlinear effects, allowing for the study of nonlinear phenomena such as modulated
envelope solitons, rogue waves and breathers, as well as the study of the modulational
instability of modulated nonlinear wave [20–25]. The NLSE can be derived from the linear
Schrödinger equation by including a nonlinear term that accounts for the interaction be-
tween the wave and the medium. This nonlinear term is typically expressed as a power law
function of the wave intensity or amplitude, representing the intensity-dependent refractive
index of the medium. As a result, the NLSE captures the intricate interplay between linear
dispersion and nonlinear self-interaction [26,27].

The nonlinear classical Schrödinger-KdV equation is defined as [28,29]

ipt = p$$ + pq,

wt = −6ww$ − w$$$ +
(
|p|2

)
$

(1)

where i =
√
−1. Adopting p = u + iv allows us to separate Equation (1) into real and

imaginary parts. In this framework, the following (1 + 1)-dimensional tripled system can
be realized:

ut − v$$ − vw = 0,

vt + u$$ + uw = 0,

wt + 6ww$ + w$$$ − 2uu$ − 2vv$ = 0.

(2)

The NLSE has found broad applications in different fields of physics, including non-
linear optics, fiber optics, condensed matter physics, plasma physics and Bose–Einstein
condensates. It provides a versatile framework for the study of phenomena such as optical
solitons, which are self-sustaining, localized wave packets that retain their shape and veloc-
ity during propagation. Solitons are particularly interesting due to their robustness and
potential applications in high-speed communication systems. The NLSE exhibits various
solutions, ranging from simple plane waves to complex localized structures such as bright
solitons, dark solitons, rogue waves and breathers [20–25]. These solutions arise due to the
delicate balance between dispersion, which tends to be associated with wave propagation,
and nonlinearity, which counteracts the spreading by self-focusing or self-defocusing ef-
fects. Understanding the dynamics and properties of solutions to the NLSE is crucial in
advancing our knowledge of nonlinear wave phenomena. The study of the NLSE involves
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various mathematical and computational techniques, including analytical methods, nu-
merical simulations and experimental investigations. Researchers continue to explore the
NLSE and its extensions to gain deeper insights into nonlinear wave propagation and its
applications in diverse fields [26,27].

Some notable contributions include the following. Triki and Biswas (2011) investigated
dark solitons for a generalized NLSE with a parabolic law and dual power nonlinearity,
providing insights into the soliton dynamics governed by these specific nonlinear terms [30].
Zhang and Si (2010) presented new soliton and periodic solutions for the (1 + 2)-dimensional
NLSE with dual power nonlinearity, shedding light on the existence and characteristics of
these solutions [31]. Biswas (2001) examined the perturbation of solitons due to power law
nonlinearity, revealing the effects of nonlinear terms on soliton structures [32]. Bronski et al.
(2001) investigated the cubic NLSE with a periodic potential and its implications for
condensed matter systems in standing waves [33]. Nore et al. (1993) performed a numerical
study of hydrodynamics using the NLSE, highlighting the applicability of this equation in
describing fluid dynamics and turbulence [34]. Eslami and Mirzazadeh (2013) investigated
the topological 1-soliton solutions of the NLSE with dual power nonlinearity in optical
fibers, providing insights into the behavior of soliton-like structures in these systems [35].
The main objective of this investigation is to apply the Laplace residual power series
method (LRPSM) [36] for the analysis of the fractional S-KdV model in the framework of
the Caputo operator. In addition, a comparison between the obtained approximations and
the exact solutions for the integer case is performed. Additionally, we demonstrate that the
obtained approximations are distinguished by high accuracy and are more stable against
the large space-time domain.

The rest of the current work is divided into the following sections. In Section 2, we
briefly describe the basic definitions related to the suggested method. The general imple-
mentation of the suggested technique is described in Section 3. Some numerical applications
are introduced in Section 4. In Section 5, the obtained results are briefly summarized.

2. Basic Definitions

Definition 1. The Caputo fractional derivative of a function µ($, t) of order δ is defined as [37]

CDδ
t µ($, t) = Jm−δ

t µm($, t), m− 1 < δ ≤ m, t > 0. (3)

where m ∈ N and Jδ
t indicates the fractional integral Riemann–Liouville (RL) of µ($, t) of order δ,

which is given by

Jδ
t µ($, t) =

1
Γ(δ)

∫ t

0
(t− ρ)δ−1µ($, ρ)dρ. (4)

Definition 2. The Laplace transform (LT) of µ($, t) is defined by [38]

µ($, s) = Lt[µ($, t)] =
∫ ∞

0
e−stµ($, t)dt, s > δ, (5)

where the inverse of LT is given by

µ($, t) = L−1
t [µ($, s)] =

∫ l+i∞

l−i∞
estµ($, s)ds, l = Re(s) > l0. (6)

Lemma 1. Let u($, t) be a piecewise continuous function and U($, s) = Lt[u($, t)] be its LT with
respect to time.

1. Lt[Jδ
t u($, t)] = U($,s)

sδ , δ > 0.
2. Lt[Dδ

t u($, t)] = sσU($, s)−∑m−1
κ=0 sδ−κ−1uκ($, 0), m− 1 < δ ≤ m.

3. Lt[Dnδ
t u($, t)] = snδU($, s)−∑n−1

κ=0 s(n−κ)δ−1Dκδ
t u($, 0), 0 < δ ≤ 1.

Proof. More details of this proof can be found in refs. [38,39].
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Theorem 1. Let u($, t) be a piecewise continue term on I × [0, ∞) with exponential order $.
Suppose that the fractional order of the function U($, s) = Lt[u($, t)] is defined by [40]

U($, s) =
∞

∑
n=0

fn($)

snδ+1 , 0 < δ ≤ 1, $ ∈ I, s > $. (7)

Then, fn($) = Dnδ
t u($, 0).

3. General Implementation

Consider the following fractional partial DE:

Dδ
t µ($, t) + N[µ($, t)] + R[µ($, t)] = 0, where 0 < δ ≤ 1. (8)

This is subjected to initial condition (IC)

µ($, t) = f0($). (9)

Applying LT to Equation (8) and using Equation (9), we obtain

µ($, s)− f0($, s)
s

+
1
sδ
Lt

[
N[L−1

t [µ($, s)]] + R[µ($, s)]
]
= 0. (10)

Suppose that the result of Equation (10) is defined as

µ($, s) =
∞

∑
n=0

fn($)

snδ+1 , (11)

and the κth-truncated term series reads

µ($, s) =
f0($)

s
+

κ

∑
n=1

fn($)

snδ+1 . (12)

The Laplace residual functions read [41]

LtRes($, s) = µ($, s)− f0($)

s
+

1
sδ
Lt

[
N[L−1

t [µ($, s)]] + R[µ($, s)]
]
. (13)

Moreover, the κth-LRFs read

LtResκ($, s) = µκ($, s)− f0($)

s
+

1
sδ
Lt

[
N[L−1

t [µκ($, s)]] + R[µκ($, s)]
]
. (14)

The LRPSM features are listed below to illustrate the following points:

• LtRes($, s) = 0 and limj→∞ LtResκ($, s) = LtResµ($, s) for each s > 0,
• lims→∞ sLtResµ($, s) = 0⇒ lims→∞ sLtResµ,κ($, s) = 0,
• lims→∞ sκδ+1LtResµ,κ($, s) = lims→∞ sκδ+1LtResu,κ($, s) = 0, 0 < δ ≤ 1, κ =

1, 2, 3, · · · .
The recursive solution for the calculation of the coefficients using fn($) is obtained by

solving the following system of equations [41]:

lim
s→∞

sκδ+1LtResµ,κ(δ, s) = 0, κ = 1, 2, · · · . (15)

Finally, we take the inverse of LT in Equation (11), to obtain the κth analytic solution
of µκ($, t).



Symmetry 2023, 15, 1616 5 of 13

4. Numerical Results
Example

Let us analyze the following fractional nonlinear system of S-KdV models [42]:

Dδ
t u($, t)− ∂$$v($, t)− v($, t)w($, t) = 0, where , 0 < δ ≤ 1

Dδ
t v($, t) + ∂$$u($, t) + u($, t)w($, t) = 0,

Dδ
t w($, t) + 6w($, t)∂$w($, t) + ∂$$$w($, t)− 2u($, t)∂$u($, t)− 2v($, t)∂$v($, t) = 0,

(16)

which are subjected to the following ICs [42]:

u($, 0) = tanh($)cos($),

v($, 0) = tanh($)sin($),

w($, 0) =
7
8
− 2tanh2($).

(17)

Applying LT to Equation (16) yields

sδL[u($, t)]− sδ−1u($, 0)−L[∂$$v($, t)]−L[v($, t)w($, t)] = 0,

sδL[v($, t)]− sδ−1v($, 0) + L[∂$$u($, t)] + L[u($, t)w($, t)] = 0,

sδL[w($, t)]− sδ−1w($, 0) + 6L[w($, t)∂$w($, t)] + L[∂$$$w($, t)]

− 2L[u($, t)∂$u($, t)]− 2L[v($, t)]∂$v($, t)] = 0,

(18)

whereL[u($, t)] = u($, s), L[v($, t)] = v($, s) andL[w($, t)] = w($, s). Using Equation (17)
in Equation (18) and dividing the obtained results by sδ, we have

u($, s)− tanh($)cos($)
s

− 1
sδ

∂$$v($, s)− 1
sδ
L[L−1[v($, s)]L−1[w($, s)]] = 0,

v($, s)− tanh($)sin($)
s

+
1
sδ

∂$$u($, s) +
1
sδ
L[L−1[u($, s)]L−1[w($, s)]] = 0,

w($, s)−
7
8 − 2tanh2($)

s
+

6
sδ
L[L−1[w($, s)]L−1[∂$w($, s)]] +

1
sδ

∂$$$w($, s)

− 2
sδ
L[L−1[u($, s)]L−1[∂$u($, s)]]− 2

sδ
L[L−1[v($, s)]L−1[∂$v($, s)]] = 0.

(19)

The κth-truncated term series read

u($, s) =
f0($, s)

s
+

κ

∑
n=1

fn($, s)
snδ+1 , n = 1, 2, 3, 4 · · ·

v($, s) =
g0($, s)

s
+

κ

∑
n=1

gn($, s)
snδ+1 ,

w($, s) =
h0($, s)

s
+

κ

∑
n=1

hn($, s)
snδ+1 .

(20)

Here, f0($, s) = u($, 0) = tanh($)cos($), g0($, s) = v($, 0) = tanh($)sin($)
and h0($, s) = w($, 0) = 7

8 − 2tanh2($)
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u($, s) =
tanh($)cos($)

s
+

κ

∑
n=1

fn($, s)
snδ+1 ,

v($, s) =
tanh($)sin($)

s
+

κ

∑
n=1

gn($, s)
snδ+1 ,

w($, s) =
7
8 − tanh2($)

s
+

κ

∑
n=1

hn($, s)
snδ+1 ,

κ = 1, 2, 3, 4 · · · .

(21)

The residual Laplace function is given by

LtResu($, s) = u($, s)− tanh($)cos($)
s

− 1
sδ

∂$$v($, s)− 1
sδ
L[L−1[v($, s)]L−1[w($, s)]],

LtResv($, s) = v($, s)− tanh($)sin($)
s

+
1
sδ

∂$$u($, s) +
1
sδ
L[L−1[u($, s)]L−1[w($, s)]],

LtResw($, s) = w($, s)−
7
8 − 2tanh2($)

s
+

6
sδ
L[L−1[w($, s)]L−1[∂$w($, s)]] +

1
sδ

∂$$$w($, s)

− 2
sδ
L[L−1[u($, s)]L−1[∂$u($, s)]]− 2

sδ
L[L−1[v($, s)]L−1[∂$v($, s)]].

(22)

According to the LRPS methodology, the κth-LRFs read

LtResu,κ($, s) = uκ($, s)− tanh($)cos($)
s

− 1
sδ

∂$$vκ($, s)− 1
sδ
L[L−1[vκ($, s)]L−1[wκ($, s)]],

LtResv,κ($, s) = vκ($, s)− tanh($)sin($)
s

+
1
sδ

∂$$uκ($, s) +
1
sδ
L[L−1[uκ($, s)]L−1[wκ($, s)]],

LtResw,κ($, s) = wκ($, s)−
7
8 − 2 tanh2($)

s
+

6
sδ
L[L−1[wκ($, s)]L−1[∂$wκ($, s)]] +

1
sδ

∂$$$wκ($, s)

− 2
sδ
L[L−1[uκ($, s)]L−1[∂$uκ($, s)]]− 2

sδ
L[L−1[vκ($, s)]L−1[∂$vκ($, s)]].

(23)

Now, we can calculate fκ($, s), gκ($, s) and hκ($, s) κ = 1, 2, 3, · · · , by substituting
the κth-truncated series of Equation (21) into the κth residual Laplace term in
Equation (23), and we then multiply the solution by sκδ+1 and solve
recursively the link lims→∞(sκδ+1LtResu,κ($, s)) = 0, lims→∞(sκδ+1LtResv,κ($, s)) = 0, and
lims→∞(sκδ+1LtResw,κ($, s)) = 0 κ = 1, 2, 3, · · · . The first few terms are defined by

f1($, s) = 2 cos($)sech2($)− 17
8

sin($) tanh($),

g1($, s) =
17
8

cos($) tanh($) + 2 sin($)sech2($),

h1($, s) = tanh($)
(
−32sech4($) + sin(2$) tanh($) + 2sech2($)

(
sin2($) + 8 tanh2($)

))
,

f2($, s) = sin($) sin(2$) tanh3($)− 17
4

cos($) tanh3($)− 17
64

cos($) tanh($)−

2 sin($)(9 cosh(2$)− 7)sech6($) +
1
4

sech2($)
(
− 18 sin($) + 8 sin($)

(
sin2($)+

2
)

tanh2($) + 64 sin($) tanh4($)− 49 cos($) tanh($)
)
,

g2($, s) = − 1
64

tanh($)
(
17 sin($) + 16(19 sin($) + 2 sin(3$)) tanh2($)

)
+ 2 cos($)(9 cosh(2$)

− 7)sech6($)− 1
4

sech2($)
(
− 18 cos($) + 49 sin($) tanh($) + 64 cos($) tanh4($)− 2(cos(3$)

− 9 cos($)) tanh2($)
)
,

(24)
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We place the value of fκ($, s), gκ($, s) and hκ($, s) κ = 1, 2, 3, · · · , in Equation (21),
and we obtain

u($, s) =
tanh($)cos($)

s
+

1
sδ+1

(
2 cos($)sech2($)− 17

8
sin($) tanh($)

)
+

1
s2δ+1

(
sin($) sin(2$) tanh3($)− 17

4
cos($) tanh3($)− 17

64
cos($) tanh($)−

2 sin($)(9 cosh(2$)− 7)sech6($) +
1
4

sech2($)
(
− 18 sin($) + 8 sin($)

(
sin2($)

+ 2
)

tanh2($) + 64 sin($) tanh4($)− 49 cos($) tanh($)
))

+ · · · .

v($, s) =
tanh($)sin($)

s
+

1
sδ+1

(17
8

cos($) tanh($) + 2 sin($)sech2($)
)
+

1
s2δ+1

(
− 1

64
tanh($)

(
17 sin($) + 16(19 sin($) + 2 sin(3$)) tanh2($)

)
+

2 cos($)(9 cosh(2$)− 7)sech6($)− 1
4

sech2($)
(
− 18 cos($) + 49 sin($) tanh($)

+ 64 cos($) tanh4($)− 2(cos(3$)

− 9 cos($)) tanh2($)
))

+ · · · ,

w($, s) =
7
8 − 2tanh2($)

s
+

1
sδ+1

(
tanh($)

(
− 32sech4($) + sin(2$) tanh($)+

2sech2($)
(

sin2($) + 8 tanh2($)
)))

+ · · · .

(25)

Applying the inverse LT, we obtain

v($, t) = cos($) tanh($)− 17 cos($) tanh3($)t2δ

4Γ(2δ + 1)
− 17 cos($) tanh($)t2δ

64Γ(2δ + 1)
+

sin($) sin(2$) tanh3($)t2δ

Γ(2δ + 1)
+

14 sin($)sech6($)t2δ

Γ(2δ + 1)
− 9 sin($)sech2($)t2δ

2Γ(2δ + 1)
− 49 cos($) tanh($)sech2($)t2δ

4Γ(2δ + 1)
− 18 sin($) cosh(2$)sech6($)t2δ

Γ(2δ + 1)

+
2 sin3($) tanh2($)sech2($)t2δ

Γ(2δ + 1)
+

16 sin($) tanh4($)sech2($)t2δ

Γ(2δ + 1)
+

4 sin($) tanh2($)sech2($)t2δ

Γ(2δ + 1)

+
2 cos($)sech2($)tδ

Γ(δ + 1)
− 17 sin($) tanh($)tδ

8Γ(δ + 1)
+ · · · ,

v($, t) = sin($) tanh($)− 14 cos($)sech6($)t2δ

Γ(2δ + 1)
+

9 cos($)sech2($)t2δ

2Γ(2δ + 1)
− sin(3$) tanh3($)t2δ

2Γ(2δ + 1)
−

19 sin($) tanh3($)t2δ

4Γ(2δ + 1)
− 17 sin($) tanh($)t2δ

64Γ(2δ + 1)
+

18 cos($) cosh(2$)sech6($)t2δ

Γ(2δ + 1)

− 16 cos($) tanh4($)sech2($)t2δ

Γ(2δ + 1)
+

cos(3$) tanh2($)sech2($)t2δ

2Γ(2δ + 1)
− 9 cos($) tanh2($)sech2($)t2δ

2Γ(2δ + 1)

− 49 sin($) tanh($)sech2($)t2δ

4Γ(2δ + 1)
+

17 cos($) tanh($)tδ

8Γ(δ + 1)
+

2 sin($)sech2($)tδ

Γ(δ + 1)
+ · · · ,

w($, t) = −2 tanh2($) +
sin(2$) tanh2($)tδ

Γ(δ + 1)
− 32 tanh($)sech4($)tδ

Γ(δ + 1)
+

16 tanh3($)sech2($)tδ

Γ(δ + 1)

+
2 sin2($) tanh($)sech2($)tδ

Γ(δ + 1)
+

7
8
+ · · · .

(26)
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The exact solutions are given by

u($, t) = tanh($ + 2t)cos
(

$ +
17t
8

)
,

v($, t) = tanh($ + 2t)sin
(

$ +
17t
8

)
,

w($, t) =
7
8
− 2tanh2($ + 2t).

(27)

Note here that the first two solutions in the above system are periodic solutions,
whereas the third one is a soliton solution. Thus, in our analysis, we use these solutions to
check the effect of the fractional order on the profile of these solutions.

5. Numerical and Graphical Results

The profile of LRPSM solution u($, t) in both three- and two-dimensional form at
different values of fractional order is introduced in Figure 1 by considering −4 ≤ $ ≤ 4,
0 ≤ t ≤ 1, and 0 < δ ≤ 1. The wave profile, including its amplitude and width, is
significantly influenced by the fractional order, as shown in Figure 1d. Moreover, the
profile of LRPSM solution v($, t) in both three- and two-dimensional form at various
values of fractional order with −3 ≤ $ ≤ 3, 0 ≤ t ≤ 1, and 0 < δ ≤ 1 is illustrated in
Figure 2. One can see that the wave profile is shifted to behind the wave propagation with
increasing fractional order. Moreover, the solitary wave solution w($, t) in both three- and
two-dimensional form at different values of fractional order is considered, as illustrated in
Figure 3. It is clear that the solitary wave amplitude decreases while the width increases
with the enhancement in the fractional order, as elucidated in Figure 3d. Moreover, Table 1
illustrates the comparison of both the approximate solution u($, t) using LRPSM, the
modified Laplace decomposition method (MLDM), and the exact solution, as well as the
absolute error between them. The numerical findings demonstrate that the used method
provides more accurate results when compared to other approximative methods. Table 2
introduces a comparison between the LRPSM solution v($, t) and the exact solution, as well
as the absolute error between them. Furthermore, Table 3 illustrates the comparison
between the LRPSM solution w($, t) and the exact solution and their absolute error. We
can conclude that the used method is characterized by high accuracy compared to other
approximate methods, and this reinforces its position in analyzing many complicated
nonlinear evolution equations.

Table 1. Comparison of the u($, t) LRPSM solution and u($, t) exact solution along with absolute
error (AE) using modified Laplace decomposition method (MLDM) and our present method.

$ u($, t)(LRPSM) u($, t)(Exact) (AE)MLDM (AE) Present Method

0 0.002 0.002 3.32134 × 10−7 7.18227967 × 10−9

0.1 0.101118 0.101118 3.27273 × 10−7 4.63407702 × 10−9

0.2 0.195239 0.195239 3.18380 × 10−7 7.56282521 × 10−8

0.3 0.279864 0.279864 3.05178 × 10−7 2.19723957 × 10−7

0.4 0.351214 0.351214 2.87404 × 10−7 3.9217564 × 10−7

0.5 0.406451 0.406451 2.64809 × 10−7 5.13195369 × 10−7

0.6 0.443772 0.443772 2.37161 × 10−7 5.10202766 × 10−7
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Table 2. Comparison of the v($, t) LRPSM solution and v($, t) exact solution along with absolute
error (AE) using modified Laplace decomposition method (MLDM) and our present method.

$ v($, t)(LRPSM) v($, t)(Exact) (AE)MLDM Abs.Present Method

0 4.25 × 10−6 4.24999 × 10−6 8.86383 × 10−7 8.86522 × 10−12

0.1 0.010363 0.010363 1.78092 × 10−7 1.16606 × 10−7

0.2 0.04001 0.040009 2.77216 × 10−7 4.06303 × 10−7

0.3 0.087225 0.087224 3.85756 × 10−7 7.30429 × 10−7

0.4 0.149373 0.149372 5.03436 × 10−7 9.40811 × 10−7

0.5 0.223169 0.223168 6.29958 × 10−7 9.48364 × 10−7

0.6 0.304988 0.304987 7.65000 × 10−7 7.51894 × 10−7

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

�

d

u
(�

,t
) �= 1

�= 0.7

� = 0.5

Figure 1. The profile of LRPSM periodic solution u($, t) in (a–c) three-dimensional and (d) two-
dimensional form, at different values of fractional order.
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Figure 2. The profile of LRPSM periodic solution v($, t) in (a–c) three-dimensional and (d) two-
dimensional form, at different values of fractional order.

Table 3. Comparison of the w($, t) LRPSM solution and w($, t) exact solution along with their
corresponding absolute error (AE).

$ w($, t)(LRPSM) w($, t)(Exact) Abs. Present Method

0.1 0.855102 0.855125 2.3172 × 10−5

0.2 0.797029 0.797071 416755 × 10−5

0.3 0.7052 0.705253 5.21771 × 10−5

0.4 0.586198 0.586252 5.34746 × 10−5

0.5 0.44782 0.447866 4.6502 × 10−5

0.6 0.298091 0.298125 3.36853 × 10−5

0.7 0.14443 0.144448 1.80268 × 10−5
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Figure 3. The profile of LRPSM soliton solution w($, t) in (a–c) three-dimensional and (d) two-
dimensional form, at different values of fractional order.

6. Conclusions

This study focused on the investigation of the fractional-order Schrödinger–KdV (S-
KdV) equation with the Caputo operator using the Laplace residual power series method.
The equation accounts for memory effects and non-local behavior by incorporating the Ca-
puto operator and fractional derivatives, bridging the divide between nonlinear dynamics
and quantum mechanics. In solving fractional differential equations, the Laplace residual
power series method proved to be an effective and precise numerical technique. Various
facets of the fractional S-KdV equation, including the fractional order and initial condi-
tions, were investigated using exhaustive numerical simulations. The findings enhance
our comprehension of the complex interaction between quantum mechanics and nonlinear
dynamics in fractional systems, casting light on wave phenomena and soliton solutions
in these equations. In addition, the proposed method demonstrates its efficacy as a com-
putational instrument for the analysis of complex physical systems involving fractional
calculus and the Caputo operator. This research contributes to the greater comprehension
of fractional differential equations and their applications in various scientific fields.
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