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Abstract: The stochastic Fokas system (SFS), driven by multiplicative noise in the Itô sense, was
investigated in this study. Novel trigonometric, rational, hyperbolic, and elliptic stochastic solutions
are found using a modified mapping method. Because the Fokas system is used to explain nonlinear
pulse propagation in monomode optical fibers, the solutions provided may be utilized to analyze
a broad range of critical physical phenomena. In order to explain the impacts of multiplicative
noise, the dynamic performances of the different found solutions are illustrated using 3D and 2D
curves. We conclude that multiplicative noise eliminates the symmetry of the solutions of the SFS
and stabilizes them.
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1. Introduction

Nonlinear evolution equations (NLEEs) play an essential part in the comprehension
of numerous significant phenomena and dynamic processes in engineering technology sci-
ence, life science, geoscience, mechanics, and physics due to the development of nonlinear
science. It is crucial to investigate the exact explicit solutions of NLEEs in order to gain a
deeper understanding of the phenomena described by NLEEs. In recent years, quite a few
techniques, including the first-integral method [1], sine–cosine procedure [2], exp-function
method [3], Jacobi elliptic function expansion [4], mapping method [5], auxiliary equation
scheme [6], extended tanh function method [7], generalized Kudryashov approach [8],
exp(−φ(ς))-expansion method [9], F-expansion approach [10], Taylor’s power series ex-
pansion [11], q-homotopy analysis transform method [12], bifurcation analysis [13,14],
and (G′/G)-expansion [15,16], have been proposed for solving NLEEs. Moreover, the Lie
symmetry method [17] is the most significant method for developing analytical solutions
for nonlinear NLEEs.

Until the 1950s, deterministic models of differential equations played an important role
in the study of natural phenomena across a vast array of physical sciences. Nevertheless, it
is evident that the phenomena that occur in the world today are not deterministic in nature.
For these NLEEs, it is crucial to take random effects into account. Equations that take
into account random fluctuations are called stochastic NLEEs. These kinds of equations
are increasingly being utilized in the climate, biophysics, condensed matter, electrical
engineering, information systems, finance, materials sciences, and other disciplines to
develop mathematical models of complex processes [18,19]. In recent years, analytical
solutions for some stochastic NLEEs, for example [20–22], have been discovered.
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In this paper, we consider the Fokas system, which is one of the most significant of the
NLEEs, forced by multiplicative noise:

iGt + ε1Gxx + ε2GW =iδGBt,
ε3Wy=ε4(|G|2)x,

(1)

where G = G(x, y, t) andW =W(x, y, t) are complex functions, ε1, ε2, ε3 and ε4 are arbi-
trary constants, δ is the noise strength. B = B(t) is the Brownian motion, Bt =

∂B
∂t . If we

set δ = 0, then we have the deterministic Fokas system (DFS):

iGt + ε1Gxx + ε2GW =0, ε3Wy=ε4(|G|2)x. (2)

Fokas [23] and Shulman [24] introduced the DFS (2) for examining NLSE in (2 + 1)
dimensions. Because of the crucial role of DFS (2), numerous authors have attained the exact
solutions by employing numerous techniques, such as the exp-function method [25], Jacobi
elliptic function expansion [26], He’s frequency formulation method, the extended rational
sinh–cosh and sine–cosine [27], the variational method and simplified extended tanh-
function [28], Hirota’s bilinear method [29], and the generalized Kudryashov method [30].
The stochastic Fokas system (SFS) (1) has not been studied until now.

The objective of this study is to acquire the analytical stochastic solutions of the SFS (1).
We use a modified mapping method to obtain the stochastic solutions of SFS (1) in the
form of rational, elliptic, hyperbolic, and trigonometric functions. Since the Fokas system
is used to explain nonlinear pulse propagation in monomode optical fibers, the obtained
solutions can be applied to the analysis of a wide variety of crucial physical phenomena.
The dynamic performances of the various obtained solutions are depicted using 3D and 2D
curves in order to interpret the effects of multiplicative noise.

The paper has the following structure: In the next section, we derive the wave equation
for the SFS (1). In Section 3, the modified mapping technique is employed to derive the
exact solutions of SFS (1). In Section 4, we analyze the impact of the Brownian motion on
the solution of SFS (1). Finally, the conclusion of the paper is provided.

2. Traveling Wave Equation for SFS

We utilize

with
G(x, y, t) = U (ξ)eiω+δB(t)− 1

2 δ2t, W(x, y, t) = V(ξ)eδB(t)− 1
2 δ2t,

ω = ω1x + ω2y + ω3t and ξ = ξ1x + ξ2y + ξ3t,
(3)

to obtain the wave equation for SFS (1), where U is a deterministic and real function,
ρ1, ρ2, ξ1, and ξ2 are non-zero constants. We note that

Gt = [ξ3U ′ + iω3U + δUBt −
1
2

δ2U+1
2

δ2U ]eiω+δB(t)− 1
2 δ2t

= [ξ3U ′ + iω3U + δUBt]eiω+δB(t)− 1
2 δ2t, (4)

where 1
2 δ2U is the Itô correction term, and

Gx = (ξ1U ′ + iω1U )eiω+δB(t)− 1
2 δ2t, (|G|2)x = ξ1(U 2)′e2δB(t)−δ2t,

Gxx = (ξ2
1U ′′ + 2iω1ξ1U ′ −ω2

1U )eiω+δB(t)− 1
2 δ2t, Wy = ξ2V ′eδB(t)− 1

2 δ2t. (5)

Plugging Equations (4) and (5) into Equation (1), for the real part, we have

(ε1ξ2
1)U ′′ + (−ω3 − ε1ω2

1)U + ε2UVeδB(t)− 1
2 δ2t = 0, ε3ξ2V ′ = ε4ξ1(U 2)′eδB(t)− 1

2 δ2t (6)
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and for the imaginary part:
(ε1ω1ξ1 + ξ3)U ′ = 0. (7)

Setting that
ξ3 = −ε1ω1ξ1.

Then, Equation (7) vanishes. Now, we take the expectations on both sides into
Equation (6) to obtain

(ε1ξ2
1)U ′′ + (−ω3 − ε1ω2

1)U + ε2UVe−
1
2 δ2tE(eδB(t)) = 0, (8)

and
ε3ξ2V ′ = ε4ξ1(U 2)′e−

1
2 δ2tE(eδB(t)). (9)

Since B(t) is the normal process, then E(eδB(t)) = e
1
2 δ2t for any real number δ. Hence,

Equations (8) and (9) become

(ε1ξ2
1)U ′′ + (−ω3 − ε1ω2

1)U + ε2UV = 0, (10)

and
ε3ξ2V ′ = ε4ξ1(U 2)′. (11)

Integrating (11) once, we obtain

V =
ε4ξ1

ε3ξ2
U 2 + C, (12)

where C is the constant of the integration. Substituting Equation (12) into Equation (10),
we have

U ′′ +H1U +H2U 3 = 0, (13)

where

H1 =
−ω3 − ε1ω2

1 + Cε2

ε1ξ2
1

, andH2 =
ε2ε4

ε3ε1ξ1ξ2
.

3. Exact Solutions of SFS

Here, the modified mapping method described in [31] is applied. Let the solutions of
Equation (13) have the following form:

U (ξ) =
K

∑
i=0

`iui(ξ) +
K

∑
i=1

viu−i(ξ), (14)

where `i and vi are undetermined constants to be calculated, and u solves

u′ =
√
}1u4 + }2u2 + }3, (15)

where }1,}2, and }3 are real constants.
First, let us balance U ′′ with U 3 in Equation (13) to find the parameter K as

K + 2 = 3K =⇒ K = 1.

With K = 1, Equation (15) has the form

U (ξ) = `0 + `1u(ξ) +
v1

u(ξ)
. (16)

Differentiating Equation (16) twice and using (15), we obtain

U ′′ = `1(}2u + 2}1u3) + v1(}2u−1 + 2}3u−3). (17)
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Putting Equation (16) and Equation (17) into Equation (13), we obtain

(2`1}1 +H2`
3
1)u

3 + 3H2`0`
2
1u2 + (`1}2 + 3H2`

2
0`1 + 3H2v1`

2
1 + `1H1)u

+(H1`0 +H2`
3
0 + 6H2`0`1v1) + (H1v1 + v1}2 + 3H2`

2
0v1 + 3H2`1v2

1)u
−1

+3H2v2
1u−2 + (2}3v1 +H2v3

1)u
−3 = 0.

For k = 3, 2, 1, 0, we balance each coefficient of uk and u−k with 0 to have

2`1}1 +H2`
3
1 = 0,

3H2`0`
2
1 = 0,

`1}2 + 3H2`
2
0`1 + 3H2v1`

2
1 + `1H1 = 0,

H1`0 +H2`
3
0 + 6H2`0`1v1 = 0,

H1v1 + v1}2 + 3H2`
2
0v1 + 3H2`1v2

1 = 0,

3H2`0v2
1 = 0

and
2}3v1 +H2v3

1 = 0.

We obtain three distinct sets when we solve these equations:
First set:

`0 = 0, `1 = ±

√
−2}1

H2
, v1 = 0, }2 = −H1. (18)

Second set:

`0 = 0, `1 = 0, v1 = ±

√
−2}3

H2
, }2 = −H1. (19)

Third set:

`0 = 0, `1 = ±

√
−2}1

H2
, v1 = ±

√
−2}3

H2
, }2 = 6

√
}1}3 −H1. (20)

First set: By utilizing Equations (12), (13), (16) and (18), the solution of Equation (1) is

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2}1

ε2ε4
u(ξ)eiω+δB(t)− 1

2 δ2t, (21)

and

W(x, y, t) = [
−2ε1ξ2

1}1

ε2
u2(ξ) + C]eδB(t)− 1

2 δ2t. (22)

Many cases rely on }1 :
Case 1-1: If }1 = m2, }2 = −(1 + m2) and }3 = 1, then u(ξ) = sn(ξ). Thus, using

Equations (21) and (22), the solutions of SFS (1) are

G(x, y, t) = ±m

√
−2ε3ε1ξ1ξ2

ε2ε4
sn(ξ)eiω+δB(t)− 1

2 δ2t, (23)

W(x, y, t) = [
−2ε1ξ2

1m2

ε2
sn2(ξ) + C]eδB(t)− 1

2 δ2t. (24)
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If m→ 1, then Equation (23) becomes

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
tanh(ξ)eiω+δB(t)− 1

2 δ2t. (25)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

tanh2(ξ) + C

)
eδB(t)− 1

2 δ2t. (26)

Case 1-2: If }1 = 1, }2 = 2m2 − 1 and }3 = −m2(1−m2), then u(ξ) = ds(ξ). Thus,
using Equations (21) and (22), the solutions of SFS (1) are

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
ds(ξ)eiω+δB(t)− 1

2 δ2t, (27)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

ds2(ξ) + C

)
eδB(t)− 1

2 δ2t. (28)

If m→ 1, Equation (27) becomes

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
csch(ξ)eiω+δB(t)− 1

2 δ2t, (29)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

csch2(ξ) + C

)
eδB(t)− 1

2 δ2t. (30)

If m→ 0, Equation (27) becomes

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
csc(ξ)eiω+δB(t)− 1

2 δ2t, (31)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

csc2(ξ) + C

)
eδB(t)− 1

2 δ2t. (32)

Case 1-3: If }1 = 1, }2 = 2−m2 and }3 = (1−m2), then u(ξ) = cs(ξ). Thus, using
Equations (21) and (22), the solutions of SFS (1) are

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
cs(ξ)eiω+δB(t)− 1

2 δ2t, (33)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

cs2(ξ) + C

)
eδB(t)− 1

2 δ2t. (34)

If m→ 1, Equation (33) becomes

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
csch(ξ)eiω+δB(t)− 1

2 δ2t, (35)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

csch2(ξ) + C

)
eδB(t)− 1

2 δ2t. (36)

If m→ 0, Equation (33) becomes

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
cot(ξ)eiω+δB(t)− 1

2 δ2t, (37)
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W(x, y, t) =

(
−2ε1ξ2

1
ε2

cot2(ξ) + C

)
eδB(t)− 1

2 δ2t, (38)

where ξ = ξ1x + ξ2y + ξ3t.

Case 1-4: If }1 = m2

4 , }2 = (m2−2)
2 , and }3 = 1

4 , then u(ξ) = sn(ξ)
1+dn(ξ) . Thus, using

Equations (21) and (22), the solutions of SFS (1) are

G(x, y, t) = ±m

√
−ε3ε1ξ1ξ2

2ε2ε4

sn(ξ)
1 + dn(ξ)

eiω+δB(t)− 1
2 δ2t. (39)

W(x, y, t) =

(
−ε1ξ2

1m2

2ε2
[

sn(ξ)
1 + dn(ξ)

]2 + C

)
eδB(t)− 1

2 δ2t. (40)

If m→ 1, then Equation (39) tends to

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4

tanh(ξ)
1 + sech(ξ)

eiω+δB(t)− 1
2 δ2t. (41)

W(x, y, t) =

(
−ε1ξ2

1}1

2ε2
[

tanh(ξ)
1 + sech(ξ)

]2 + C

)
eδB(t)− 1

2 δ2t. (42)

Case 1-5: If }1 = (1−m2)2

4 , }2 = (1−m2)2

2 and }3 = 1
4 , then u(ξ) = sn(ξ)

dn(ξ)+cn(ξ) . Thus,
using Equations (21) and (22), the solutions of SFS (1) are

G(x, y, t) = ±(1−m2)

√
−ε3ε1ξ1ξ2

2ε2ε4
[

sn(ξ)
dn(ξ) + cn(ξ)

]eiω+δB(t)− 1
2 δ2t. (43)

W(x, y, t) =

(
−ε1ξ2

1(1−m2)2

2ε2
[

sn(ξ)
dn(ξ) + cn(ξ)

]2 + C

)
eδB(t)− 1

2 δ2t. (44)

When m→ 0, Equation (43) tends to

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[

sin(ξ)
1 + cos(ξ)

]eiω+δB(t)− 1
2 δ2t. (45)

W(x, y, t) =

(
−ε1ξ2

1
2ε2

[
sin(ξ)

1 + cos(ξ)
]2 + C

)
eδB(t)− 1

2 δ2t. (46)

Case 1-6: If }1 = 1−m2

4 , }2 = (1−m2)
2 and }3 = 1−m2

4 , then u(ξ) = cn(ξ)
1+sn(ξ) . Thus, using

Equations (21) and (22), the solutions of SFS (1) are

G(x, y, t) = ±

√
−(1−m2)ε3ε1ξ1ξ2

2ε2ε4
[

cn(ξ)
1 + sn(ξ)

]eiω+δB(t)− 1
2 δ2t. (47)

W(x, y, t) =

(
−ε1ξ2

1(1−m2)

2ε2
[

cn(ξ)
1 + sn(ξ)

]2 + C

)
eδB(t)− 1

2 δ2t. (48)

When m→ 0, Equation (47) tends to

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[

cos(ξ)
1 + sin(ξ)

]eiω+δB(t)− 1
2 δ2t, (49)
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W(x, y, t) =

(
−ε1ξ2

1
2ε2

[
cos(ξ)

1 + sin(ξ)
]2 + C

)
eδB(t)− 1

2 δ2t, (50)

where ξ = ξ1x + ξ2y + ξ3t.
Case 1-7: If }1 = 1, }2 = 0 and }3 = 0, then u(ξ) = c

ξ . Thus, using
Equations (21) and (22), the solutions of SFS (1) are

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
[

c
(ξ1x + ξ2y + ξ3t)

]eiω+δB(t)− 1
2 δ2t, (51)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

[
c

(ξ1x + ξ2y + ξ3t)
]2 + C

)
eδB(t)− 1

2 δ2t. (52)

Second set: By using Equations (16) and (19), the solution of Equation (13) is

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2}3

ε2ε4

1
u(ξ)

eiω+δB(t)− 1
2 δ2t, (53)

and

W(x, y, t) =

(
−2ε1ξ2

1}3

ε2

1
u2(ξ)

+ C

)
eδB(t)− 1

2 δ2t. (54)

Many cases rely on }3 :
Case 2-1: If }1 = m2, }2 = −(1 + m2) and }3 = 1, then u(ξ) = sn(ξ). Thus, using

Equations (53) and (54), the solutions of SFS (1) are

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4

1
sn(ξ)

eiω+δB(t)− 1
2 δ2t. (55)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

1
sn2(ξ)

+ C

)
eδB(t)− 1

2 δ2t. (56)

If m→ 1, Equation (55) tends to

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
coth(ξ)eiω+δB(t)− 1

2 δ2t. (57)

W(x, y, t) =

(
−2ε1ξ2

1
ε2

coth2(ξ) + C

)
eδB(t)− 1

2 δ2t. (58)

Case 2-2: If }1 = 1, }2 = 2−m2 and }3 = (1−m2), then u(ξ) = cs(ξ). Thus, using
Equations (53) and (54), the solutions of SFS (1) are

G(x, y, t) = ±

√
−2(1−m2)ε3ε1ξ1ξ2}3

ε2ε4

1
cs(ξ)

eiω+δB(t)− 1
2 δ2t. (59)

W(x, y, t) =

(
−2(1−m2)ε1ξ2

1
ε2

1
cs2(ξ)

+ C

)
eδB(t)− 1

2 δ2t. (60)

When m→ 0, Equation (59) tends to

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
tan(ξ)eiω+δB(t)− 1

2 δ2t. (61)
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W(x, y, t) =

(
−2ε1ξ2

1
ε2

tan2(ξ) + C

)
eδB(t)− 1

2 δ2t, (62)

where ξ = ξ1x + ξ2y + ξ3t.
Case 2-3: If }1 = −m2, }2 = 2m2 − 1 and }3 = (1− m2), then u(ξ) = cn(ρ). Thus,

using Equations (53) and (54), the solutions of SFS (1) are

G(x, y, t) = ±

√
−2(1−m2)ε3ε1ξ1ξ2

ε2ε4

1
cn(ξ)

eiω+δB(t)− 1
2 δ2t, (63)

W(x, y, t) =

(
−2(1−m2)ε1ξ2

1}3

ε2

1
cn2(ξ)

+ C

)
eδB(t)− 1

2 δ2t. (64)

When m→ 0, Equation (67) tends to

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
sec(ξ)eiω+δB(t)− 1

2 δ2t, (65)

W(x, y, t) =

(
−2ε1ξ2

1}3

ε2
sec2(ξ) + C

)
eδB(t)− 1

2 δ2t. (66)

Case 2-4: If }1 = m2

4 , }2 = (m2−2)
2 and }3 = 1

4 , then u(ξ) = sn(ξ)
1+dn(ξ) . Thus, using

Equations (53) and (54), the solutions of SFS (1) are

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4

1 + dn(ξ)
sn(ξ)

eiω+δB(t)− 1
2 δ2t. (67)

W(x, y, t) =

(
−ε1ξ2

1
2ε2

[
1 + dn(ξ)

sn(ξ)
]2 + C

)
eδB(t)− 1

2 δ2t. (68)

When m→ 1, Equation (67) tends to

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[coth(ξ) + csch(ξ)]eiω+δB(t)− 1

2 δ2t. (69)

W(x, y, t) =

(
−ε1ξ2

1
2ε2

[coth(ξ) + csch(ξ)]2 + C

)
eδB(t)− 1

2 δ2t. (70)

Case 2-5: If }1 = 1−m2

4 , }2 = (1−m2)
2 and }3 = 1−m2

4 , then u(ξ) = cn(ξ)
1+sn(ξ) . Thus, using

Equations (53) and (54), the solutions of SFS (1) are

G(x, y, t) = ±

√
−(1−m2)ε3ε1ξ1ξ2

2ε2ε4
[
1 + sn(ξ)

cn(ξ)
]eiω+δB(t)− 1

2 δ2t. (71)

W(x, y, t) =

(
−(1−m2)ε1ξ2

1
2ε2

[
1 + sn(ξ)

cn(ξ)
]2 + C

)
eδB(t)− 1

2 δ2t. (72)

When m→ 0, Equation (71) tends to

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[sec(ξ) + tan(ξ)]eiω+δB(t)− 1

2 δ2t, (73)
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W(x, y, t) =

(
−2ε1ξ2

1
ε2

[sec(ξ) + tan(ξ)]2 + C

)
eδB(t)− 1

2 δ2t, (74)

where ξ = ξ1x + ξ2y + ξ3t.

Case 2-6: If }1 = (1−m2)2

4 , }2 = (1−m2)2

2 , and }3 = 1
4 , then u(ξ) = sn(ξ)

dn(ξ)+cn(ξ) . Thus,
using Equations (53) and (54), the solutions of SFS (1) are

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[
dn(ξ) + cn(ξ)

sn(ξ)
]eiω+δB(t)− 1

2 δ2t. (75)

W(x, y, t) =

(
−ε1ξ2

1
2ε2

[
dn(ξ) + cn(ξ)

sn(ξ)
]2 + C

)
eδB(t)− 1

2 δ2t. (76)

If m→ 0, then Equation (75) becomes

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[csc(ξ) + cot(ξ)]eiω+δB(t)− 1

2 δ2t, (77)

W(x, y, t) =

(
−ε1ξ2

1
2ε2

[csc(ξ) + cot(ξ)]2 + C

)
eδB(t)− 1

2 δ2t. (78)

If m→ 1, then Equation (75) becomes

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
csch(ξ)eiω+δB(t)− 1

2 δ2t, (79)

W(x, y, t) =

(
−ε1ξ2

1
2ε2

csch2(ξ) + C

)
eδB(t)− 1

2 δ2t. (80)

Third set: By using Equations (16) and (20), the solution of Equation (13) is

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[
√
}1u(ξ) +

√
}3

1
u(ξ)

]eiω+δB(t)− 1
2 δ2t. (81)

W(x, y, t) =
−2ε1ξ2

1
ε2

(
}1u2(ξ) +

}3

u2(ξ)
+ 2
√
}1}3 + C

)
eδB(t)− 1

2 δ2t. (82)

Many cases rely on }1 and }3 :
Case 3-1: If }1 = m2, }2 = −(1 + m2) and }3 = 1, then u(ξ) = sn(ξ). Thus, using

Equations (81) and (82), the solutions of SFS (1) are

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[msn(ξ) +

1
sn(ξ)

]eiω+δB(t)− 1
2 δ2t, (83)

W(x, y, t) =
−2ε1ξ2

1
ε2

(
m2sn2(ξ) +

1
sn2(ξ)

+ 2m + C
)

eδB(t)− 1
2 δ2t. (84)

When m→ 1, Equation (83) tends to

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[tanh(ξ) + coth(ξ)]eiω+δB(t)− 1

2 δ2t. (85)

W(x, y, t) =
−2ε1ξ2

1
ε2

(
tanh2(ξ) + coth2(ξ) + 2 + C

)
eδB(t)− 1

2 δ2t. (86)
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Case 3-2: If }1 = 1, }2 = 2−m2 and }3 = (1−m2), then u(ξ) = cs(ξ). Thus, using
Equations (81) and (82), the solutions of SFS (1) are

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
[cs(ξ) +

√
(1−m2)

1
cs(ξ)

]eiω+δB(t)− 1
2 δ2t, (87)

W(x, y, t) =
−2ε1ξ2

1
ε2

(
cs2(ξ) +

(1−m2)

cs2(ξ)
+ 2
√
(1−m2) + C

)
eδB(t)− 1

2 δ2t, (88)

where ξ = ξ1x + ξ2y + ξ3t. When m→ 0, Equation (87) tends to

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
[cot(ξ) + tan(ξ)]eiω+δB(t)− 1

2 δ2t, (89)

W(x, y, t) =
−2ε1ξ2

1
ε2

(
cot2(ξ) + tan2(ξ) + C

)
eδB(t)− 1

2 δ2t. (90)

Case 3-3: If }1 = m2

4 , }2 = (m2−2)
2 and }3 = 1

4 , then u(ξ) = sn(ξ)
1±dn(ξ) . Thus, using

Equations (81) and (82), the solutions of SFS (1) are

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[m

sn(ξ)
1 + dn(ξ)

+
1 + dn(ξ)

sn(ξ)
]eiω+δB(t)− 1

2 δ2t, (91)

W(x, y, t) =
−ε1ξ2

1
2ε2

(
m(

sn(ξ)
1 + dn(ξ)

)2 + (
1 + dn(ξ)

sn(ξ)
)2 +

m2

4
+ C

)
eδB(t)− 1

2 δ2t, (92)

where ξ = ξ1x + ξ2y + ξ3t. When m→ 1, Equation (91) tends to

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
coth(ξ)eiω+δB(t)− 1

2 δ2t. (93)

W(x, y, t) =
−ε1ξ2

1
2ε2

(
coth2(ξ) + C

)
eδB(t)− 1

2 δ2t. (94)

Case 3-4: If }1 = 1−m2

4 , }2 = (1−m2)
2 and }3 = 1−m2

4 , then u(ξ) = cn(ξ)
1+sn(ξ) . Thus, using

Equations (81) and (82), the solutions of SFS (1) are

G(x, y, t) = ±

√
−(1−m2)ε3ε1ξ1ξ2

2ε2ε4
[

cn(ξ)
1 + sn(ξ)

+
1 + sn(ξ)

cn(ξ)
]eiω+δB(t)− 1

2 δ2t, (95)

W(x, y, t) =
−(1−m2)ε1ξ2

1
2ε2

(
(

cn(ξ)
1 + sn(ξ)

)2 + (
1 + sn(ξ)

cn(ξ)
)2 + C

)
eδB(t)− 1

2 δ2t, (96)

where ξ = ξ1x + ξ2y + ξ3t. When m→ 0, Equation (95) tends to

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
sec(ξ)eiω+δB(t)− 1

2 δ2t, (97)

W(x, y, t) =
−ε1ξ2

1
2ε2

(
sec2(ξ) + C

)
eδB(t)− 1

2 δ2t. (98)
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Case 3-5: If }1 = (1−m2)2

4 , }2 = (1−m2)2

2 and }3 = 1
4 , then u(ξ) = sn(ξ)

dn(ξ)+cn(ξ) . Thus,
using Equations (81) and (82), the solutions of SFS (1) are

G(x, y, t) = ±

√
−ε3ε1ξ1ξ2

2ε2ε4
[
(1−m2)sn(ξ)
dn(ξ) + cn(ξ)

+
dn(ξ) + cn(ξ)

sn(ξ)
]eiω+δB(t)− 1

2 δ2t. (99)

W(x, y, t) =
−ε1ξ2

1
2ε2

(
(
(1−m2)sn(ξ)
dn(ξ) + cn(ξ)

)2 + (
dn(ξ) + cn(ξ)

sn(ξ)
)2 + C

)
eδB(t)− 1

2 δ2t. (100)

When m→ 0, Equation (75) tends to

G(x, y, t) = ±

√
−2ε3ε1ξ1ξ2

ε2ε4
csc(ξ)eiω+δB(t)− 1

2 δ2t. (101)

W(x, y, t) =
−ε1ξ2

1
2ε2

(
csc2(ξ) + C

)
eδB(t)− 1

2 δ2t, (102)

where ξ = ξ1x + ξ2y + ξ3t.

4. Impacts of Noise

In this section, we address the effect of Brownian motion on the exact solution of the
SFS (1). Several diagrams are supplied to show the behaviors of some obtained solutions,
such as (23)–(26), (47) and (48). Let us fix the parameters ε1 = ε2 = ε3 = ε4 = 1,
ξ2 = −1, ξ3 = −2, C = 0, y = 0, x ∈ [0, 4] and t ∈ [0, 3] to simulate these diagrams.

Now, we can see from Figures 1–6 that when the Brownian motion is ignored (i.e.,
when δ = 0), there are many other kinds of solutions, including periodic solutions, kink
solutions, and so on. After short transit patterns, the surface becomes flatter when noise is
incorporated and its amplitude is increased by δ = 1, 2. This demonstrates that Brownian
motion stabilizes the SFS solutions, maintaining them around zero.

(a) δ = 0 (b) δ = 1

(c) δ = 2 (d) δ = 0, 1, 2

Figure 1. (a–c) The 3D style of solution |G(x, y, t)| in Equation (23) with ξ1 = 1 and δ = 0, 1, 2;
(d) the 2D style of Equation (23) with different values of δ.



Symmetry 2023, 15, 1433 12 of 15

(a) δ = 0 (b) δ = 1

(c) δ = 2 (d) δ = 0, 1, 2

Figure 2. (a–c) The 3D style of solution |G(x, y, t)| in Equation (24) with ξ1 = 1 and δ = 0, 1, 2;
(d) the 2D style of Equation (24) with different values of δ.

(a) δ = 0 (b) δ = 1

(c) δ = 2 (d) δ = 0, 1, 2

Figure 3. (a–c) The 3D style of solution |G(x, y, t)| in Equation (25) with ξ1 = 1 and δ = 0, 1, 2;
(d) the 2D style of Equation (25) with different values of δ.
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(a) δ = 0 (b) δ = 1

(c) δ = 2 (d) δ = 0, 1, 2

Figure 4. (a–c) The 3D style of solution |G(x, y, t)| in Equation (26) with ξ1 = 1 and δ = 0, 1, 2;
(d) the 2D style of Equation (26) with different values of δ.

(a) δ = 0 (b) δ = 1

(c) δ = 2 (d) δ = 0, 1, 2

Figure 5. (a–c) The 3D style of solution |G(x, y, t)| in Equation (47) with ξ1 = 2 and δ = 0, 1, 2;
(d) the 2D style of Equation (23) with different values of δ.
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(a) δ = 0 (b) δ = 1

(c) δ = 2 (d) δ = 0, 1, 2

Figure 6. (a–c) The 3D style of solution |G(x, y, t)| in Equation (48) with ξ1 = 2 and δ = 0, 1, 2;
(d) shows the 2D style of Equation (48) with different values of δ.

5. Conclusions

In this work, we considered the stochastic Fokas system (SFS) perturbed by multi-
plicative Brownian motion in the Itô sense. Utilizing a modified mapping method, we
obtained the exact stochastic solutions. Due to the implementation of the Fokas system
in explaining nonlinear pulse propagation in monomode optical fibers, these solutions
can explain a wide array of fascinating and intricate physical phenomena. Using 3D and
2D curves for various values of noise strength, we depicted the dynamic behaviors of the
numerous obtained solutions in order to interpret the effects of Brownian motion on these
solutions. Furthermore, we established that multiplicative noise stabilizes the solutions
at zero.
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