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Abstract: This paper is an attempt to study the Xgamma–Weibull distribution using an adaptive
progressive type-II censoring plan. This scheme effectively ensures that the experimental time
does not exceed a predetermined time limit. Using two classical estimation methods—namely,
maximum likelihood and maximum product of spacing—both point and interval estimations for the
unknown model parameters, as well as some parameters of life—namely, reliability and hazard rate
functions—were obtained. The asymptotic normality of both classical methods was used to determine
the approximate confidence intervals for the various parameters. Based on the two conventional
methodologies, Bayesian estimations were also investigated using the MCMC technique under the
squared error loss function. In addition, the credible intervals of the different parameters were also
obtained. To compare the performance of the various approaches, a thorough simulation study was
carried out. Furthermore, we propose using several optimality criteria to select the best sampling
technique. Finally, two real-world datasets were used to demonstrate how the suggested estimators
and optimality criteria operate in real-world circumstances.

Keywords: Xgamma–Weibull distribution; likelihood and product of spacings functions; adaptive
type-II progressively hybrid censoring; interval estimation; Bayes inference; reliability analysis

1. Introduction

A new one-parameter Xgamma (XG(θ)) distribution has been introduced by Sen et al. [1]
as a special, finite mixture of exponential and gamma distributions. Recently, using the
XG density, Yousof et al. [2] proposed and studied a new extension of the one-parameter
Weibull distribution named the two-parameter Xgamma–Weibull (XGW(δ, θ)) distribution.
They derived several properties of the XGW distribution and also showed that its den-
sity can be represented as a mixture of exponentiated Weibull densities. Moreover, they
estimated the XGW parameters using uncensored samples via the maximum likelihood
estimation method. Cordeiro et al. [3] further proposed the three-parameter XGW distribu-
tion as a member of the XG family of distributions. However, we assume here that X is a
lifetime random variable of an experimental unit(s) test that follows a two-parameter XGW
distribution denoted by XGW(β), where β = (δ, θ)T is the parameter vector. Consequently,
the respective probability density function (PDF), cumulative distribution function (CDF),
reliability function (RF) and hazard function (HF) for X are given, respectively, by

f (x; β) =
θδ2xθ−1e−δxθ

(1 + δ)

(
1 +

1
2

δx2θ

)
, x > 0, (1)
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F(x; β) = 1− e−δxθ

(1 + δ)

[
1 + δ(1 + xθ) +

1
2
(δxθ)2

]
, (2)

R(x; β) =
e−δxθ

(1 + δ)

[
1 + δ(1 + xθ) +

1
2
(δxθ)2

]
(3)

and

h(x; β) = θδ2xθ−1

(
1 + 1

2 δx2θ
)

[
1 + δ(1 + xθ) + 1

2 (δxθ)2
] , (4)

where δ > 0 and θ > 0 are the scale and shape parameters, respectively. Using Equation (1),
Yousof et al. [2] stated that the XGW distribution may be used as a generalized form of
three new one-parameter lifetime distributions, which act as sub-models, namely:

• Xgamma–Rayleigh distribution if setting θ = 2;
• Xgamma–exponential type-I distribution if setting θ = 1;
• Xgamma–exponential type-II distribution if setting δ = 1.

Utilizing various parameter choices for δ and θ based on their domains, several shapes
for density and hazard functions for the XGW distribution are shown in Figure 1. This
shows that the XGW density can be concave-down or left- or right-skewed, while the XGW
hazard shapes can be bathtub-shaped or decreasing or increasing.
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Figure 1. Plots of density (left) and hazard (right) functions for the XGW distribution.

Censored data are commonly used in studies on reliability and life testing. Due
to factors like preserving working experimental units for future use, reducing overall
time for the test and financial limits, investigators have to gather data using censored
samples. Time-censoring (type-I) and failure-censoring (type-II) strategies are the two
widely used censoring strategies in life-testing and reliability studies (see, for additional
details, the work by Bain and Engelhardt [4]). These methods are not flexible enough to
allow units to be removed from the experiment at any point other than the terminal point.
To overcome this shortcoming, a more adaptable censoring scheme known as progressive
type-II censoring has been developed. Kundu and Joarder [5] proposed a progressive type-I
hybrid censoring (P-I-HC) scheme in which n identical products undergo testing via a
specific progressive censoring scheme R1, R2, . . . , Rm and the examination terminates at an
arbitrary time T∗ = min(Xm:m:n, T), where T is a time that is predetermined. The drawback
of the P-I-HC plan is that the effective sample size is random and it may be a very small
number or equal to zero. As a consequence of this, statistical inference techniques will
be ineffective. To address this limitation, Ng et al. [6] presented an adaptive progressive
type-II hybrid censoring (AP-II-HC) strategy to improve statistical examination efficiency.
In this framework, the number of failures m is specified in advance, and the duration
of the test is allowed to exceed the predetermined time T. Furthermore, we have the
progressive censoring scheme R1, R2, . . . , Rm, but the values of some of the Ri may change
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as a result of the test. This scheme can be summarized as follows: Suppose that n units
are subjected to a life test and m < n is the desired total number of failures. At the time
of the ith failure Xi:m:n, Ri units are eliminated from the test at random. If the mth failure
occurs before time T (i.e., (Xm:m:m < T)), the experiment terminates and we have the
regular progressive type-II censoring. If, on the other hand, Xd:m:n < T < Xd+1:m:n, where
d + 1 < m and Xd:m:n correspond to the dth failure time and occur before time T, then we
will not remove any living item from the experiment by placing Rd+1, Rd+2, . . . , Rm−1 = 0
and R∗m = n− m− ∑d

i=1 Ri. This setting assures that we finish the test when we attain
the desired number of failures m and that the overall test duration does not deviate too
much from the optimal time T. Figure 2 presents a diagrammatic representation of the
AP-II-HC strategy.

Figure 2. Diagram of AP-II-HC strategy.

Let x1:m:n < · · · < xd:m:n < T < xd+1:m:n < · · · < xm:m:n be an AP-II-HC sample from
a population with a PDF f (x) and CDF F(x); then, the LF for the observed data can be
written according to Ng et al. [6] as

L = C
m

∏
i=1

f (xi:m:n)
d

∏
i=1

[1− F(xi:m:n)]
Ri [1− F(xm:m:n)]

Rm , (5)

where C is a constant. Numerous studies have been conducted based on the AP-II-HC
scheme; for example, the work by Al Sobhi and Soliman [7], Nassar et al. [8,9], Panahi
and Moradi [10], Elshahhat and Nassar [11], Panahi and Asadi [12], Alotaibi et al. [13] and
Nassar et al. [14].

A very competitive estimating technique, the maximum product of spacing estimation
method, has lately acquired prominence as an alternative to the standard maximum likeli-
hood approach. Cheng and Amin [15] initially presented the maximum product of spacing
technique, demonstrating that the maximum product of spacing estimators (MPSEs) and
maximum likelihood estimators (MLEs) have identical asymptotic sufficiency, consistency
and efficiency features. The MPSEs are calculated by maximizing the product of the dif-
ferences between the CDF values at close-ordered locations. Anatolyev and Kosenok [16]
investigated the invariance property of MPSEs and discovered that it is the same as that
of MLEs. The spacing function (SF) to be maximized can be written using an observed
AP-II-HC sample as

S(µ, θ) = C
m+1

∏
i=1

[F(xi:m:n)− F(xi−1:m:n)]
d

∏
i=1

[1− F(xi:m:n)]
Ri [1− F(xm:m:n)]

Rm . (6)

Among others, Basu et al. [17,18], Nassar et al. [19] and Okasha and Nassar [20] have
all used the maximum product of spacing estimation approach to estimate the unknown
parameters of several lifetime distributions.

Though the XGW distribution is very useful in reliability analysis because its hazard
shapes can be bathtub-shaped or decreasing or increasing, the problem of estimating the XGW
parameters and/or the reliability and hazard rate parameters in the presence of incomplete
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data, such as the proposed censored sampling, has yet to be investigated. Therefore, the
impetus for this study stemmed from (i) the XGW distributions’ applicability to modeling
various data types with varying HRFs; (ii) the AP-II-HC scheme’s capacity to improve the
accuracy of statistical estimates; and (iii) the fact that statistical and reliability scientists are
interested in the performance of various estimation methods for unknown parameters, as well
as the reliability and hazard rate functions of the XGW distribution. Our research objectives
were as follows:

• Derive and explore the MLEs and MPSEs of unknown parameters, as well as the
reliability metrics and accompanying approximate confidence intervals (ACIs);

• Investigate the Bayes estimators and Bayes credible intervals (BCIs) when observed
data are gathered using both LFs and SFs and develop the MCMC method based on
the squared error (SE) loss function;

• Carry out a full simulation examination to analyze the performance of the various
estimations, as it is impossible to tell which approach theoretically generates the best
estimates;

• Discuss the best progressive sampling plane for the AP-II-HC scheme when dealing
with the XGW distribution;

• Present two applications based on real-life engineering and medical datasets to show
the superiority and flexibility of the XGW model compared to five lifetime distributions
(as competitors); namely, Xgamma, gamma, generalized exponential, Weibull and
exponential Weibull distributions.

The remainder of the article is organized as follows: The MLEs and the associated
ACIs of the model parameters, as well as the reliability indices, are provided in Section 2.
Section 3 presents the MPSEs and ACIs using the maximum product of spacing approach.
Section 4 discusses Bayesian estimations using the LF and SF. Section 5 summarizes the
simulation outcomes. In Section 6, optimal censoring plans based on three optimality
criteria are presented. Section 7 examines two applications to real data. Finally, in Section 8,
some final observations are made.

2. Likelihood Estimation

Let x1:m:n < · · · < xd:m:n < T < xd+1:m:n < · · · < xm:m:n be an AP-II-HC sample taken
from a population with a CDF, as given by Equation (2), with a progressive censoring
scheme (R1, . . . , Rd, 0, . . . , 0, Rm). Then, based on Equations (1), (2) and (5), the LF, ignoring
the constant term, can be written as

L(β|x) = θmδ2m[ϕ(xm, δ, θ)]Rm

(1 + δ)n e−δϑ(x,θ)+(θ−1)∑m
i=1 log(xi)

m

∏
i=1

(
1 +

1
2

δx2θ
i

) d

∏
i=1

[ϕ(xi, δ, θ)]Ri , (7)

where xi = xi:m:n, i = 1, . . . , m, x = (x1, . . . , xm), ϑ(x, θ) = ∑m
i=1 xθ

i + ∑m
i=1 Rixθ

i + Rmxθ
m

and ϕ(xi, δ, θ) = 1 + δ(1 + xθ
i ) +

1
2 (δxθ

i )
2.

Taking the natural logarithm of Equation (7), the log-LF can be expressed as

`(β|x) = m log(θ) + 2m log(δ)− n log(1 + δ)− δϑ(x, θ) + (θ − 1)∑m
i=1 log(xi)

+ ∑m
i=1 log

(
1 +

1
2

δx2θ
i

)
+ ∑d

i=1 Ri log[ϕ(xi, β)] + Rm log[ϕ(xm, β)]. (8)

By solving the following two normal equations simultaneously with respect to δ and
θ, one can obtain the MLEs of δ and θ, denoted by δ̂ and θ̂, respectively, as:

∂`(β|x)
∂δ

=
2m
δ
− n

1 + δ
− ϑ(x, θ) +

m

∑
i=1

x2θ
i

2 + δx2θ
i

+
d

∑
i=1

Ri ϕ1(xi, β)

ϕ(xi, β)
+

Rm ϕ1(xm, β)

ϕ(xm, β)
= 0 (9)
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and

∂`(β|x)
∂θ

=
m
θ
− δϑ1(x, θ) +

m

∑
i=1

2δ log(xi)x2θ
i

2 + δx2θ
i

+
d

∑
i=1

Ri ϕ2(xi, β)

ϕ(xi, β)
+

Rm ϕ2(xm, β)

ϕ(xm, β)
= 0, (10)

where ϕ1(xi, β) = 1 + xi + δx2θ
i , ϕ2(xi, β) = δ2 log(xi)x2θ

i and ϑ1(x, θ) = ∑m
i=1 xθ

i log(xi) +

∑m
i=1 Rixθ

i log(xi) + Rmxθ
m log(xm). It is noted that the MLEs cannot be acquired from

Equations (9) and (10) explicitly. Therefore, one can utilize any numerical procedure to
obtain the needed estimates.

Upon obtaining the MLEs δ̂ and θ̂, and based on the invariance property of the MLEs,
the MLEs of the RF and HRF can be derived directly from Equations (2) and (4) at mission
time t, respectively, as given below

R̂(t) =
e−δ̂tθ̂

(1 + δ̂)

[
1 + δ̂(1 + tθ̂) +

1
2
(δ̂tθ̂)2

]
and

ĥ(t) = θ̂δ̂2tθ̂−1

(
1 + 1

2 δ̂t2θ̂
)

[
1 + δ̂(1 + tθ̂) + 1

2 (δ̂tθ̂)2
] .

Remark 1. Using Equation (7), several results from the literature can be easily obtained as special
cases, such as

• The estimation results presented by Sen et al. [21] in the case of the XG distribution based on
progressive type-II censored sampling by setting θ = 1 and T → ∞;

• The estimation results presented by Sen et al. [1] and Saha et al. [22] in the case of the XG
distribution based on complete sampling by setting θ = 1, T → ∞, n = m and Ri = 0 for
i = 1, 2, . . . , m;

• The estimation results presented by Elshahhat and Elemary [23] in the case of the XG distribu-
tion based on AP-II-HC sampling by setting θ = 1;

• The estimation results presented by Yousof et al. [2] in the case of the XGW distribution by
setting T → ∞, n = m and Ri = 0 for i = 1, 2, . . . , m.

Regarding the interval estimation of the unknown parameters, as well as the RF
and HRF, we employ the asymptotic properties of the MLEs to construct the ACIs of
various parameters. We first use the observed Fisher information matrix to estimate the
variance-covariance matrix, which is expressed as I−1(β̂) and given by

I−1(β̂) =

[
−`20 − `12
−`21 − `02

]−1

(δ=δ̂,θ=θ̂)

=

[
V̂δ Ĉδθ

Ĉθδ V̂θ

]
, (11)

where

`20 = −2m
δ2 +

n
(1 + δ)2 −

m

∑
i=1

x4θ
i

(2 + δx2θ
i )2

+
d

∑
i=1

Ri ϕ11(xi, β)

ϕ2(xi, β)
+

Rm ϕ11(xm, β)

ϕ2(xm, β)
,

`02 = −m
θ2 − δϑ2(x, θ) +

m

∑
i=1

8δ log2(xi)x2θ
i

(2 + δx2θ
i )2

+
d

∑
i=1

Ri ϕ22(xi, β)

ϕ2(xi, β)
+

Rm ϕ22(xm, β)

ϕ2(xm, β)

and

`12 = −ϑ1(x, θ) +
m

∑
i=1

4x2θ
i log(xi)

(2 + δx2θ
i )2

+
d

∑
i=1

Ri ϕ12(xi, β)

ϕ2(xi, β)
+

Rm ϕ12(xm, β)

ϕ2(xm, β)
,
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where ϕ11(xi, β) = x2θ
i ϕ(xi, β) − ϕ2

1(xi, β), ϕ22(xi, β) = ϕ2(xi, β)[2 log(xi)ϕ(xi, β)

−ϕ2(xi, β)], ϑ2(x, θ) = ∑m
i=1 xθ

i log2(xi) + ∑m
i=1 Rixθ

i log2(xi) + Rmxθ
m log2(xm) and

ϕ12(xi, β) = ϕ2(xi, β)[2δϕ(xi, β)− ϕ1(xi, β)].
Based on the asymptotic normality of the MLEs, one can construct the ACIs of δ and θ

at the 100(1− ε)% confidence level as follows

δ̂± zε/2

√
V̂δ and θ̂ ± zε/2

√
V̂θ ,

where zε/2 is the upper (ε/2)th percentile point of the standard normal distribution. In
order to create the ACIs for the RF and HRF, we must also establish the variances for their
estimators. In our case, the delta technique is used to approximate the variances of ˆR(t)
and ˆh(t) (see the work by Greene [24] for additional information). We must first obtain
the quantities R1(t), R2(t), h1(t) and h2(t), which are the first-order derivatives of the RF
and HRF with respect to δ and θ, respectively, to achieve the necessary estimated variances
as follows

R1(t) = −
δtθe−δtθ

[4 + δ(2 + tθ + t2θ + δt2θ)]

2(1 + 2δ + δ2)
, (12)

R2(t) = −
δ2tθe−δtθ

log(t)(2 + δ)t2θ

2(1 + δ)
, (13)

h1(t) =
δθtθ [4 + 4δtθ + v(t, β)]

t(2 + 2δ + δ2t2θ + 2δtθ)2 (14)

and

h2(t) =
δ2tθ−1[4(1 + δ) + δtθ(4 + 2tθ + 4δtθ + δ2t3θ + 2δt2θ) + θ log(t)v(t, β)]

(2 + 2δ + δ2t2θ + 2δtθ)2 , (15)

where v(t, β) = 4 + 4δ + 6δt2θ + 4δ2t2θ + 4δ2t3δ + δ3t4θ .
Now, let ΨR = (R1(t), R2(t)) and Ψh = (h1(t), h2(t)) as evaluated at the MLEs δ̂

and θ̂. Then, we can obtain the approximate estimates of the variances of R̂(t) and ĥ(t),
respectively, as

V̂R ≈ [ΨRI−1(β̂)Ψ>R ] and V̂h ≈ [ΨhI−1(β̂)Ψ>h ]. (16)

Consequently, the 100(1− ε)% ACIs of RF and HRF can be expressed as

R̂(t)± zε/2

√
V̂R, and ĥ(t)± zε/2

√
V̂h,

respectively.

3. Product of Spacing Estimation

Let x1:m:n < · · · < xd:m:n < T < xd+1:m:n < · · · < xm:m:n be an AP-II-HC sample from
the XGW population with a CDF as given by Equation (2). Then, from Equations (2) and (6),
the SF, without the constant term, can be expressed as follows with xi = xi:m:n

S(β|x) = [ϕ(xm, δ, θ)]Rm e−δϑ∗(x,θ)

(1 + δ)n+1

m+1

∏
i=1

[
e−δxθ

i−1 ϕ(xi−1, β)− e−δxθ
i ϕ(xi, β)

] d

∏
i=1

[ϕ(xi, δ, θ)]Ri , (17)

where ϑ∗(x, θ) = ∑m
i=1 Rixθ

i + Rmxθ
m. The natural logarithm of Equation (17) is expressed as

s(β|x) = −(n + 1) log(1 + δ)− δϑ∗(x, θ) +
m+1

∑
i=1

log
[
e−δxθ

i−1 ϕ(xi−1, β)− e−δxθ
i ϕ(xi, β)

]
+

d

∑
i=1

Ri log[ϕ(xi, δ, θ)] + Rm log[ϕ(xm, δ, θ)]. (18)
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The MPSEs of the parameters δ and θ, denoted by δ̃ and θ̃, can be acquired by solving
the following normal equations

∂s(β|x)
∂δ

= −n + 1
1 + δ

− ϑ∗(x, θ) +
m+1

∑
i=1

∆1(xi, β)− ∆1(xi−1, β)

∆(xi−1, β)− ∆(xi, β)
+

d

∑
i=1

Ri ϕ1(xi, β)

ϕ(xi, β)

+
Rm ϕ1(xm, β)

ϕ(xm, β)
= 0 (19)

and

∂s(β|x)
∂θ

= −δϑ∗1 (x, θ) +
m+1

∑
i=1

∆2(xi, β)− ∆2(xi−1, β)

∆(xi−1, β)− ∆(xi, β)
+

d

∑
i=1

Ri ϕ2(xi, β)

ϕ(xi, β)
+

Rm ϕ2(xm, β)

ϕ(xm, β)
= 0, (20)

where ∆(xi, β) = e−δxθ
i ϕ(xi, β), ∆1(xi, β) = 0.5e−δxθ

i [δxθ
i (δx2θ

i + 2) − 2], ϑ∗1(x, θ)

= ∑m
i=1 Rixθ

i log(xi) + Rmxθ
m log(xm) and ∆2(xi, β) = 0.5δ2xθ

i e−δxθ
i log(xi)(δx2θ

i + 2). As in
the case of the MLEs, one should utilize numerical procedures to solve Equations (19) and (20)
to determine the MPSEs of δ and θ. According to Cheng and Traylor [25], the MPSEs
possess the same invariance property as the MLEs. Therefore, we can obtain the MPSEs of
the RF and HRF using this property as follows

R̃(t) =
e−δ̃tθ̃

(1 + δ̃)

[
1 + δ̃(1 + tθ̃) +

1
2
(δ̃tθ̃)2

]
and

h̃(t) = θ̃δ̃2tθ̃−1

(
1 + 1

2 δ̃t2θ̃
)

[
1 + δ̃(1 + tθ̃) + 1

2 (δ̃tθ̃)2
] .

Cheng and Amin [15] and Cheng and Traylor [25] stated that MPSEs have the same
asymptotic properties as MLEs. As a result, we can employ these properties to obtain
the ACIs of the different unknown parameters based on the MPSEs. We first estimate the
variance-covariance matrix based on δ̃ and θ̃, denoted by I−1(β̃), as follows

I−1(β̃) =

[
−s20 − s12
−s21 − s02

]−1

(δ=δ̃,θ=θ̃)

=

[
Ṽδ C̃δθ

C̃θδ Ṽθ

]
, (21)

where

s20 =
n + 1

(1 + δ)2 +
m+1

∑
i=1

∆11(xi−1, β)− ∆11(xi, β)

∆(xi−1, β)− ∆(xi, β)
−

m+1

∑
i=1

[∆1(xi, β)− ∆1(xi−1, β)]2

[∆(xi−1, β)− ∆(xi, β)]2

+
d

∑
i=1

Ri ϕ11(xi, β)

ϕ2(xi, β)
+

Rm ϕ11(xm, β)

ϕ2(xm, β)
,

s02 = −δϑ∗2(x, θ) +
m+1

∑
i=1

∆22(xi−1, β)− ∆22(xi, β)

∆(xi−1, β)− ∆(xi, β)
−

m+1

∑
i=1

[∆2(xi, β)− ∆2(xi−1, β)]2

[∆(xi−1, β)− ∆(xi, β)]2

+
d

∑
i=1

Ri ϕ22(xi, β)

ϕ2(xi, β)
+

Rm ϕ22(xm, β)

ϕ2(xm, β)

and

s12 = −ϑ∗1(x, θ)−
m+1

∑
i=1

[∆1(xi, β)− ∆1(xi−1, β)][∆2(xi, β)− ∆2(xi−1, β)]

[∆(xi−1, β)− ∆(xi, β)]2

+
m+1

∑
i=1

∆12(xi−1, β)− ∆12(xi, β)

∆(xi−1, β)− ∆(xi, β)
+

d

∑
i=1

Ri ϕ12(xi, β)

ϕ2(xi, β)
+

Rm ϕ12(xm, β)

ϕ2(xm, β)
,
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where ∆11(xi, β) = 0.5xθ
i e−δxθ

i [δxθ
i (δx2θ

i − 2xθ
i + 2) − 4], ϑ2(x, θ) = ∑m

i=1 Rixθ
i log2(xi) +

Rmxθ
m log2(xm), ∆22(xi, β) = 0.5δ2xθ

i e−δxθ
i log2(xi)[δxθ

i (δx2θ
i − 3xθ

i + 2) − 2] and

∆12(xi, β) = 0.5δxθ
i e−δxθ

i log(xi)[δxθ
i (δx2θ

i − 3xθ
i + 2)− 2].

Now, the 100(1− ε)% ACIs of δ and θ can be computed respectively as

δ̃± zε/2

√
Ṽδ and θ̃ ± zε/2

√
Ṽθ .

By approximating the estimated variances of the RF and HRF using the delta method,
we can obtain the 100(1− ε)% ACIs of R(t) and h(t), respectively, as follows

R̃(t)± zε/2

√
ṼR, and h̃(t)± zε/2

√
Ṽh,

where ṼR and Ṽh are evaluated at the MPSEs of δ and θ as defined in Equation (16).

4. Bayesian Estimation

In this section, we look at the Bayesian estimation approach to estimate the XGW
distribution’s parameters (the RF and HRF). The point and interval estimates of the various
parameters are obtained in this section using both the LF and SF. The Bayes estimates are
calculated by taking into account the SE loss function and assuming that the parameters
δ and θ are independent and a priori distributed as gamma distributions. The combined
prior distribution of δ and θ, where β = (δ, θ)T, can be expressed as follows

g(β) ∝ δa−1θc−1e−bδ−dθ ; a, b, c, d > 0. (22)

Here, we assume gamma priors, which adapt to the support of the XGW distribution’s
parameters and are thought to be more flexible than other prior distributions. Based on
the LF given by Equation (7) and the joint prior in Equation (22), one can write the joint
posterior distribution of δ and θ based on the LF as

Q(β|x) =
θm+c−1δ2m+a−1[ϕ(xm, δ, θ)]Rm

A1(1 + δ)n e−δ[b+ϑ(x,θ)]+θ[∑m
i=1 log(xi)−d]

×
m

∏
i=1

(
1 +

1
2

δx2θ
i

) d

∏
i=1

[ϕ(xi, δ, θ)]Ri , (23)

where

A1 =
∫ ∞

0

∫ ∞

0

θm+c−1δ2m+a−1[ϕ(xm, δ, θ)]Rm

(1 + δ)n e−δ[b+ϑ(x,θ)]+θ[∑m
i=1 log(xi)−d]

×
m

∏
i=1

(
1 +

1
2

δx2θ
i

) d

∏
i=1

[ϕ(xi, δ, θ)]Ri dδ dθ.

Similarly, by combining the SF given by Equation (17) and the joint prior in Equation (22),
one can write the joint posterior distribution of δ and θ using the SP as follows

B(β|x) =
δa−1θc−1[ϕ(xm, δ, θ)]Rm e−δ[ϑ∗(x,θ)+b]−dθ

A2(1 + δ)n+1

d

∏
i=1

[ϕ(xi, δ, θ)]Ri

×
m+1

∏
i=1

[
e−δxθ

i−1 ϕ(xi−1, β)− e−δxθ
i ϕ(xi, β)

]
, (24)
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where

A2 =
∫ ∞

0

∫ ∞

0

δa−1θc−1[ϕ(xm, δ, θ)]Rm e−δ[ϑ∗(x,θ)+b]−dθ

(1 + δ)n+1

d

∏
i=1

[ϕ(xi, δ, θ)]Ri

×
m+1

∏
i=1

[
e−δxθ

i−1 ϕ(xi−1, β)− e−δxθ
i ϕ(xi, β)

]
dδ dθ.

Under the SE loss function, the Bayes estimator of any function of the unknown
parameters—say, ξ(β)—using both posterior distributions can be derived, respectively,
as follows

ξ̂B(β) =
∫ ∞

0

∫ ∞

0
ξ(β)Q(β|x)dδ dθ (25)

and

ξ̃B(β) =
∫ ∞

0

∫ ∞

0
ξ(β)B(β|x)dδ dθ. (26)

The integrals offered by Equations (25) and (26) are not available in closed forms. As a
result of this, in this scenario, we must think about using the MCMC approach to generate
samples from the posterior distributions and then compute the Bayes estimates for the
unknown parameters, as well as the related credible intervals. To use the MCMC technique,
we first need to derive the full conditional distributions of the various parameters. Based
on the posterior distribution derived based on the LF as displayed in Equation (23), the full
conditional distributions of δ and θ are given, respectively, by

Q1(δ|θ, x) ∝
δ2m+a−1[ϕ(xm, δ, θ)]Rm

(1 + δ)n e−δ[b+ϑ(x,θ)]
m

∏
i=1

(
1 +

1
2

δx2θ
i

) d

∏
i=1

[ϕ(xi, δ, θ)]Ri , (27)

and

Q2(θ|δ, x) ∝ θm+c−1[ϕ(xm, δ, θ)]Rm e−δϑ(x,θ)+θ[∑m
i=1 log(xi)−d]

m

∏
i=1

(
1 +

1
2

δx2θ
i

)

×
d

∏
i=1

[ϕ(xi, δ, θ)]Ri . (28)

In a similar way, we can derive the full conditional distributions of the unknown parameters
δ and θ from the posterior distribution obtained based on the SF as given by Equation (24)
as follows

B1(δ|θ, x) =
δa−1[ϕ(xm, δ, θ)]Rm e−δ[ϑ∗(x,θ)+b]

(1 + δ)n+1

d

∏
i=1

[ϕ(xi, δ, θ)]Ri

×
m+1

∏
i=1

[
e−δxθ

i−1 ϕ(xi−1, β)− e−δxθ
i ϕ(xi, β)

]
, (29)

and

B2(θ|δ, x) = θc−1[ϕ(xm, δ, θ)]Rm e−δϑ∗(x,θ)−dθ
d

∏
i=1

[ϕ(xi, δ, θ)]Ri

×
m+1

∏
i=1

[
e−δxθ

i−1 ϕ(xi−1, β)− e−δxθ
i ϕ(xi, β)

]
(30)

respectively.
Although the full conditional distributions derived based on both the LF and SF cannot

be represented in standard forms, their graphs are equivalent to the normal distribution.
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Using, for example, (δ, θ) = (0.5, 1.5), (a, b, c, d) = (2.5, 7.5, 5, 5), (T, n, m) = (5, 100, 50)
and progressive censoring (150) (where 150 means that 1 is repeated 50 times), Figure 3
shows that the full conditional distributions in Equations (27)–(30) of δ and θ behave like
normal densities. Therefore, we can employ the Metropolis–Hastings (M-H) technique
with a normal proposal distribution to generate random samples from these distributions
in order to obtain the required estimates.
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Figure 3. Conditional PDFs of δ (left) and θ (right): (a) posterior LF-based distribution; (b) posterior
SF-based distribution.

The procedures below demonstrate how to obtain the necessary samples and the
required point and credible interval estimates. It is important to mention here that the
following steps are evaluated based on the LF, and one can easily use the same steps to
obtain the Bayes estimates using the SF, as follows

Step 1. Start with the first chain j = 1;

Step 2. Specify the initial values
(

δ(0), θ(0)
)
= (δ̂, θ̂);

Step 3. Employ Equation (27) to simulate δ(j) with a normal proposal distribution with
mean δ(j−1) and variance V̂δ by using the M-H algorithm;

Step 4. Use Equation (28) and the M-H steps to obtain θ(j) with a normal proposal distribu-
tion with mean θ(j−1) and variance V̂θ ;

Step 5. Use the obtained samples to compute R(j)(t) and h(j)(t);
Step 6. Set j = j + 1;
Step 7. Redo steps 3–6 M times to obtain[

µ(1), . . . , µ(M)
]
,

where µ = δ, θ, R(t) or h(t);
Step 8. Compute the Bayes estimate of µ using the SE loss function as

µ̂B =
1

M−M∗
M

∑
j=M∗+1

µ(j),

where M∗ is the burn-in period.



Symmetry 2023, 15, 1428 11 of 27

5. Monte Carlo Simulations

To highlight the actual behavior of the offered estimators of δ, θ, R(t) and h(t), based
on 1000 AP-II-HC samples generated from the XGW(0.5, 1.5) distribution, extensive sim-
ulations were conducted. For the distinct time t = 0.2, the plausible values for R(t) and
h(t) were taken as 0.9854 and 0.1087, respectively. Various choices for T (the threshold
point), n (the full sample size) and m (the effective censored size) and different censoring
schemes Ri, i = 1, 2, . . . , m were also utilized, such as T(= 2, 5), n(= 40, 80) and m being
determined as a failure percentage (FP) for each n as m

n × 100% = 50 and 80%. Remember
that, as soon as the number of failed units reached a specific value m, the experiment was
stopped. Moreover, to highlight the performance of removal methods, several designs for
Ri, i = 1, 2,. . . , m were used as follows

Scheme-1: R1 = n−m, Ri = 0 for i 6= 1;

Scheme-2: R m
2
= n−m, Ri = 0 for i 6= m

2
;

Scheme-3: Rm = n−m, Ri = 0 for i 6= m.

To obtain AP-II-HC data from the XGW model, for pre-specific values of T, n, m and
(R1, R2, . . . , Rm), we implemented the following generation process:

Step 1: Simulate traditional progressive type-II censored order statistics as follows:

a. Create ρi, i = 1, 2, . . . , m independent variates of size m from a uniform U(0, 1)
distribution;

b. Set τi = ρ

(
i+∑m

j=m−i+1 Rj

)−1

i , i = 1, 2, . . . , m;
c. Obtain ui = 1− τmτm−1 · · · τm−i+1 for i = 1, 2, . . . , m;
d. Obtain Xi = F−1(ui; δ, θ), i = 1, 2, . . . , m from Equation (2);

Step 2: Find d, where Xd < T < Xd+1, and ignore the other staying items Xi, i = d +
2, . . . , m;

Step 3: From [1− F(xd+1)]
−1 f (x), obtain the first-order Xd+2, . . . , Xm statistics.

Once the 1000 desired AP-II-HC samples were obtained, the classical point estimates
(including ML and MPS estimates), as well as 95% classical interval estimates (including
ACI-LF and ACI-SF estimates), were developed. To judge the performance of the proposed
density priors, we considered two separate informative sets for the hyperparameters
ai, bi, i = 1, 2; namely:

• Prior one: (a1, a2, b1, b2) = (2.5, 7.5, 5, 5);
• Prior two: (a1, a2, b1, b2) = (5, 15, 10, 10).

Following Section 4, we repeated the MCMC procedure 12,000 times and eliminated
the first 2000 times as burn-in. After collecting 10,000 MCMC samples, based on the Bayes
procedures from both likelihood-based and spacings-based estimates, the Bayes and 95%
credible interval estimates of δ, θ, R(t) and h(t) were obtained. Using R 4.2.2 software,
all frequentist and Bayes evaluations were performed using the "maxLik" (developed by
Henningsen and Toomet [26]) and "coda" (developed by Plummer et al. [27]) packages.

Specifically, the comparison between point estimates of δ (as an example) was under-
taken based on the following criteria:

• Root-mean-squared error (RMSE):

RMSE( ˆ̂δ) =

√
1

1000 ∑1000
i=1

(
ˆ̂δ(i) − δ

)2
,

• Mean relative absolute bias (MRAB):

MRAB( ˆ̂δ) =
1

1000 ∑1000
i=1

1
δ

∣∣∣ ˆ̂δ(i) − δ
∣∣∣,
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where ˆ̂δ(i) is the calculated estimate of δ at ith simulated sample.

Furthermore, the comparison of the 100(1− γ)% interval estimates of δ was under-
taken based on the following criteria:

• Average confidence length (ACL):

ACL(1−γ)%(δ) =
1

1000 ∑1000
i=1

(
U ˆ̂δ(i)
−L ˆ̂δ(i)

)
,

• Coverage percentages (CPs):

CP(1−γ)%(δ) =
1

1000 ∑1000
i=1 1(L ˆ̂δ(i)

;U ˆ̂δ(i)

)(δ),
where 1(·) is the indicator, and (L(·),U (·)) denotes the two-sided asymptotic (or Bayes
credible) interval estimates of δ. In the same way, the simulated RMSE, MRAB, ACL
and CP results for θ, R(t) or h(t) can be easily calculated.

A heat map is a graphical representation of data where the individual values contained
in a matrix can be represented by some specific colors. Thus, in Figures 4–7, the simulated
results for δ, θ, R(t) and h(t) are plotted, respectively. Also, all simulation tables are
provided in the Supplementary File. For instance, for prior one (P1), some abbreviations
are used in Figures 4–7, such as: Bayes estimates from likelihood function (BLF-P1), Bayes
estimates from spacings function (BSF-P1), Bayes credible interval from likelihood function
(BCI-LF-P1) and Bayes credible interval from spacings function (BCI-SF-P1).

From Figures 4–7, in terms of the smallest levels for the RMSEs, MRABs, ACLs and
CPs, we can note the following observations:

• As a general note, when n (or m) increased, all proposed point/interval estimates
performed better. A similar finding was also noted when ∑m

i=1 Ri was narrowed down;
• As T increased, it can be seen that:

– Both the RMSEs and MRABs for δ and θ increased while those associated with
R(t) and h(t) decreased;

– The ACLs for δ, R(t) and h(t) decreased while those associated with θ decreased;
– The opposite behavior was observed for all unknown parameters based on

CP values;

• Comparing the proposed censoring plans, the calculated estimates of δ, θ, R(t) and
h(t) were more efficient with Scheme-1 than with the others;

• Comparing the Bayesian and frequentist estimates of δ, θ, R(t) and h(t), it is clear that
the point (or interval) estimates from the former were better than those obtained from
the latter;

• Considering the behavior of the suggested priors, the Bayes inferences from prior two
were better than those created from prior one since prior two’s variance was smaller
than prior one’s;

• Comparing the proposed point estimation approaches, in most cases, the simulation
results showed that:

– For estimating the reliability time parameters R(t) and h(t), it was noted that
the MPS (along with its "BSF" ) method performed better than the likelihood
estimation (along with its "BLF") method;

– For estimating the shape parameter δ, the ML and BSF methods performed better
than the others;

– For estimating the scale parameter θ, the MPS and BLF methods performed better
than the others;

• Comparing the proposed interval estimation approaches, based on the product of
spacings methodology, the simulation results showed that the interval estimates
obtained from both asymptotic and credible interval methods for δ, θ, R(t) and h(t)
were better than the others.
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Figure 4. Heat map for the simulation outcomes of δ. (a) T = 2; (b) T = 5.
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Figure 5. Heat map for the simulation outcomes of θ. (a) T = 2; (b) T = 5.
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Figure 6. Heat map for the simulation outcomes of R(t). (a) T = 2; (b) T = 5.
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Figure 7. Heat map for the simulation outcomes of h(t). (a) T = 2; (b) T = 5.
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6. Optimum Progressive Censoring Plans

In earlier sections, we looked at classical and Bayesian estimations of the XGW pa-
rameters when samples were collected under AP-II-HC censoring. In a reliability context,
selecting the best censoring scheme from a collection of all feasible schemes that give an
extensive amount of information about the model parameter(s) of interest is an important
goal for any reliability practitioner. For this objective, Balakrishnan and Aggarwala [28]
first examined the topic of selecting the optimum life-testing censoring using various se-
tups. The term "potential schemes" in this context refers to the several (R1, . . . , Rm) choices.
According to Ng et al. [29], when the values for n (total experimental units), m (effective
sample size) and (R1, . . . , Rm) (removal pattern) are prefixed in advance, one can select the
optimal progressive type-II censoring design. Some prominent criteria were applied to
discover the best progressive censoring scheme and are given in Table 1. Table 1 shows
that criteria A-optimality and D-optimality attempt to reduce the trace and determinant of
the estimated variance–covariance matrices obtained based on both the LF and SF methods.
Furthermore, in terms of the F-optimality criterion, we want to maximize the observed
Fisher’s information values in relation to the offered MLEs (or MPSEs). The criteria in
Table 1 are evaluated with the MLEs, and one can obtain them with the MPSEs by replacing
the MLEs with the MPSEs.

Table 1. Metrics for optimum progressive plans.

Criterion Goal

A-optimality Minimize trace (I−1(β̂))
D-optimality Minimize det (I−1(β̂))
F-optimality Maximize trace (I(β̂))

7. Real-Life Applications

To demonstrate the significance and application of the presented approaches in real-
world settings and to highlight the usefulness and flexibility of the proposed model, this
section examines two real-world datasets from the engineering and medical areas.

7.1. Electronic Devices

This application involved analyzing the failure times of 18 electronic devices reported by
Wang [30] and reanalyzed by Elshahhat and Abu El Azm [31]. Each data point was divided,
for instance, by 10 as follows: 0.5, 1.1, 2.1, 3.1, 4.6, 7.5, 9.8, 12.2, 14.5, 16.5, 19.6, 22.4, 24.5,
29.3, 32.1, 33, 35, 42.

We first compared the XGW distribution from the complete electronic devices data
with five lifetime models employing various hazard rates as their competitors; namely,
the XG, gamma (G), generalized–exponential (GE), Weibull (W) and exponential–Weibull
(EW) distributions. In Table 2, all the densities of the competing models (for x > 0 and
δ, θ, α > 0), along with their author(s), are presented. To monitor the best model, six criteria
for model selection were used; namely, the (1) Kolmogorov–Smirnov (KS) (the statistic
and its p-value), (2) negative-log-likelihood (NL), (3) Akaike (A), (4) consistent Akaike (CV),
(5) Bayesian (B), and (6) Hannan–Quinn (HB) measures.

Table 2. Several competitors of the Xgamma–Weibull distribution.

Model Density Author(s)

XG(δ) δ2(1 + δ)−1(1 + 1
2 (δx2)) exp(−δx) Sen et al. [1]

G(δ, θ) (δθ/Γ(θ))xθ−1 exp(−δx) Johnson et al. [32]
GE(δ, θ) θδ(1− e−δx)θ−1 exp(−δx) Gupta and Kundu [33]
W(δ, θ) θδxθ−1 exp(−δxθ) Weibull [34]

EW(δ, θ, α) (α + δθxθ−1) exp(−(αx + δxθ)) Cordeiro et al. [35]
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Using the "AdequacyModel" package developed by Marinho et al. [36] in R 4.2.2 soft-
ware, the ML estimators with their standard errors (St.Es) for the model parameters, as
well as the fitted criteria, were acquired (see Table 3). Since the XGW distribution had
the smallest values with respect to the NL, A, CA, B, HQ and KS statistics, although it also
had the highest p-value, Table 3 shows that the XGW distribution provided the best fit
compared to all the competitor distributions. Moreover, based on the electronic devices
data, we demonstrate the superiority of the proposed model via some useful plots; namely:
(i) probability–probability (PP) plots; (ii) estimated PDFs; and (iii) estimated/empirical RFs
(see Figure 8). From Figure 8, it can be seen that the graphical presentations support the
same numerical findings as listed in Table 3. To examine the existence and uniqueness
of the calculated ML estimates of the XGW parameters, the contour of the log-likelihood
function for different choices of δ and θ based on the complete electronic devices dataset
was also plotted and is displayed in Figure 8. It indicated that the ML estimates δ̂ ∼= 0.2678
and θ̂ ∼= 0.8097 existed and were unique. Henceforward, to run any additional calcula-
tions based on electronic devices data, we propose considering these values as suitable
starting points.

Table 3. Summary fit of the XGW distribution and its competitors with electronic devices.

Model
ML (St.E)

NL A CA B HQ KS (p-Value)
δ θ α

XGW 0.2678 (0.1010) 0.8097 (0.1213) - 68.873 141.747 142.234 142.875 141.992 0.1010 (0.984)
XG 0.1529 (0.0220) - - 69.992 141.984 142.547 143.527 142.107 0.1808 (0.540)
G 1.1131 (0.3297) 0.0647 (0.0240) - 69.157 142.313 143.113 144.094 142.559 0.1205 (0.929)

GE 1.0917 (0.3343) 0.0613 (0.0181) - 69.180 142.360 143.160 144.140 142.605 0.1214 (0.925)
W 1.1451 (0.2270) 0.0371 (0.0280) - 68.999 141.999 142.799 143.780 142.244 0.1133 (0.955)

EW 0.5307 (3.4081) 0.9892 (0.0705) 0.5710 (3.4039) 69.062 144.125 145.839 146.796 144.493 0.1177 (0.940)

In Table 4, using the complete electronic devices data and based on m = 10 with
different choices for T and R, the results for different AP-II-HC samples are reported. For
example, censoring scheme (0, 0, 0, 1, 1, 1) is denoted as (03, 13). For Si, i = 1, 2, 3, the point
classical (including ML and MPS) estimates with their St.Es and 95% asymptotic interval
(including ACI-LF and ACI-SF) estimates with their interval widths (IWs) were calculated
and are provided in Table 5. Using the M-H algorithm steps, from the proposed posterior
PDFs, we simulated 50,000 MCMC iterations and discarded the first 10,000 of them. Based
on the non-informative priors of δ and θ, the Bayes estimates (with their St.Es) of δ and θ
and R(t) and h(t) (at the distinct time t = 5) were also obtained (see Table 5). Moreover,
from the 40,000 MCMC variates retained, 95% asymptotic interval (including BCI-LF and
BCI-SF) estimates with their IWs for the same unknown quantities were also computed
and are presented in Table 5. These findings show that, with regard to the lowest levels
for the St.E and IW values, the estimates created from the Bayes MCMC approach through
MCMC-LF (or MCMC-SF) methods for δ, θ, R(t) and h(t) performed better than the others.
A similar conclusion was also reached when the asymptotic intervals were compared with
the credible intervals.

Table 4. Three AP-II-HC samples from electronic devices data.

Si Scheme T(d) Rm Censored Items

S1 (42, 08) 30(10) 0 0.5, 1.1, 2.1, 4.6, 7.5, 9.8, 14.5, 19.6, 22.4, 29.3
S2 (04, 42, 04) 8.5(5) 4 0.5, 1.1, 2.1, 3.1, 4.6, 9.8, 12.2, 14.5, 16.5, 19.6
S3 (08, 42) 15.5(9) 4 0.5, 1.1, 2.1, 3.1, 4.6, 7.5, 9.8, 12.2, 14.5, 16.5
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Figure 8. The PP plots (a), fitted PDF (b), fitted RF (c) and contour of the log-likelihood (d) from the
electronic devices data.

To evaluate the convergence of the 40,000 MCMC variates simulated with the LF and
SF approaches, using S1 data as an example, the traces and Gaussian kernel densities are
shown in Figure 9 with histogram plots of δ, θ, R(t) and h(t). In each plot, the sample mean
is highlighted by a solid blue line. In each histogram, 95% BCI bounds are highlighted by
dashed lines. Figure 9 indicates that the proposed MCMC samplers converged adequately.
It also indicates that the generated posterior estimates of δ and θ were very close to being
symmetric, while those of R(t) and h(t) were negatively and positively skewed, respectively.
Moreover, using Si, i = 1, 2 datasets, the trace and histogram plots for δ, θ, R(t) and h(t)
are presented in the Supplementary File for easy access.
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Table 5. Estimates of δ, θ, R(t) and h(t) from electronic devices data.

Sample Par. ML BLF ACI-LF BCI-LF
MPS BSF ACI-SF BCI-SF

Est. St.E Est. St.E Lower Upper IW Lower Upper IW

S1 δ 0.3344 0.1343 0.2746 0.0714 0.0713 0.5976 0.5263 0.2001 0.3534 0.1533
0.2897 0.1283 0.2742 0.0418 0.0382 0.5412 0.5030 0.2000 0.3528 0.1528

θ 0.8315 0.1485 0.8867 0.0705 0.5405 1.1225 0.5820 0.8018 0.9729 0.1711
0.9115 0.1672 0.8871 0.0501 0.5837 1.2392 0.6555 0.8014 0.9728 0.1714

R(5) 0.7166 0.1093 0.7676 0.0702 0.5023 0.9309 0.4286 0.6675 0.8567 0.1892
0.7362 0.1123 0.7679 0.0577 0.5162 0.9563 0.4400 0.6688 0.8575 0.1887

h(5) 0.0711 0.0251 0.0620 0.0183 0.0218 0.1204 0.0986 0.0348 0.0969 0.0621
0.0741 0.0279 0.0620 0.0200 0.0194 0.1287 0.1093 0.0345 0.0970 0.0625

S2 δ 0.3051 0.1214 0.2509 0.0652 0.0672 0.5431 0.4758 0.1841 0.3248 0.1406
0.2795 0.1190 0.2506 0.0468 0.0462 0.5128 0.4666 0.1809 0.3273 0.1464

θ 0.7706 0.1575 0.8680 0.1069 0.4619 1.0793 0.6174 0.7836 0.9538 0.1702
0.8133 0.1693 0.8699 0.0718 0.4814 1.1452 0.6638 0.7831 0.9556 0.1725

R(5) 0.7782 0.0870 0.8054 0.0499 0.6076 0.9488 0.3412 0.7171 0.8820 0.1649
0.7913 0.0875 0.8051 0.0445 0.6198 0.9628 0.3430 0.7182 0.8811 0.1629

h(5) 0.0480 0.0162 0.0490 0.0126 0.0163 0.0797 0.0634 0.0275 0.0766 0.0491
0.0481 0.0166 0.0492 0.0127 0.0156 0.0806 0.0650 0.0278 0.0763 0.0484

S3 δ 0.3134 0.1259 0.2479 0.0747 0.0665 0.5602 0.4937 0.1802 0.3218 0.1416
0.2926 0.1254 0.2470 0.0583 0.0467 0.5384 0.4917 0.1792 0.3217 0.1425

θ 0.7418 0.1647 0.8642 0.1307 0.4190 1.0646 0.6455 0.7739 0.9521 0.1782
0.7756 0.1771 0.8671 0.1015 0.4285 1.1228 0.6942 0.7800 0.9532 0.1732

R(5) 0.7802 0.0852 0.8104 0.0505 0.6132 0.9473 0.3341 0.7256 0.8841 0.1585
0.7904 0.0860 0.8106 0.0457 0.6218 0.9590 0.3371 0.7254 0.8859 0.1605

h(5) 0.0451 0.0149 0.0472 0.0121 0.0159 0.0744 0.0584 0.0270 0.0732 0.0463
0.0454 0.0151 0.0474 0.0122 0.0157 0.0750 0.0593 0.0267 0.0736 0.0469

Following the optimum criteria provided in Table 1, from the evaluated variances
and covariances of the ML and MPS estimates obtained from the generated samples
Si, i = 1, 2, 3, the best progressive censoring was determined (see Table 6). For both LF
and SF approaches, the censoring scheme used with sample S1 was the best censoring plan
for all given criteria. The optimum progressive censoring suggested in this application
supported the results obtained in the simulation experiments.

Table 6. Optimum censoring from electronic devices data.

Scheme
Criterion

A D F

LF approach

S1 3.95 × 10−2 8.03 × 10−4 492.3706
S2 4.01 × 10−2 9.63 × 10−4 417.0246
S3 4.30 × 10−2 9.03 × 10−4 476.0067

SF approach

S1 4.28 × 10−2 7.79 × 10−4 550.3082
S2 4.44 × 10−2 9.76 × 10−4 455.4188
S3 4.71 × 10−2 9.04 × 10−4 520.8349
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(a) (b)

Figure 9. Histogram (left) and trace (right) plots for δ, θ, R(t) and h(t) from electronic devices data.
(a) LF approach; (b) SF approach.

7.2. Head and Neck Cancer

This application involved examining the survival periods (in days) of 44 individuals
with cancer of the head and neck (CHN) (see Table 7). These patients were treated using
a combination of radiotherapy and chemotherapy. This dataset was first published by
Efron [37] and previously reanalyzed by Elshahhat and Rastogi [38].

Table 7. Survival times of 44 CHN patients.

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36
63.47 68.46 74.47 78.26 81.43 84 92 94 110 112
119 127 130 133 140 146 155 159 173 179
194 195 209 249 281 319 339 432 469 519
633 725 817 1776
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To compare the XGW distribution with the other competitive models presented in
Table 2, based on the complete CHN dataset, the evaluated values for the NL, A, CA, B, HQ,
and KS (p-value) statistics are reported in Table 8. The ML estimates (along with their St.Es)
of all competing models were also computed (see Table 8). It is obvious from the complete
CHN data that the XGW distribution had the highest p-value and the smallest values
with respect to the other fitted criteria. Thus, the XGW distribution was the best choice
compared to the others. Also, it is clear from Tables 3 and 8 that the best competitive lifetime
model close to the proposed XGW distribution was the two-parameter W lifetime model.
Again, based on the CHN data, the PP plots, estimated PDF and estimated/empirical RF,
as well as the contour plot of the log-likelihood function, were plotted and are displayed
in Figure 10. As we anticipated, the data in Figure 10 supported the results presented in
Table 8. Moreover, the data in Figure 10d showed that the ML estimates δ̂ ∼= 0.1189 and
θ̂ ∼= 0.8097 existed and were unique.
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Figure 10. The PP plots (a), fitted PDF (b), fitted RF (c) and contour of the log-likelihood (d) from
CHN data.

Next, from the full CHN data, various artificial AP-II-HC samples were generated and
are reported in Table 9. Using Table 9, the offered point estimates (with their St.Es) and
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the offered interval estimates (with their IWs) of δ, θ, R(t) and h(t) at t = 0.50 could be
calculated and are listed in Table 10. Just like our settings for the MCMC sampler described
in Section 7.1, to perform the Bayesian calculations, we generated 40,000 MCMC variates
after ignoring the first 10,000 variates.

Table 8. Summary fit of the XGW distribution and its competitors from CHN data.

Model
ML (St.E)

NL A CA B HQ KS (p-Value)
δ θ α

XGW 0.1189 (0.0349) 0.6102 (0.0528) - 281.38 566.76 567.05 570.33 568.08 0.1172 (0.542)
XG 0.0132 (0.0012) - - 303.38 608.77 608.86 610.55 609.43 0.2808 (0.002)
G 1.0483 (0.1881) 0.0048 (0.0010) - 282.02 568.03 568.32 571.60 569.35 0.1439 (0.293)

GE 1.0918 (0.2222) 0.0048 (0.0009) - 281.96 567.93 568.22 571.50 569.25 0.1457 (0.279)
W 0.9239 (0.0783) 0.0070 (0.0033) - 281.86 567.71 568.00 571.28 569.04 0.1268 (0.442)

EW 0.0020 (0.0007) 1.1193 (0.0543) 0.0006 (0.0024) 283.17 572.34 572.94 577.69 574.32 0.1565 (0.208)

From Table 10, it can be seen the Bayes (point/interval) estimates of δ, θ, R(t) and h(t)
were quite close to the frequentist (point/interval) estimates. As an example, both trace
and density plots for the 40,000 MCMC estimates of δ, θ, R(t) and h(t) based on the S1
data are displayed in Figure 11. They show that the simulated MCMC samples converged
sufficiently. They also support the facts displayed in Figure 9. Additionally, the trace and
histogram plots for the same parameters using the S1 and S2 datasets were also plotted
and are given in the Supplementary File.

Table 9. Three AP-II-HC samples from CHN data.

Si Scheme T(d) Rm Censored Items

S1 (54, 020) 250(24) 0 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 68.46,
74.47, 78.26, 92, 94, 110, 127, 146, 155, 179, 194, 195, 209, 249

S2 (010, 54, 010) 75(13) 5 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47,
68.46, 74.47, 78.26, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133

S3 (020, 54) 128(22) 10 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47,
68.46, 74.47, 78.26, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133

Table 10. Estimates of δ, θ, R(t) and h(t) from CHN data.

Sample Par. ML BLF ACI-LF BCI-LF
MPS BSF ACI-SF BCI-SF

Est. St.E Est. St.E Lower Upper IW Lower Upper IW

S1 δ 0.0450 0.0214 0.0451 0.0050 0.0029 0.0870 0.0841 0.0358 0.0552 0.0194
0.0370 0.0191 0.0365 0.0041 −0.0005 0.0744 0.0749 0.0289 0.0447 0.0158

θ 0.9075 0.1020 0.9073 0.0097 0.7077 1.1074 0.3997 0.8881 0.9265 0.0385
0.9542 0.1107 0.9529 0.0089 0.7373 1.1710 0.4338 0.9356 0.9701 0.0345

R(50) 0.7671 0.0613 0.7656 0.0436 0.6469 0.8872 0.2403 0.6762 0.8464 0.1702
0.7768 0.0617 0.7835 0.0426 0.6559 0.8976 0.2417 0.6958 0.8597 0.1638

h(50) 0.0094 0.0021 0.0095 0.0019 0.0053 0.0135 0.0083 0.0061 0.0134 0.0073
0.0096 0.0022 0.0093 0.0019 0.0053 0.0139 0.0087 0.0060 0.0133 0.0074

S2 δ 0.0246 0.0154 0.0246 0.0024 −0.0056 0.0547 0.0603 0.0200 0.0295 0.0095
0.0193 0.0132 0.0192 0.0019 −0.0065 0.0450 0.0515 0.0156 0.0230 0.0074

θ 1.0278 0.1404 1.0278 0.0049 0.7525 1.3030 0.5505 1.0180 1.0375 0.0195
1.0832 0.1527 1.0830 0.0040 0.7839 1.3825 0.5985 1.0752 1.0908 0.0156

R(50) 0.8269 0.0480 0.8255 0.0327 0.7329 0.9209 0.1880 0.7578 0.8848 0.1270
0.8384 0.0472 0.8388 0.0309 0.7458 0.9310 0.1852 0.7732 0.8947 0.1215

h(50) 0.0081 0.0018 0.0082 0.0016 0.0047 0.0116 0.0069 0.0054 0.0115 0.0061
0.0081 0.0018 0.0081 0.0016 0.0046 0.0116 0.0070 0.0053 0.0114 0.0061
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Table 10. Cont.

Sample Par. ML BLF ACI-LF BCI-LF
MPS BSF ACI-SF BCI-SF

Est. St.E Est. St.E Lower Upper IW Lower Upper IW

S3 δ 0.0415 0.0233 0.0413 0.0030 −0.0042 0.0873 0.0915 0.0355 0.0473 0.0118
0.0473 0.0251 0.0473 0.0036 −0.0018 0.0964 0.0982 0.0404 0.0545 0.0141

θ 0.8684 0.1223 0.8682 0.0040 0.6286 1.1082 0.4796 0.8604 0.8760 0.0156
0.8395 0.1156 0.8394 0.0049 0.6130 1.0660 0.4530 0.8297 0.8491 0.0194

R(50) 0.8473 0.0461 0.8484 0.0217 0.7570 0.9376 0.1806 0.8038 0.8887 0.0849
0.8395 0.0466 0.8392 0.0236 0.7482 0.9307 0.1825 0.7909 0.8830 0.0921

h(50) 0.0057 0.0013 0.0057 0.0008 0.0033 0.0082 0.0049 0.0041 0.0074 0.0033
0.0058 0.0012 0.0058 0.0009 0.0033 0.0082 0.0049 0.0042 0.0076 0.0034

(a) (b)

Figure 11. Histogram (left) and trace (right) plots for δ, θ, R(t) and h(t) from CHN data. (a) LF
approach; (b) SF approach.
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Furthermore, using all samples for Si, i = 1, 2, 3 presented in Table 9, the best pro-
gressive censoring was determined and is provided in Table 11. The progressive design
used with sample S1 was the best censoring plan with respect to all the optimum criteria
considered in Table 1. Table 11 also supports the findings reported in Section 5.

Table 11. Optimum censoring from CHN data.

Scheme
Criterion

A D F

LF approach

S1 1.09 × 10−2 1.40 × 10−7 142,175.87
S2 2.00 × 10−2 2.88 × 10−7 37,671.185
S3 1.39 × 10−2 3.45 × 10−7 40,490.846

SF approach

S1 1.26 × 10−2 2.37 × 10−7 229,393.37
S2 2.35 × 10−2 3.02 × 10−7 53,316.811
S3 1.55 × 10−2 2.98 × 10−7 52,098.656

Ultimately, in the presence of adaptive type-II progressive hybrid censored informa-
tion, we can state that the analysis of the given real datasets showed that the proposed
estimation methodologies can be easily used in practical scenarios and provide a good
demonstration of the XGW distribution.

8. Concluding Remarks

This paper addressed the estimation issues involving unknown parameters, reliability
and hazard rate functions with the Xgamma–Weibull distribution using an adaptive pro-
gressive type-II censoring strategy. For this goal, traditional estimating methods, such as
likelihood and product of spacings estimates, were applied, and then Bayesian estimates
were also used based on these two methodologies. The Bayesian estimates were calculated
using independent gamma priors and the squared error loss function. The asymptotic
properties of the acquired frequentist estimates were used to create the asymptotic confi-
dence intervals for all unknown quantities. In the Bayes framework, point estimates were
obtained using MCMC techniques, and the credible intervals were calculated using the
same methodology. A simulation study was conducted under various conditions to com-
pare the outcomes of the various estimations. According to the simulation results, Bayesian
estimates outperformed conventional estimates in terms of the root-mean-squared error,
the relative absolute bias, the confidence length and the coverage percentage. Furthermore,
we provided an optimal censoring strategy based on several information measures. Finally,
two real-world datasets were analyzed to show how the proposed approaches can be used
in practice.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/sym15071428/s1, Table S1: Average estimates (1st col-
umn), RMSEs (2nd column) and MRABs (3rd column) of δ; Table S2: Average estimates (1st column),
RMSEs (2nd column) and MRABs (3rd column) of θ; Table S3: Average estimates (1st column), RMSEs
(2nd column) and MRABs (3rd column) of R(t); Table S4: Average estimates (1st column), RMSEs
(2nd column) and MRABs (3rd column) of h(t); Table S5: The ACLs (1st column) and CPs (2nd
column) of asymptotic/credible intervals of δ; Table S6: The ACLs (1st column) and CPs (2nd column)
of asymptotic/credible intervals of θ; Table S7: The ACLs (1st column) and CPs (2nd column) of
asymptotic/credible intervals of R(t); Table S8: The ACLs (1st column) and CPs (2nd column) of
asymptotic/credible intervals of h(t); Figure S1: Histogram (left) and Trace (right) plots of δ, θ, R(t)
and h(t) based on sample S2 from electronic devices data; Figure S2: Histogram (left) and Trace (right)
plots of δ, θ, R(t) and h(t) based on sample S3 from electronic devices data; Figure S3: Histogram

https://www.mdpi.com/article/10.3390/sym15071428/s1
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(left) and Trace (right) plots of δ, θ, R(t) and h(t) based on sample S2 from CHN data; Figure S4:
Histogram (left) and Trace (right) plots of δ, θ, R(t) and h(t) based on sample S3 from CHN data.
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