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Abstract: Based on picture fuzzy sets (PFSs), we use a mathematical model to tackle such types of
problems when a person has opinions like yes, no, abstain, and refusal. The spherical fuzzy model is
more flexible and practical than the picture fuzzy model, as it enhances the space of uncertainty. It
broadens the space of vague information evaluated by decision makers since graphs are the pictorial
representation of information. Graphs are a tool to represent a network. To handle some real-world
problems, spherical fuzzy graphs can be used more effectively as compared to picture fuzzy graphs
(PFGs). In this article, we expand the notion of fuzzy Zagreb indices of the fuzzy graph to the
spherical fuzzy Zagreb indices of the spherical fuzzy graph (SFG). The spherical fuzzy Zagreb matrix
of SFG and Zagreb energy of SFG are defined with examples. Additionally, we develop several lower
and upper bounds of the spherical Zagreb energy of SFG. In addition, we present an application of
SFG by computing its Zagreb energy in the decision-making problem of choosing the best location
for business purposes.

Keywords: spherical fuzzy graph; spherical fuzzy Zagreb indices; matrix; graph energy;
decision making

1. Introduction

In 1965, the notion of fuzzy set theory, which is the generalization of classical set theory,
was established by Zadeh [1]. Enormous applications of fuzzy sets are found in telecommu-
nication, control engineering, decision theory, expert systems, logic, management science,
operation research, and others, which are all based on Zadeh’s exceptional idea. One of the
limitations of fuzzy set (FS) is that it deals only with the membership degree (α̌). To over-
come this deficiency, Atanassov [2] in 1983 initiated the concept of the intuitionistic fuzzy
set (IFS), which is the generalization of the fuzzy set (FS) theory. He expanded the notion of
FSs by declaring the degree of truthiness (α̌) besides the degree of falseness (γ̌) with the con-
straint 0 ≤ α̌ + γ̌ ≤ 1. On emphasizing the notion of IFS, Yager presented the Pythagorean
fuzzy set (PyFS), which enlarged the space with the new constraint, 0 ≤ α̌2 + β̌2 ≤ 1. The
situation when a person has an opinion like yes, abstain, no, and refusal can be handled
with the picture fuzzy set (PFS) that was initiated by Cuong [3,4] which is an abstraction of
IFS. It gives grades to the three parameters, named the degree of truthiness α̌ : R −→ [0, 1],
degree of abstinenceβ̌ : R −→ [0, 1], and the degree of falseness γ̌ : R −→ [0, 1] with the
constraint 0 ≤ α̌ + β̌ + γ̌ ≤ 1, where ∇̌ = 1− (α̌ + β̌ + γ̌) is the degree of refusal. Garg
[5] proposed some picture fuzzy aggregation operators. The notion of PFS was extended
by Gundogdu and Kahraman [6] namely as the spherical fuzzy set (SFS). It gives more
space to the degree of truthiness α̌ : R −→ [0, 1], degree of abstinence β̌ : R −→ [0, 1],
and degree of falseness γ̌ : R −→ [0, 1] with the constraint 0 ≤ α̌2 + β̌2 + γ̌2 ≤ 1, where
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∇̌ =
√

1− (α̌2 + β̌2 + γ̌2) is the degree of refusal. Ashraf et al. [7] explored the idea
of SFSs with an application in multi-criteria decision-making (MCDM) problems using
weighted averaging and weighted geometric aggregation operators. Further, Ashraf et al.
[8] presented some spherical fuzzy Dombi aggregation operators and their applications
in the MCDM problem. Mahmood et al. [9] presented the concept of the spherical fuzzy
set and T-spherical fuzzy set as the generalization of the fuzzy set, intuitionistic fuzzy set,
and Pythagorean fuzzy set. Some operations of SFSs and T-SFSs were introduced. They
utilized these in MCDM of medical diagnostics problems. The q-rung orthopair fuzzy sets
(q-ROFs) are the generalized form of IFS and PyFS and provide a more flexible way to
handle uncertain information [10,11]. Then, Li et al. [12] introduced the idea of the q-Rung
picture fuzzy set (q-RPFS), which is the generalization of SFSs. It provides huge space to
the conditions of PFS as well as SFS with 0 ≤ α̌q + β̌q + γ̌q ≤ 1, q ≥ 1. By this, we can
obtain more accurate outcomes as we increase the q-rungs.

In mathematics, graphs are a way to formally represent a network, which is basically
just a collection of objects that are all interconnected. The notion of fuzzy graphs (FGs) based
on fuzzy relation is presented by Kaufmann [13] and by some other experts who contributed
to fuzzy graphs [14–25]. In [26], a MCDM problem is tackled with the help of a certain
form of Pythagorean fuzzy graphs. Akram et al. [27] presented an idea of spherical fuzzy
graph (SFG) as well as defining some operations on SFGs, namely symmetric difference
and rejection. Akram [28] also presented MCDM models involving SFG. Then, Guleria and
Bajaj [29] introduced a generalized version of SFGs using T-spherical fuzzy sets.

Topological indices are arithmetical quantities for structural molecular graphs. In 1972,
Gutman [30] introduced the first Zagreb index. In 1978, Gutman [31] introduced the idea of
the energy of a graph as the sum of the absolute values of the eigenvalues of the adjacency
matrix of the graph. Gutman and Zhou [32] presented the term Laplacian energy of a graph
as the sum of the absolute values of the differences of the average vertex degree of graph
and the Laplacian eigenvalues of the graph.

The research study of topological fuzzy indices (TFIs) seems to be advantageous for
multi-criteria decision-making (MCDM) problems and many connected fuzzy networks.
Kalathian et al. [33] defined many TFIs for FGs, including the Gutman index, hyper
Wiener index, Schultz index, Zagreb indices, Randic index, modified Wiener index, and
harmonic index, and they established bounds for few of the indices as well. Islam and
Pal [34] investigated the first Zagreb index for various FGs, like path, star, cycle, and fuzzy
subgraphs, as well as proving several results. Moreover, a MCDM technique was elaborated
that uses the first Zegrab index of a FG for evaluating the best employee in a company.
The fuzzy Zagreb index is a degree-based index. Ahmad and Nasir [35] presented Randic
and harmonic indices for FGs and derived some upper and lower bounds for different
types of products, such as the cross product, Cartesian product and lexicographic product.
These fuzzy indices were then utilized to handle a cybercrime problem as well. The Wiener
index (based on geodesic distances between the vertices) for directed rough fuzzy graph
was defined by Ahmad and Iqra [36], with its application to human trafficking. Some TIs
in FGs, which are based on the degree and distance between the vertices, were explored
in [37] and used in a multi-criteria decision-making problem.

Anjali and Mathew [38] elaborated the energy for a FG as the sum of the modulus
values of the eigenvalues corresponding to the adjacency matrix of FG. The Laplacian
energy of FG has defined in [39]. Kale and Minirani [40] presented the fuzzy Zagreb matrix
and derived some bounds for fuzzy Zagreb energy. Praba et al.[41] extended the idea of
energy of FG to the energy of an IFG and derived several lower and upper bounds. Akram
and Naz [42] presented the energy of an IFG to Pythagorean fuzzy graphs (PyFGs) and
explored the concepts of energy and Laplacian energy of PyFGs, as well as the energy and
Laplacian energy of Pythagorean fuzzy digraphs. Akram et al. [43] introduced the notion
of energy of double dominating bipolar fuzzy graphs. Shi et al. [44] extended the notion of
the energy of the Pythagorean fuzzy graph to the energy of picture fuzzy graphs (PFGs)
and presented the types of energy, including Laplacian energy as well as skew-Laplacian
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energy in both PFGs and picture fuzzy digraphs. They ranked the suitable locations for
business purposes by making use of the picture fuzzy graph and its related energies. Yahya
and Mohamed [45] explored the energy of SFG and extracted some bounds of the energy
of SFG.

The following points influenced us to write this article:

• Due to the enormous applications of TIs, including Zagreb indices for FGs in distinct
decision-making problems, it also seems advantageous to expand the notion of Zagreb
indices in SFG.

• There are numerous applications of the spectrum of fuzzy graph theory in solving
linear systems, computer science, chemistry, and others.

• The spectrum of the graph plays a crucial role in combinatorial optimization problems
in mathematics.

• Moreover, the Zagreb energy of SFG has not yet been discussed and studied in the
literature; therefore, we expanded the notion of the energy of SFG to the Zagreb energy
of SFG.

The subscription of our proposed research work is given as follows:

• The aim of this research study is to establish the notion of the first and second Zagreb
indices of spherical fuzzy graphs.

• We introduce the concept of spherical fuzzy Zagreb matrices of SFGs and correspond-
ing spectra.

• We define the Zagreb energy of SFG and establish the lower and upper bounds for the
Zagreb energy of SFGs and some of their results.

• Finally, we utilize the idea of Zagreb energy of SFG in a MCDM problem. In particular,
we determine the best place to start a certain business.

This paper is organized as follows.
In Section 2, some definitions are recalled for better understanding. In Section 3, we

define fuzzy Zagreb indices of SFG. In Section 4, we discuss the lower and upper bounds
of Zagreb energy and some of the main results as well. In addition, in Section 5, we present
an application of SFG by computing Zagreb energy in a multi-attribute decision-making
problem. Finally, we conclude our proposed work.

Some of the symbols used in this article are mentioned in Table 1.

Table 1. List of symbols.

Symbols Description Symbols Description

α̌R(v)
truthiness

membership of vi
st max{α̌Y (vi)}

β̌R(v)
abstinence

membership of vi
sa max{β̌Y (vi)}

γ̌R(v)
falseness membership

of vi
s f max{γ̌Y (vi)}

gt min{α̌Y (vi)} ga min{β̌Y (vi)}
g f max{γ̌Y (vi)} ∆t max{dt(vi)}
∆a max{da(vi)} ∆ f max{d f (vi)}
δt min{dt(vi)} δa min{da(vi)}

δ f min{d f (vi)} ZE Zagreb energy of
matrix

SZM spherical fuzzy
Zagreb matrix SFM1(G)

Zagreb first index of
SFG

SFM2(G)
Zagreb second index

of SFG SZE spherical fuzzy
Zagreb energy

e fuzzy size e∗ crisp size
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2. Preliminaries

Definition 1 ([27]). Let V̌ be a nonempty underlying set of vertices. A spherical fuzzy set R over
V̌ is defined as

R = {(v, α̌R(v), β̌R(v), γ̌R(v)) |v ∈ V̌},

where α̌R(v), β̌R(v), and γ̌R(v) denote the degree of truthiness of v in R, degree of abstinence of
v in R, and degree of falseness of v in R, respectively. Moreover, α̌(v), β̌(v), γ̌(v) ∈ [0, 1], such

that 0≤ α̌2
R(v) +β̌2

R(v) +γ̌2
R(v) ≤ 1. Further, ∇̌R(v) =

√
1− (α̌2

R(v) + β̌2
R(v) + γ̌2

R(v)) for all

v ∈ V̌ is called the degree of refusal of membership of v in R.

Definition 2 ([45]). Let V be an underlying set of vertices. A spherical fuzzy graph G = (R, S)
is a pair of mappings such that R : V −→ [0, 1] and S : V ×V −→ [0, 1], where R is a spherical
fuzzy set with constraint 0 ≤ α̌2 + β̌2 + γ̌2 ≤ 1 for all v ∈ V and S is spherical fuzzy relation on
V ×V, such that α̌S(v1, v2) ≤ min{α̌R(v1), α̌R(v2)}, β̌S(v1, v2) ≤ min{β̌R(v1), β̌R(v2)} , and
γ̌S(v1, v2) ≤ max{γ̌R(v1), γ̌R(v2)}, where α̌, β̌, and γ̌ denote the degree of truthiness, degree of
abstinence, and degree of falseness, respectively, satisfying the following condition:

0 ≤ α̌2
S(v1, v2) + β̌2

S(v1, v2) + γ̌2
S(v1, v2) ≤ 1

for all (v1, v2) ∈ V̌ × V̌.

Example 1. The graph L∗ = (V, E) is defined on an underlying set of vertices V = {v́1, v́2, v́3, v́4}
and E = {v́1v́2, v́1v́3, v́3v́4} ⊆ V × V. Consider the graph C = (Y ,Z), where Y is a spherical
fuzzy subset of V and Z is a spherical fuzzy subset of E defined as in Tables 2 and 3, respectively.
The graph C = (Y ,Z) is shown in Figure 1.

Table 2. Table for Y .

Y v́1 v́2 v́3 v́4

α̌Y 0.2 0.3 0.4 0.4
β̌Y 0.3 0.5 0.8 0.2
γ̌Y 0.4 0.7 0.3 0.6

Table 3. Table for Z .

Z v́1v́2 v́1v́3 v́3v́4

α̌Z 0.1 0.2 0.2
β̌Z 0.2 0.3 0.1
γ̌Z 0.6 0.4 0.5

  

  

(0.1,0.2,0.6)

(0.2,0.3,0.4)

(0.2,0.1,0.5)

v́2(0.3,0.5,0.7)v́1(0.2,0.3,0.4)

v́3(0.4,0.8,0.3)v́4(0.4,0.2,0.6)

Figure 1. A SFG C.
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Definition 3 ([27]). Consider a SFG G = (R, S) defined on G∗ = (V̌, E). The degree of a vertex
v of G (dG(v) = (dα̌(v), dβ̌(v), dγ̌(v))) is expressed as

dG(v) =
(

∑
v1 6=v2

α̌S(v1, v2), ∑
v1 6=v2

β̌S(v1, v2), ∑
v1 6=v2

γ̌S(v1, v2)

)

for all (v1, v2) ∈ V̌ × V̌.

Definition 4. Using OWA operator weights for preference aggregation, let wj be the relative
importance weight attached to the jth ranking place and vij be the vote candidate i receives in the
j-th ranking place. The total score of each candidate is defined as [36], which is a linear function of
the relative importance weights. Although the weights are not required to be summed to one, we
assume them to be normalized in this paper. That is, once the weights are determined, candidates
can be ranked in terms of their total.

3. Spherical Fuzzy Zagreb Indices

Several topological indices are defined in a crisp graph, but in real life, many issues
cannot be tackled by these indices. So, there is a need to define these indices for the fuzzy
graph. One of the most famous and useful indices is the Zagreb index, which can be used
in several fields of mathematics and chemistry. It is a degree-based topological index. The
strength of vertices plays a vital role in fuzzy graph theory. Fuzzy Zagreb indices can be
used to measure the connectivity of edges. These can be used to evaluate how much the
fuzzy graph is strengthened. In spherical fuzzy Zagreb indices, we involve the membership
values of vertices as well as the degree of vertices in terms of truthiness, abstinence, and
falseness, which help to encounter the connectivity of neighborhoods of the vertices.

Definition 5. Let G = (R, S) be a spherical fuzzy graph. Then, the first Zagreb index denoted as
(SFM1(G) = (SFM1(G))t, (SFM1(G))a, (SFM1(G)) f ) of SFG is defined by

SFM1(G) = ∑
vivj∈E(G) i 6=j

[α̌(vi)dα̌(vi) + α̌(vj)dα̌(vj), β̌(vi)dβ̌(vi) + β̌(vj)dβ̌(vj),

γ̌(vi)dγ̌(vi) + γ̌(vj)dγ̌(vj)],
(1)

Here , α̌(vi), β̌(vi), γ̌(vi), dα̌(vi), dβ̌(vi), and dγ̌(vi) are defined in Table 1.

Definition 6. Let G = (R, S) be a spherical fuzzy graph. Then the second Zagreb index de-
noted as (SFM2(G) = (SFM2(G))t, (SFM2(G))a, (SFM2(G)) f ) of the spherical fuzzy graph is
defined as

SFM2(G) = ∑
vivj∈E(G)i 6=j

[α̌(vi)dα̌(vi)α̌(vj)dα̌(vj), β̌(vi)dβ̌(vi)

β̌(vj)dβ̌(vj), γ̌(vi)dγ̌(vi)γ̌(vj)dγ̌(vj)],
(2)

Here, α̌(vi), β̌(vi), γ̌(vi), dα̌(vi), dβ̌(vi), and dγ̌(vi) are defined in Table 1.

Remark 1. From Definitions 5 and 6, it is noted that (SFM1(G))t ≤ (SFM2(G))t,
SFM1(G))a ≤ (SFM2(G))a and SFM1(G)) f ≤ (SFM2(G)) f .

Example 2. Consider the spherical fuzzy graph J = (D, F) as shown in Figure 2.
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v1(0.2,0.3,0.1) v2(0.5,0.4,0.3)

v3(0.3,0.2,0.6)v4(0.4,0.5,0.2)

(0.1,0.2,0.3)

(0
.2

,0
.1

,0
.2

) (0.1,0.2,0.4)

Figure 2. A SFG J.

By using (1), the first Zagreb index of SFG J is calculated as

SFM1(G) = ∑
vivj∈E(G) i 6=j

[α̌(vi)dα̌(vi) + α̌(vj)dα̌(vj), β̌(vi)dβ̌(vi) + β̌(vj)

dβ̌(vj), γ̌(vi)dγ̌(vi) + γ̌(vj)dγ̌(vj)].

SFM1(G) =[α̌(v1)dα̌(v1) + α̌(v2)dα̌(v2), β̌(v1)dβ̌(v1) + β̌(v2)dβ̌(v2), γ̌(v1)

dγ̌(v1) + γ̌(v2)dγ̌(v2)] + [α̌(v1)dα̌(v1) + α̌(v3)dα̌(v3), β̌(v1)

dβ̌(v1) + β̌(v3)dβ̌(v3), γ̌(v1)dγ̌(v1) + γ̌(v3)dγ̌(v3)] + [α̌(v1)

dα̌(v1) + α̌(v4)dα̌(v4), β̌(v1)dβ̌(v1) + β̌(v4)dβ̌(v4), γ̌(v1)dγ̌(v1)

+ γ̌(v4)dγ̌(v4)].

=[(0.2)(0.4) + (0.5)(0.1), (0.3)(0.5) + (0.4)(0.2), (0.1)(0.9)+

(0.3)(0.3)] + [(0.2)(0.4) + (0.3)(0.1), (0.3)(0.5) + (0.2)(0.2),

(0.1)(0.9) + (0.6)(0.4)] + [(0.2)(0.4) + (0.4)(0.2), (0.3)(0.5)+

(0.5)(0.1), (0.1)(0.9) + (0.2)(0.2)].

=(0.4, 0.62, 0.64).

Now, by using (2), the second Zagreb index of SFG J is computed as

SFM2(G) = ∑
vivj∈E(G) i 6=j

[α̌(vi)dα̌(vi) · α̌(vj)dα̌(vj), β̌(vi)dβ̌(vi) · β̌(vj)dβ̌(vj),

γ̌(vi)dγ̌(vi) · γ̌(vj)dγ̌(vj)].

to remove numbering (before each equation)

SFM2(G) =[α̌(v1)dα̌(v1) · α̌(v2)dα̌(v2), β̌(v1)dβ̌(v1) · β̌(v2)dβ̌(v2), γ̌(v1)dγ̌(v1)

· γ̌(v2)dγ̌(v2)] · [α̌(v1)dα̌(v1) · α̌(v3)dα̌(v3), β(v1)dβ(v1) · β(v3)dβ(v3),

γ̌(v1)dγ̌(v1) · γ̌(v3)dγ̌(v3)] · [α̌(v1)dα̌(v1) · α̌(v4)dα̌(v4), β̌(v1)

dβ̌(v1) · β̌(v4)dβ̌(v4), γ̌(v1)dγ̌(v1) · γ̌(v4)dγ̌(v4)].

=[(0.2)(0.4) · (0.5)(0.1), (0.3)(0.5) · (0.4)(0.2), (0.1)(0.9) · (0.3)(0.3)]+

[(0.2)(0.4) · (0.3)(0.1), (0.3)(0.5) · (0.2)(0.2), (0.1)(0.9) · (0.6)(0.4)]+

[(0.2)(0.4) · (0.4)(0.2), (0.3)(0.5) · (0.5)(0.1), (0.1)(0.9) · (0.2)(0.2)].

=(0.0128, 0.0255, 0.0333).
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Definition 7. Consider a SFG G = (R, S) and V̌ = {v1, v2, v3, . . . , vn}. Then the spherical
fuzzy Zagreb matrix (SZM) is defined as

[SZM]ij = ([ZMθ1]ij, [ZMθ2]ij, [ZMθ3]ij),

where

[ZMθ1]ij =





α̌(vi)dα̌(vi) + α̌(vj)dα̌(vj), vivj ∈ V̌;
0, vivj /∈ V̌;
0, vi = vj.

[ZMθ2]ij =





β̌(vi)dβ̌(vi) + β̌(vj)dβ̌(vj), vivj ∈ V̌;
0, vivj /∈ V̌;
0, vi = vj.

and,

[ZMθ3]ij =





γ̌(vi)dγ̌(vi) + γ̌(vj)dγ̌(vj), vivj ∈ V̌;
0, vivj /∈ V̌;
0, vi = vj.

Definition 8. The spectrum of SZM of SFG is expressed as (ω(1), ω(2), ω(3)), where ω(1), ω(2),
and ω(3) are the sets of eigenvalues of ZMθ1, ZMθ2, and ZMθ3, respectively.

Definition 9. The spherical fuzzy Zagreb energy (SZE) of SFG is defined as

SZE(G) =

(
ZE(ZMθ1), ZE(ZMθ2), ZE(ZMθ3)

)
.

=

( n

∑
i=1
|ξi|,

n

∑
i=1
|ηi|,

n

∑
i=1
|ζi|
)

, (3)

where ξi, ηi, and ζi are the eigenvalues of ZMθ1, ZMθ2, and ZMθ3, respectively. Further, ZE
denotes the fuzzy Zagreb energy.

Example 3. Consider the SFG W=(P, Q) as shown in Figure 3.

  

  

v1(0.2,0.3,0.4) v2(0.3,0.5,0.2)

v3(0.4,0.2,0.7)
v4(0.6,0.4,0.5)

(0.1,0.2,0.3)

(0
.2
,0
.3
,0
.4
)

(0
.1

,0
.2

,0
.5

)

(0.3,0.1,0.6)

Figure 3. Spherical fuzzy graph W=(P, Q).

The spherical fuzzy Zagreb matrix is obtained according to the definition mentioned as above:

SZM =




(0, 0, 0) (0.13, 0.37, 0.46) (0, 0, 0) (0.4, 0.36, 1.07)
(0.13, 0.37, 0.46) (0, 0, 0) (0, 0, 0) (0.45, 0.49, 0.89)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0.48, 0.26, 1.17)
(0.4, 0.36, 1.07) (0.45, 0.49, 0.89) (0.48, 0.26, 1.17) (0, 0, 0)


.



Symmetry 2023, 15, 1536 8 of 24

The set of eigenvalues of ZMθ1, ZMθ2, and ZMθ3 is given as

ω(1) = (−0.7340,−0.1296, 0.0503, 0.8133),

ω(2) = (−0.5566,−0.3461, 0.0568, 0.8459),

and,
ω(3) = (−1.7040,−0.4565, 0.1889, 1.9716),

respectively. Also, by using Definition 8, we compute that

Spectrum of ZMθ1 = {−0.7340,−0.1296, 0.0503, 0.8133},
Spectrum of ZMθ2 = {−0.5566,−0.3461, 0.0568, 0.8459},

and, Spectrum of ZMθ3 = {−1.7040,−0.4565, 0.1889, 1.9716}.

Now, by using (3), the spherical fuzzy Zagreb energy of SFG is calculated as

SZE(G) =

( n

∑
i=1
|ξi|,

n

∑
i=1
|ηi|,

n

∑
i=1
|ζi|
)

.

By putting the values, we obtain

SZE(G) = (1.7272, 1.8054, 4.321).

4. Main Results

In this section, we present some upper and lower bounds related to the maximum
eigenvalue and spherical fuzzy energy of SFG. The obtained bounds are then illustrated
with the help of examples to show the validity of the results.

Theorem 1. Let G = (R, S) with order n and size m be a spherical fuzzy undirected and connected
graph defined on G∗ = (V̌, Ě). Then,

2gtδte∗ ≤ SFM1(G) ≤ 2st∆te∗,

2gaδae∗ ≤ SFM1(G) ≤ 2sa∆ae∗,

2g f δ f e∗ ≤ SFM1(G) ≤ 2s f ∆ f e∗,

where these symbols st, sa, s f , gt, ga, g f , ∆t, ∆a ∆ f , δa, δ f and e∗ are described in Table 1. In
particular, the equalities in (5) hold for SFG such that α̌Y , β̌Y and γ̌Y are constant functions, and
each vertex has the same spherical fuzzy degree.

Proof.

∑
vivj∈Ě(G)

(α̌Y (vi)dt(vi) + α̌Y (vj)dt(vj) ≤ ∑
vivj∈Ě(G)

[stdt(vi) + stdt(vj)]

≤ st ∑
vivj∈Ě(G)

[dt(vi) + dt(vj)]

≤ st ∑
vivj∈Ě(G)

2∆t

≤ 2st∆t ∑
vivj∈Ě(G)

1

≤ 2st∆te∗.

It implies that
(SFM1(G))t ≤ 2st∆te∗.
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Similarly, we can prove other bounds.

Theorem 2. Let G = (R, S) with order n and size m be a spherical fuzzy undirected, and connected
graph defined on G∗ = (V̌, Ě), and let SZM = (ZMθ1, ZMθ2, ZMθ3) be its spherical fuzzy Zagreb
matrix. If ξ1 ≥ ξ2 ≥ · · · ≥ ξn, η1 ≥ η2 ≥ · · · ≥ ηn, and ζ1 ≥ ζ2 ≥ · · · ≥ ζn are the eigenvalues
of ZMθ1, ZMθ2, and ZMθ3, respectively. Then

8e∗(δtgt)
2 ≤

n

∑
i=1

ξ2
i ≤ 8e∗(∆tst)

2,

8e∗(δaga)
2 ≤

n

∑
i=1

η2
i ≤ 8e∗(∆asa)

2,

and

8e∗(δ f g f )
2 ≤

n

∑
i=1

ζ2
i ≤ 8e∗(∆ f s f )

2.

where st = max{α̌Y (vi)}, sa = max{β̌Y (vi)}, and s f = max{γ̌Y (vi)}. gt = min{α̌Y (vi)},
ga = min{β̌Y (vi)}, g f = min{γ̌Y (vi)}. Further, ∆t = max{dt(vi)}, ∆a = max{da(vi)}
∆ f = max{d f (vi)}, δt = min{dt(vi)}, δa = min{da(vi)}, δ f = min{d f (vi)} and e∗ denotes
the number of edges in SFG. In particular, the equalities in (5) hold for SFG such that α̌Y , β̌Y and
γ̌Y are constant functions, and each vertex has the same spherical fuzzy degree.

Proof. By the trace properties of a matrix, we have

tr(ZMθ1)
2 =

n

∑
i=1

ξ2
i ,

where tr(ZMθ1)
2 =(0 + (α̌Y (v1)dt(v1) + α̌Y (v2)dt(v2))

2 + · · ·+ (α̌Y (v1)

dt(v1) + α̌Y (vn)dt(vn))
2) + ((α̌Y (v2)dt(v2) + α̌Y (v1)

dt(v1))
2 + · · ·+ (α̌Y (v2)dt(v2) + α̌Y (vn)dt(vn))

2)

+ · · ·+ (0 + (α̌Y (vn)dt(vn) + α̌Y (v1)dt(v1))
2

+ (α̌Y (vn)dt(vn) + α̌Y (v2)dt(v2))
2 + · · ·+ 0).

=2 ∑
vivj∈Ě(G)

(α̌Y (vi)dt(vi) + α̌Y (vj)dt(vj))
2.

Hence, we have

n

∑
i=1

ξ2
i = 2 ∑

vivj∈Ě(G)

(α̌Y (vi)dt(vi) + α̌Y (vj)dt(vj))
2. (4)

Let st = max{α̌Y (vi)} and ∆t = max{dt(vi)}. Now consider,
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∑
vivj∈Ě(G)

(α̌Y (vi)dt(vi) + α̌Y (vj)dt(vj))
2 ≤ ∑

vivj∈Ě(G)

[stdt(vi) + stdt(vj)]
2

≤ s2
t ∑

vivj∈Ě(G)

[dt(vi) + dt(vj)]
2

≤ s2
t ∑

vivj∈Ě(G)

(2∆t)
2

≤ 4s2
t ∆2

t ∑
vivj∈Ě(G)

1

≤ 4s2
t ∆2

t e∗

≤ (2∆st)
2e∗. (5)

From (4) and (5), we have

n

∑
i=1

ξ2
i = 2 ∑

vivj∈Ě(G)

(α̌Y (vi)dt(vi) + α̌Y (vj)dt(vj))
2 ≤ 8(∆tst)

2e∗.

Hence,
n

∑
i=1

ξ2
i ≤ 8e∗(∆tst)

2. (6)

Similarly, we have
n

∑
i=1

η2
i ≤ 8e∗(∆asa)

2,

and
n

∑
i=1

ζ2
i ≤ 8e∗(∆ f s f )

2.

For the lower bound, let δt = min{dt(vi)}, gt = min{α̌Y (vi)}. Now using the same
arguments as those used to prove (5), we have

∑
vivj∈Ě(G)

(α̌Y (vi)dt(vi) + α̌Y (vj)dt(vj))
2 ≥ ∑

vivj∈Ě(G)

[gtdt(vi) + gtdt(vj)]
2.

≥ 4(δtgt)
2e∗.

Hence,
n

∑
i=1
|ξi|2 ≥ 8e∗(δtgt)

2. (7)

Similarly,
n

∑
i=1
|ηi|2 ≥ 8e∗(δaga)

2.

n

∑
i=1
|ζi|2 ≥ 8e∗(δ f g f )

2.

Theorem 3. Consider a SFG G=(R, S) having n number of vertices and

SZM(G) =

(
ZMθ1, ZMθ2, ZMθ3

)
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as the corresponding SZM of G. Then,
√

8e∗(δtgt)2 + n(n− 1)|det(ZMθ1)|
2
n ≤ ZE(ZMθ1) ≤ 2

√
2ne∗(st∆t).

√
8e∗(δaga)2 + n(n− 1)|det(ZMθ2)|

2
n ≤ ZE(ZMθ2) ≤ 2

√
2ne∗(sa∆a).

and √
8e∗(δ f g f )2 + n(n− 1)|det(ZMθ3)|

2
n ≤ ZE(ZMθ3) ≤ 2

√
2ne∗(s f ∆ f ).

Proof. By considering two sequences (1, 1, 1, ..., 1) and (|ξ1|, |ξ2|, |ξ3|, ..., |ξn|) and applying
the Cauchy–Schwarz inequality, we have

n

∑
i=1
|ξi| ≤

√
n

√
n

∑
i=1
|ξi|2 (8)

By using (6) from Theorem 2,

n

∑
i=1
|ξi|2 ≤ 8e∗(∆tst)

2

Equation (8) implies

n

∑
i=1
|ξi| ≤

√
n
√

8e∗(∆tst)2

n

∑
i=1
|ξi| ≤ 2

√
2ne∗(st∆t)

Now, by using (3), it follows that

ZE(ZMθ1) ≤ 2
√

2ne∗(st∆t).

Similarly, we have

ZE(ZMθ2) ≤ 2
√

2ne∗(sa∆a),

ZE(ZMθ3) ≤ 2
√

2ne∗(s f ∆ f ).

Now, for the lower bound, consider

(ZE(ZMθ1))
2 = (

n

∑
i=1
|ξi|)2.

=
n

∑
i=1
|ξi|2 + 2 ∑

1≤i<j≤n
|ξiξ j|.

=
n

∑
i=1
|ξi|2 +

2n(n− 1)
2

AM{|ξiξ j|},

where AM represents the arithmetic mean of the terms {|ξiξ j|}. As we know that the
arithmetic mean (AM) of the terms is always greater than the geometric mean (GM) of
these terms {|ξiξ j|} i.e., AM {|ξiξ j|} ≥ GM{|ξiξ j|}, 1 ≤ i < j ≤ n; therefore, it follows that

ZE(ZMθ1) ≥
√

n

∑
i=1
|ξi|2 + n(n− 1)GM{|ξiξ j|}.
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Now from Theorem 2, we have

ZE(ZMθ1) ≥
√

8e∗(δtgt)2 + n(n− 1)GM{|ξiξ j|}. (9)

Also,

GM{|ξiξ j|} =

(
∏

1≤i<j≤n
|ξiξ j|

) 2
n(n−1)

.

=

( n

∏
i=1
|ξi|n−1

) 2
n(n−1)

.

=

( n

∏
i=1
|ξi|
) 2

n

.

=

∣∣∣∣det(ZMθ1)

∣∣∣∣
2
n

. (10)

Therefore, by substituting (10) in (9), we obtain

ZE(ZMθ1) ≥
√

8e∗(δtgt)2 + n(n− 1)|det(ZMθ1)|
2
n .

Thus,
√

8e∗(δtgt)2 + n(n− 1)|det(ZMθ1)|
2
n

≤ ZE(ZMθ1) ≤ 2
√

2ne∗(st∆t).

Similarly, we have
√

8e∗(δaga)2 + n(n− 1)|det(ZMθ2)|
2
n

≤ ZE(ZMθ2) ≤ 2
√

2ne∗(sa∆a).

and
√

8e∗(δ f g f )2 + n(n− 1)|det(ZMθ3)|
2
n

≤ ZE(ZMθ3) ≤ 2
√

2ne∗(s f ∆ f ).

Example 4. Consider the SFG W=(P, Q) as shown in Figure 3. The value of ZE from Example 3 is
given as ZE(ZMθ1) = ∑n

i=1 |ξi| = 1.7272, ZE(ZMθ2) = ∑n
i=1 |ηi| = 1.8054, and

ZE(ZMθ3) = ∑n
i=1 |ζi| = 4.321. Now from Theorem 3, the lower bound for

ZE(ZMθ1) =

√
8e∗(δtgt)2 + n(n− 1)|det(ZMθ1)|

2
n , and the upper bound for

ZE(ZMθ1) = 2
√

2ne∗(∆tst). Here, n = 4, e∗ = 4, δt = 0.2, gt = 0.2, det(ZMθ1) = 0.0039,
∆t = 0.6, and st = 0.6. Thus, we obtain

Lower bound for ZE(ZMθ1) =

√
8e∗(δtgt)2 + n(n− 1)|det(ZMθ1)|

2
n

=

√
8 ∗ 4(0.2 ∗ 0.2)2 + 4(3)(0.0039)

2
4 = 0.8947624.

Upper bound for ZE(ZMθ1) = 2
√

2ne∗(∆tst)

= 2
√

2 ∗ 4 ∗ 4(0.6 ∗ 0.6) = 4.07293506.
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Thus,
0.8947624 < ZE(ZMθ1) = 1.7272 < 4.07293506.

Similarly, we compute that

1.08168299 < ZE(ZMθ2) = 1.8054 < 3.3941125,

and
2.6305235 < ZE(ZMθ3) = 4.321 < 11.87939392.

This shows that the values of spherical Zagreb fuzzy energies lie within the bounds given in
Theorem 3.

Remark 2. In particular, if we take a SFG such that the membership values of the vertices are
constant, the spherical fuzzy degree of each vertex is also the same. Then, the bounds given in
Theorem 3 seem to be sharp.

Remark 2 can be explained with the following example:

Example 5. Let D be a SFG as depicted in Figure 4. Since, ZE(ZMθ1) = ∑n
i=1 |ξi| = 0.3200,

ZE(ZMθ2) = ∑n
i=1 |ηi| = 0.9600, and ZE(ZMθ3) = ∑n

i=1 |ζi| = 3.200. Now from Theorem 3,

Lower bound for ZE(ZMθ1) =

√
8e∗(δtgt)2 + n(n− 1)|det(ZMθ1)|

2
n , Upper bound for ZE(ZMθ1)

= 2
√

2ne∗(∆tst). Here, n = 4, e∗ = 3, δt = 0.2, gt = 0.2, det(ZMθ1) = 0.0010, ∆t = 0.2, and
st = 0.2. Thus, we obtain

Lower bound for ZE(ZMθ1) =

√
8e∗(δtgt)2 + n(n− 1)|det(ZMθ1)|

2
n

√
8 ∗ 3(0.2 ∗ 0.2)2 + 3(2)(0.0010)

2
3 = 0.3181.

Upper bound for ZE(ZMθ1) = 2
√

2ne∗(∆tst)

2
√

2 ∗ 3 ∗ 3(0.2 ∗ 0.2) = 0.33941.

Thus,
0.3181 < ZE(ZMθ1) = 0.3200 < 0.33941.

Similarly, we compute that

0.9459 < ZE(ZMθ2) = 0.9600 < 1.0182,

and
3.1519 < ZE(ZMθ3) = 3.200 < 3.3941.

b

b

b

v1=(0.2,0.3,0.5) (0.1,0.2,0.4) v2=(0.2,0.3,0.5)

(0
.1

,0
.2

,0
.4

)

v3=(0.2,0.3,0.5)

(0
.1

,0
.2

,0
.4

)

Figure 4. The SFG D.
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Lemma 1. If G = (R, S) is a SFG with SZM(G) = (ZMθ1, ZMθ2, ZMθ3) is its corresponding
SZM such that ξ1 is the maximum eigenvalue of ZMθ1, η1 is the maximum eigenvalue of ZMθ2,
and ζ1 is the maximum eigenvalue of ZMθ3, then

ξ1 ≤ 2st∆t∆∗, η1 ≤ 2sa∆a∆∗, ζ1 ≤ 2s f ∆ f ∆∗,

where ∆∗ is a maximum crisp degree.

Proof. Given that ξ1 is the maximum eigenvalue, let T be the eigenvector that corresponds
to ξ1. Then, vividly,

ξ1T = ZMθ1T.

If the vector T has maximum entry t0 ≥ 0 corresponding to the vertex v0 and [ZMθ1]
has corresponding row [ZMθ1]v0 , then we obtain

ξ1t0 = [ZMθ1]v0 v0 ≤
(

∑
v0vj∈Ě(G)

α̌Y (v0)dt(v0) + α̌Y (v0)dt(vj)

)
t0

By using the same arguments, as we prove (2) in Theorem 2, we have

ξ1t0 ≤ 2st∆t∆∗t0.

Hence,
ξ1 ≤ 2st∆t∆∗. (11)

Similarly, for ZMθ2 and ZMθ3, we have

η1 ≤ 2sa∆a∆∗,

ζ1 ≤ 2s f ∆ f ∆∗.

Theorem 4. For a SFG G = (R, S) with n vertices and

SZM(G) = (ZMθ1, ZMθ2, ZMθ3),

ZE(ZMθ1) ≤ 2st∆t∆∗ +

√
(n− 1){8e∗(∆tst)2 −

(
2gtδte∗

n

)2

}.

Similarly,

ZE(ZMθ2) ≤ 2sa∆a∆∗ +

√
(n− 1){8e∗(∆asa)2 −

(
2gaδae∗

n

)2

},

ZE(ZMθ3) ≤ 2s f ∆ f ∆∗ +

√
(n− 1){8e∗(∆ f s f )2 −

(2g f δ f e∗

n

)2

}.

Proof. Since ZMθ1, ZMθ2 and ZMθ3 are symmetric matrices with zero trace, so we have

ξmax ≥
2 ∑1≤i≤j≤n[ZMθ1]ij

n
, ηmax ≥

2 ∑1≤i≤j≤n[ZMθ2]ij

n
, ζmax ≥

2 ∑1≤i≤j≤n[ZMθ3]ij

n

where ξmax, ηmax and ζmax are the greatest eigenvalues of ZMθ1, ZMθ2, and ZMθ3, respec-
tively. Let ξmax be the maximum eigenvalue of the matrix ZMθ1 and by using Definition 7,
we can write

ξmax ≥
2 ∑vivj∈E(G)[α̌Y (vi)dt(vi) + α̌Y (vj)dt(vj)]

n
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By using Definition 5 , we can write

≥ 2(SFM1(G))t

n

Using Theorem 1,

ξmax ≥ 2(2gtδte∗t )
n

.

ξmax ≥ 4gtδte∗t
n

. (12)

Moreover, from Theorem 2, we have ξ1 = ξmax such that

n

∑
i=1

ξ2
i ≤ 8e∗(∆tst)

2.

n

∑
i=2

ξ2
i ≤ 8e∗(∆tst)

2 − ξ2
max. (13)

By using (3), we can write

ZE(ZMθ1) =
n

∑
i=1
|ξi|.

=
n

∑
i=2
|ξi| − ξmax.

It implies that

ZE(ZMθ1)− ξmax =
n

∑
i=2
|ξi|. (14)

By considering two sequences (1, 1, 1, · · · , 1) and (|ξ1|, |ξ2|, · · · , |ξn|) and then apply-
ing the Cauchy–Schwarz inequality with n− 1 entries, we have

n

∑
i=2
|ξi| ≤

√
(n− 1)

n

∑
i=2
|ξi|2. (15)

From (14) and (15), we have

ZE(ZMθ1)− ξmax ≤
√
(n− 1)

n

∑
i=2
|ξi|2. (16)

By substituting (13) in (16), we attain

ZE(ZMθ1)− ξmax ≤
√
(n− 1)(8e∗(∆tst)2 − ξ2

max).

ZE(ZMθ1) ≤ ξmax +
√
(n− 1)(8e∗(∆tst)2 − ξ2

max). (17)

Using Lemma 1, ξ1 = ξmax ≤ 2st∆t∆∗ and from (12), −ξmax ≤ − 4gtδte∗t
n . Hence,

ZE(ZMθ1) ≤ 2st∆t∆∗ +

√
(n− 1){8e∗(∆tst)2 −

(
2gtδte∗

n

)2

}.
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Similarly,

ZE(ZMθ2) ≤ 2sa∆a∆∗ +

√
(n− 1){8e∗(∆asa)2 −

(
2gaδae∗

n

)2

}.

ZE(ZMθ3) ≤ 2s f ∆ f ∆∗ +

√
(n− 1){8e∗(∆ f s f )2 −

(2g f δ f e∗

n

)2

}.

The above Theorem 4 can be explained by the following example:

Example 6. Consider the SFG W=(P, Q) as shown in Figure 3. The value of ZE from Example 3 is
given as ZE(ZMθ1) = ∑n

i=1 |ξi| = 1.7272, ZE(ZMθ2) = ∑n
i=1 |ηi| = 1.8054, and

ZE(ZMθ3) = ∑n
i=1 |ζi| = 4.321. Now from Theorem 4, the upper bound for ZE(ZMθ1) 2st∆t∆∗+√

(n− 1){8e∗(∆tst)2 −
(

2gtδte∗
n

)2

}. Here, n = 4, e∗ = 4, δt = 0.2, gt = 0.2, ∆t = 0.6, ∆∗ = 3

and st = 0.6. Thus upper bound for textttZE(ZMθ1) is 2.97. Similarly, we compute the upper
bounds for ZE(ZMθ2) as 5.53 and for ZE(ZMθ3) as 14.37. Thus,

ZE(ZMθ1) = 1.7272 < 2.97,

1.08168299 < ZE(ZMθ2) = 1.8054 < 5.53,

and
2.6305235 < ZE(ZMθ3) = 4.321 < 14.37.

This shows that the values of the spherical Zagreb fuzzy energies lie within the bounds given
in Theorem 4.

Remark 3. It is observed from Examples 4 and 6 that the upper bound of ZE(ZMθ1) obtained from
Theorem 4 is closer to the exact value than the upper bound obtained from Theorem 1, whereas the
upper bounds of ZE(ZMθ2) and ZE(ZMθ3) given in Theorem 1 are closer to the exact value as
compared to the upper bounds obtained in Theorem 4. This indicates that together with both bounds
obtained from Theorems 1 and 4, we can better estimate the exact value of the spherical Zagreb fuzzy
energies of SFG.

5. Application

In this section, we present an application related to the selection of the best location to
start a new business to describe the suitability of SFGs. Further, we illustrate a comparative
analysis with the existing technique.

5.1. Selection of Best Location for Business Purpose

Business depends on profitability and loss; thus, it has a ratio of success or failure
with the wide range of variations. Usually, the term business is figured out as a ‘company’,
but it has broad meanings. Business is not just the ownership of a multinational company;
the work of a street peddler is a business too. Some of the factors which enhance the
profitability of business include high skills of management, mental peace, a broad mental
vision , teamwork, patience, and good work performance. But one of the most important
factors is location to upgrade the level of business. Since the growth of a business is not
certain, a businessman should be mentally ready to accept the decline of a business at any
stage of its life. But, if proper consultation is given by an expert, then a business can achieve
success at a large scale.

Therefore, we consider five different locations Li, (i = 1, 2, 3, 4, 5) for a new business
and taking a panel of four experts Uj, (j = 1, 2, 3, 4) from real estate, finance, law and
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business communities to decide the most preferable location for the required purpose.
The following are the some factors that affect the location.

1. Proximity to target customers.
2. Competitors’ locations.
3. Taxes (utilities and other costs).
4. Government laws and policies.
5. Infrastructure and accessibility.
6. Safety.
7. Parking facility.

Each consultant makes distinct judgments based on their experiences between the two
different locations. Their opinions depend on three factors, including neutral, appropriate
and inappropriate.

An Algorithm 1 to describe our proposed technique is given below:

Algorithm 1: Algorithm to find the best place for business purpose.

INPUT: A discrete set of locations L = {ľ1, ľ2, ľ3, ľ4, ľ5}, a set of decision-makers
U = {u1, u2, u3, u4} in order to attain the goal and fashioning of spherical fuzzy
preference relations (SFPRs) Mǎ, ǎ = (1, 2, 3, 4) for each consultant.

OUTPUT: The nomination of best location for business.
1. Consider four SFGs corresponding to four spherical fuzzy preference relations.

Make spherical fuzzy Zagreb matrices (SZM)i (i = 1, 2, 3, 4) as defined in
Definition 7 corresponding to the given SFGs.

2. Calculate the SZE of all (SZM)i, (i=1, 2, 3, 4) denoted as

SZE(G) =

(
ZE(ZMθ1), ZE(ZMθ2), ZE(ZMθ3)

)
.

which can be calculated by adding the absolute values of eigenvalues of matrices, i.e.,

=

( n

∑
i=1
|ξi|,

n

∑
i=1
|ηi|,

n

∑
i=1
|ζi|
)

,

where ξ1 ≥ ξ2 ≥ · · · ≥ ξn, η1 ≥ η2 ≥ · · · ≥ ηn, and ζ1 ≥ ζ2 ≥ · · · ≥ ζn are the
eigenvalues of ZMθ1, ZMθ2, and ZMθ3, respectively.

3. Determine the weight vector by using:

wi = ((wα)i, (wβ)i, (wγ)i).

=

(
ZE((SZM)α̌)i

∑4
j=1 ZE((SZM)α̌)j

,
ZE((SZM)β̌)i

∑4
j=1 ZE((SZM)β̌)j

,
ZE((SZM)γ̌)i

∑4
j=1 ZE((SZM)γ̌)j

)
. (18)

4. Now to aggregate the spherical Zagreb preference matrices obtained in step 2, we
have to apply one of the suitable aggregation operators to merge the multi-agent
information. For this purpose, we apply a well- known simple ordered averaging
operator (OWA) [46] given as SZM = ∑4

i=1(wi)((SZM)i), where wi are given from (18)
obtained in step 4 to form the combined spherical fuzzy Zagreb preference relation
(SFZPR) by aggregating the matrices (SFZPRs) obtained in step 2.

5. Plot an impact model related to collective SFZPR.
6. Plot the partial impact model associated with collective SFZPR using constraint

αij ≥ 0.5. Determine the degrees of all vertices (alternatives) that appear in the model
of SFZPR.

7. All the alternatives are ranked according to the truthiness degree of vertices.
8. Output : The best alternative is nominated based on the largest truthiness degree of

the vertex.
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The flowchart corresponding to the proposed technique is exhibited in Figure 5:

Start

Input the alternatives , experts, and SFPRs

Calculate the energy of each SFZPRs

Determine the weight of each expert

End

Determine the spherical fuzzy Zagreb matrices (SZMs).

=

(
ZE(SZMα)i∑
4

j=1
ZE(SZMα)j

,
ZE(SZMβ )i∑
4

j=1
ZE(SZMβ)j

,
ZE(SZMγ )i∑
4

j=1
ZE(SZMγ )j

)

Calculate SFPRA M =
∑4

i=1wiMi
Calculate the degrees of vertices in combined SFZPR

Rank all the alternatives

Output the best choice

End

Figure 5. Flowchart for algorithm.

The spherical fuzzy preference relations (SFPRs) Mǎ, ǎ = (1, 2, 3, 4) are given in
Tables 4–7:

Table 4. SFPRs of the first decision-making expert.

M1 ľ1 ľ2 ľ3 ľ4 ľ5

ľ1 (0.3, 0.6, 0.5) (0.1, 0.3, 0.6) (0.3, 0.1, 0.5) (0.3, 0.1, 0.3) (0.3, 0.2, 0.4)
ľ2 (0.1, 0.3, 0.6) (0.2, 0.4, 0.7) (0.1, 0.1, 0.5) (0.2, 0.1, 0.6) (0.1, 0.2, 0.5)
ľ3 (0.3, 0.1, 0.5) (0.1, 0.1, 0.5) (0.3, 0.1, 0.6) (0.2, 0.1, 0.5) (0.3, 0.1, 0.5)
ľ4 (0.3, 0.1, 0.3) (0.2, 0.1, 0.6) (0.2, 0.1, 0.5) (0.4, 0.2, 0.4) (0.3, 0.1, 0.4)
ľ5 (0.3, 0.2, 0.4) (0.1, 0.2, 0.5) (0.3, 0.1, 0.5) (0.3, 0.1, 0.4) (0.5, 0.2, 0.3)

Table 5. SFPRs of the second decision-making expert.

M2 ľ1 ľ2 ľ3 ľ4 ľ5

ľ1 (0.3, 0.2, 0.5) (0.2, 0.1, 0.6) (0.2, 0.1, 0.4) (0.2, 0.1, 0.4) (0.1, 0.1, 0.4)
ľ2 (0.2, 0.1, 0.6) (0.4, 0.3, 0.7) (0.4, 0.2, 0.6) (0.3, 0.2, 0.6) (0.1, 0.2, 0.5)
ľ3 (0.2, 0.1, 0.4) (0.4, 0.2, 0.6) (0.5, 0.6, 0.2) (0.3, 0.4, 0.3) (0.1, 0.3, 0.5)
ľ4 (0.2, 0.1, 0.4) (0.3, 0.2, 0.6) (0.3, 0.4, 0.3) (0.4, 0.5, 0.3) (0.1, 0.3, 0.4)
ľ5 (0.1, 0.1, 0.4) (0.1, 0.2, 0.5) (0.1, 0.3, 0.5) (0.1, 0.3, 0.4) (0.1, 0.4, 0.6)

Table 6. SFPRs of the third decision-making expert.

M3 ľ1 ľ2 ľ3 ľ4 ľ5

ľ1 (0.8, 0.4, 0.3) (0.3, 0.3, 0.4) (0.1, 0.2, 0.3) (0.3, 0.2, 0.3) (0.2, 0.3, 0.4)
ľ2 (0.3, 0.3, 0.4) (0.4, 0.3, 0.5) (0.1, 0.2, 0.4) (0.2, 0.1, 0.4) (0.1, 0.2, 0.4)
ľ3 (0.1, 0.2, 0.3) (0.1, 0.2, 0.4) (0.2, 0.5, 0.6) (0.2, 0.2, 0.5) (0.1, 0.2, 0.5)
ľ4 (0.3, 0.2, 0.3) (0.2, 0.1, 0.4) (0.2, 0.2, 0.5) (0.7, 0.3, 0.1) (0.1, 0.2, 0.3)
ľ5 (0.2, 0.3, 0.4) (0.1, 0.2, 0.4) (0.1, 0.2, 0.5) (0.1, 0.2, 0.3) (0.2, 0.3, 0.4)
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Table 7. SFPRs of the fourth decision-making expert.

M4 ľ1 ľ2 ľ3 ľ4 ľ5

ľ1 (0.2, 0.7, 0.5) (0.3, 0.2, 0.4) (0.1, 0.2, 0.4) (0.1, 0.3, 0.4) (0.1, 0.4, 0.6)
ľ2 (0.3, 0.2, 0.4) (0.4, 0.3, 0.1) (0.2, 0.1, 0.2) (0.2, 0.3, 0.5) (0.1, 0.2, 0.6)
ľ3 (0.1, 0.2, 0.4) (0.2, 0.1, 0.2) (0.5, 0.3, 0.2) (0.2, 0.3, 0.4) (0.1, 0.2, 0.6)
ľ4 (0.1, 0.3, 0.4) (0.2, 0.3, 0.5) (0.2, 0.3, 0.4) (0.3, 0.4, 0.6) (0.2, 0.3, 0.5)
ľ5 (0.1, 0.4, 0.6) (0.1, 0.2, 0.6) (0.1, 0.2, 0.6) (0.2, 0.3, 0.5) (0.2, 0.5, 0.7)

The spherical fuzzy graphs (SFG)j, j = (1, 2, 3, 4) based on spherical fuzzy preference
relations (SFPRs) Mǎ, ǎ = (1, 2, 3, 4) are constructed by taking each expert’s preference
between two distinct alternatives as the membership values of the edges, including degree
of truthiness, degree of abstinence, and degree of falseness. These spherical fuzzy graphs
(SFG)j, j = (1, 2, 3, 4) are depicted in Figures 6 and 7.
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Figure 6. The graphical representations of M1̌ and M2̌.
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Figure 7. The graphical representations of M3̌ and M4̌.

Now, we form the spherical fuzzy Zagreb matrices (SZM)i, i = (1, 2, 3, 4) of each
SFGs. These matrices are based on the degree to which the vertices will give the effect of
connectivity in the neighborhood. The (SZM)i, i = (1, 2, 3, 4) of each SFGs is given below:

(SZM)1 =




(0, 0, 0) (0.4, 0.7, 2.44) (0.57, 0.46, 2.1) (0.7, 0.5, 1.62) (0.8, 0.54, 1.44)
(0.4, 0.7, 2.44) (0, 0, 0) (0.37, 0.32, 2.74) (0.5, 0.36, 2.26) (0.6, 0.4, 2.08)
(0.57, 0.46, 2.1) (0.37, 0.32, 2.74) (0, 0, 0) (0.67, 0.12, 1.92) (0.77, 0.16, 1.74)
(0.7, 0.5, 1.62) (0.5, 0.36, 2.26) (0.67, 0.12, 1.92) (0, 0, 0) (0.9, 0.2, 1.26)
(0.8, 0.54, 1.44) (0.6, 0.4, 2.08) (0.77, 0.16, 1.74) (0.9, 0.2, 1.26) (0, 0, 0)




.

(SZM)2 =




(0, 0, 0) (0.61, 0.29, 2.51) (0.71, 0.68, 1.26) (0.57, 0.58, 1.41) (0.25, 0.44, 1.98)
(0.61, 0.29, 2.51) (0, 0, 0) (0.9, 0.81, 1.97) (0.76, 0.71, 2.12) (0.44, 0.57, 2.69)
(0.71, 0.68, 1.26) (0.9, 0.81, 1.97) (0, 0, 0) (0.86, 1.1, 0.87) (0.54, 0.96, 1.44)
(0.57, 0.58, 1.41) (0.76, 0.71, 2.12) (0.86, 1.1, 0.87) (0, 0, 0) (0.4, 0.86, 1.59)
(0.25, 0.44, 1.98) (0.44, 0.57, 2.69) (0.54, 0.96, 1.44) (0.4, 0.86, 1.59) (0, 0, 0)




.

(SZM)3 =




(0, 0, 0) (1, 0.64, 1.22) (0.82, 0.8, 1.44) (1.28, 0.61, 0.57) (0.82, 0.67, 1.06)
(1, 0.64, 1.22) (0, 0, 0) (0.38, 0.64, 1.82) (0.84, 0.45, 0.95) (0.38, 0.51, 1.44)
(0.82, 0.8, 1.44) (0.38, 0.64, 1.82) (0, 0, 0) (0.66, 0.61, 1.17) (0.2, 0.67, 1.66)
(1.28, 0.61, 0.57) (0.84, 0.45, 0.95) (0.66, 0.61, 1.17) (0, 0, 0) (0.66, 0.48, 0.79)
(0.82, 0.67, 1.06) (0.38, 0.51, 1.44) (0.2, 0.67, 1.66) (0.66, 0.48, 0.79) (0, 0, 0)




.
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(SZM)4 =




(0, 0, 0) (0.44, 1.01, 1.07) (0.42, 1.01, 1.22) (0.33, 1.25, 1.98) (0.22, 1.32, 2.51)
(0.44, 1.01, 1.07) (0, 0, 0) (0.62, 0.48, 0.49) (0.53, 0.72, 1.25) (0.42, 0.79, 1.78)
(0.42, 1.01, 1.22) (0.62, 0.48, 0.49) (0, 0, 0) (0.51, 0.72, 1.4) (0.4, 0.79, 1.93)
(0.33, 1.25, 1.98) (0.53, 0.72, 1.25) (0.51, 0.72, 1.4) (0, 0, 0) (0.31, 1.03, 2.69)
(0.22, 1.32, 2.51) (0.42, 0.79, 1.78) (0.4, 0.79, 1.93) (0.31, 1.03, 2.69) (0, 0, 0)




.

The spherical fuzzy Zagreb relations related to (SZM)′is, where i=(1, 2, 3, 4) are shown
graphically in Figures 8 and 9. These figures elaborate on the concept of the connectedness
of the edges. These graphs corresponding to spherical fuzzy Zagreb relations are more
strengthened than the SFGs represented in Figures 6 and 7.
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ľ2(0,0,0)

ľ3(0,0,0)ľ4(0,0,0)
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Figure 8. The graphical representation of spherical fuzzy Zagreb relations to (SZM)1, (SZM)2.
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Figure 9. The graphical representation of spherical fuzzy Zagreb relations to (SZM)3 and (SZM)4.

The spherical fuzzy Zagreb energy of each SZMs is calculated as

ZE((SZM)1) = (5.1283, 3.179, 15.9035).

ZE((SZM)2) = (4.9912, 5.7813, 14.6477).

ZE((SZM)3) = (5.9254, 4.9018, 9.9656).

ZE((SZM)4) = (3.4282, 7.4492, 13.6328).

The weight of each expert is computed as

wi = ((wα̌)i, (wβ̌)i, (wγ̌)i).

wj =

(
ZE((SZM)α̌)j

∑4
s=1 ZE((SZM)α̌)s

,
ZE((SZM)β̌)j

∑4
s=1 ZE((SZM)β̌)s

,
ZE((SZM)γ̌)j

∑4
s=1 ZE((SZM)γ̌)s

)
.

w1 = (0.2633530357, 0.1491696896, 0.2936956434).

w2 = (0.2563125542, 0.2712786174, 0.2705043066).

w3 = (0.3042864259, 0.2300094316, 0.1840382939).

w4 = (0.1760479841, 0.3495422616, 0.2517617859).
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From the aggregation of four SFZPRs, the collective spherical fuzzy Zagreb preference
relation (SFZPR) is calculated as

SZM =
4

∑
i=1

wi(SZM)i.

SZM =




(0, 0, 0) (0.643, 0.683, 1.88) (0.655, 0.790, 1.52) (0.777, 0.808, 1.460) (0.562, 0.815, 1.192)
(0.643, 0.683, 1.889) (0, 0, 0) (0.55, 0.582, 1.795) (0.675, 0.601, 1.726) (0.460, 0.607, 2.051)
(0.655, 0.790, 1.529) (0.552, 0.582, 1.795) (0, 0, 0) (0.687, 0.708, 1.366) (0.472, 0.714, 1.691)
(0.778, 0.809, 1.460) (0.675, 0.601, 1.72) (0.687, 0.708, 1.367) (0, 0, 0) (0.594, 0.733, 1.622)
(0.562, 0.815, 1.785) (0.460, 0.607, 2.051) (0.472, 0.714, 1.691) (0.594, 0.733, 1.622) (0, 0, 0)




.

The collective SFZPR is shown in Figure 10. In the representation of this collective
SFZPR, as exhibited in Figure 10, we choose spherical fuzzy membership, whose truthiness
degrees are α̌ij ≥ 0.5 (i, j = 1, 2, 3, 4). The obtained partial model is depicted in Figure 11.
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Figure 10. Model of the combined SFZPR.
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Figure 11. Partial model of the combined SFZPR.

We calculate the degrees deg(ľi) (i = 1, 2, 3, 4, 5) in a partial directed model as follows:
deg(ľ1) = (2.637, 3.096, 6.052) , deg(ľ2) = (2.328, 2.473, 7.452), deg(ľ3) = (2.364, 2.794, 6.372),
deg(ľ4) = (2.733, 2.85, 6.174), and deg(ľ5) = (2.088, 2.869, 6.556).

Since ǎ4 has the largest degree, we have the positioning of the alternatives
ľi (i = 1, 2, 3, 4, 5) as

ľ4 � ľ1 � ľ3 � ľ2 � ľ5.

Thus, the best choice for selecting location is ǎ4.

5.2. Comparative Analysis

The comparative inspection with previously existing procedures is needed to examine
the feasibility and validity of the proposed technique. By comparative analysis, it can be
seen that one adopts whatever techniques and methods are either more accurate to one
another or whose results should be the same.Here, we compare our proposed model to the
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already existing one. In the existing technique, which was proposed in [44], the directed
spherical fuzzy graphs with their corresponding adjacency matrices are considered. The
spherical fuzzy energy of all adjacency matrices is calculated by adding the absolute value
of their eigenvalues. The average operator is applied to aggregate the obtained results. In
that technique, the ranking of alternatives is based on the out-degree, which is greater than
0.5 in the partial model of SFGs. In our proposed model, we consider Zagreb spherical
fuzzy matrices as compared to the adjacency matrices of SFGs, which give us a more reliable
and feasible solution since, in our proposed technique, the concept of the degree of vertices
is involved, which encounters the connectivity of the neighborhoods of the vertices. The
consequences related to the methodologies are summarized in Tables 8 and 9.

Table 8. Comparison of degrees of the alternatives with existing techniques.

Techniques Degrees of the Alternatives

Existing technique with adjacency matrices [44] (0.78, 0.82, 1.69), (0.79, 0.85, 1.85), (0.76, 0.76,
1.7), (0.84, 0.85, 1.70), (0.58, 0.89, 1.88).

Our offered technique with SZMs (2.63, 3.09, 6.05), (2.32, 2.47, 7.45), (2.36, 2.79,
6.37), (2.73, 2.85, 6.17), (2.08, 2.86, 6.55)

Table 9. Comparison of ranking.

Techniques Ranking of the Alternatives

Existing technique with adjacency matrices [44] ǎ4 � ǎ2 � ǎ1 � ǎ3 � ǎ5.
Our offered technique with SZMs ǎ4 � ǎ1 � ǎ3 � ǎ2 � ǎ5.

Eventually, the result for the positioning of the options of the existing strategy is
similar to the presented technique, which shows the accuracy and viability of the proposed
procedure. Clearly, the technique introduced in this paper is more exact, adaptable, and
generalized.

The comparison between the proposed and existing techniques, via finding the energy
and Zagreb energy of adjacency matrices and SFGs, respectively, is graphically displayed
in Figure 12 .
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Figure 12. Comparison between energy of AMs and Zagreb energy of SZMs.

6. Conclusions

Spherical fuzzy sets are the generalization of picture fuzzy sets, as they enlarge the
space of membership degrees of truthiness, abstinence, and falseness in the unit interval
satisfying the condition 0 ≤ α̌2 + β̌2 + γ̌2 ≤ 1. Spherical fuzzy models can handle uncer-
tainty problems more efficiently when a person has different viewpoints like yes, abstain,
no, and refusal as compared to the fuzzy set, intuitionistic fuzzy set, Pythagorean fuzzy set,
and picture fuzzy set. Topological indices play a crucial role in fuzzy graph theory. One of
the important indices are the fuzzy Zagreb index, which includes the fuzzy first, second,
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and hyper Zagreb index. The Zagreb index is the degree-based index, which encounters
the strength of vertices as well as the strength of the fuzzy graph too.

In this research article, we discussed spherical fuzzy Zagreb indices and determined
some bounds. Further, we studied how the spherical fuzzy Zagreb matrix of SFG is
defined. The concept of the spectrum of SFG was introduced. In addition, we computed
the spherical fuzzy Zagreb energy of the spherical fuzzy graph. Further, we extracted some
bounds of spherical fuzzy Zagreb energy. Finally, we presented an application to ensure
the applicability of our proposed model. In future, our goal is to extend the notion of this
work to the following:

1. Hesitant SFGs.
2. SF hypergraphs.
3. Interval-valued SFGs.
4. Single-valued SFGs.
5. Complex spherical fuzzy Hamacher aggregation operators.
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