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Abstract: The halo phenomenon in exotic nuclei has long been an important frontier in nuclear
physics research since its discovery in 1985. In parallel with the experimental progress in exploring
halo nuclei, the covariant density functional theory has become one of the most successful tools
for the microscopic study of halo nuclei. Based on spherical symmetry, the relativistic continuum
Hartree–Bogoliubov theory describes the first halo nucleus 11Li self-consistently and predicts the
giant halo phenomenon. Based on axial symmetry, the deformed relativistic Hartree–Bogoliubov
theory in continuum has predicted axially deformed halo nuclei 42,44Mg and the shape decoupling
effects therein. Based on triaxial symmetry, recently the triaxial relativistic Hartree–Bogoliubov
theory in continuum has been developed and applied to explore halos in triaxially deformed nuclei.
The theoretical frameworks of these models are presented, with the efficacy of exploiting symmetries
highlighted. Selected applications to spherical, axially deformed, and triaxially deformed halo nuclei
are introduced.

Keywords: halo nuclei; covariant density functional theory; spherical symmetry; axial symmetry;
triaxial symmetry

1. Introduction

In 1985, Tanihata et al. [1] found a significant increase in the radius of 11Li compared to
9Li, which may correspond to an abnormal neutron distribution. In 1988, Kobayashi et al. [2]
discovered that the width of the transverse-momentum distributions of the two outer
neutrons in 11Li is extremely narrow, indicating their highly diffuse spatial distribution.
Thus, the exotic structure of 11Li was revealed; two neutrons are loosely bound around
the core of 9Li, forming a dilute neutron matter over a large spatial range. This novel
phenomenon is popularly referred to as a “neutron halo”.

The unprecedented low-density neutron matter has shaken the fundamental assump-
tion in nuclear physics—the incompressibility of nuclear matter. The radii of halo nuclei
largely deviate from the empirical formula of r0 A1/3, in which r0 ≈ 1.2 fm and A is the
mass number. As a result, the halo phenomenon rapidly attracted lots of research interest.
The relevant studies have not only propelled the worldwide development of radioactive
ion beam facilities but also advanced the improvement of nuclear models.

Further experiments have revealed the signals of halo phenomena in nuclei other than
11Li, including proton halo nuclei near the proton dripline. The identification of a halo
nucleus typically entails the observation of both an increased reaction cross section and a
narrow momentum distribution of reaction fragments [3]. However, the presence of either
one of these characteristics, along with other relevant signals, can also indicate a potential
halo candidate. To date, a total of 13 halo nuclei have been identified, and experimental
investigations have proposed 10 candidates, as depicted in Figure 1.
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Figure 1. Experimentally known nuclear landscape from helium to phosphorus, where stable nuclei
and experimentally confirmed/suggested neutron as well as proton halo nuclei/candidates are
indicated in gray, olive/green, and orange/yellow colors, respectively. Taken from Ref. [4].

On the theoretical side, numerous models have been employed to investigate halo
nuclei, including the few-body model [5,6], shell model [7,8], antisymmetrized molecular
dynamics [9,10], halo effective field theory [11,12], and density functional theory [13,14].
Among these, nuclear density functional theory has emerged as a comprehensive frame-
work for studying the properties of almost all nuclei across the nuclear landscape [15]. Its
relativistic counterpart, known as covariant density functional theory (CDFT), possesses
distinct advantages, such as the automatic inclusion of the spin degree of freedom and
the spin–orbital interaction [16], the explanation of the pseudospin symmetry in the nu-
cleon spectrum [17–22] and the spin symmetry in the antinucleon spectrum [22–24], the
natural inclusion of the nuclear magnetism [25], etc. As a result, the CDFT has garnered
considerable attention and has been successfully employed to describe the ground-state
and excited-state properties of atomic nuclei [26–33].

Symmetry breaking is an essential element of nuclear density functional theory. The
intrinsic nuclear density can break some symmetries that characterize the nuclear Hamil-
tonian. One prominent example is the spontaneous breaking of symmetry within the
mean field, which gives rise to the concept of nuclear deformation. In other words, the
intrinsic density distribution of a nucleus can be non-spherical, incorporating important
correlations into the mean-field wave function in an economical manner. The notion of
nuclear deformation has proven valuable in interpreting many low-lying excited states [34].
In many investigations, one usually begins with a mean-field solution that assumes spatial
symmetry, and subsequently restores any broken symmetries as necessary using projection
methods, such as the angular momentum projection (AMP) technique.

The pairing interaction in weakly bound nuclei can scatter nucleons from bound states
to continuum states. This coupling to the continuum can lead to a more diffuse density
distribution, and the location of the dripline might be affected. Therefore, in the study of
halo nuclei, it is essential to consider not only the nuclear shape dominated by the mean
field, but also the important roles played by pairing correlations and continuum effects.

Based on the CDFT, assuming spherical symmetry and self-consistently considering the
pairing correlations and continuum effects, the relativistic continuum Hartree–Bogoliubov
(RCHB) theory is capable of describing spherical halo nuclei [14,35]. The RCHB theory
provided a microscopic description of the neutron halo in 11Li [14], predicted the existence
of giant halos [36], and explored the halo phenomena in hypernuclei [37]. Recently, the first
relativistic nuclear mass table incorporating the continuum effects has been constructed
based on the RCHB theory [38].
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Except for doubly magic nuclei, most nuclei exhibit deviations from a spherical shape.
To adequately describe deformed halo nuclei, the deformed relativistic Hartree–Bogoliubov
theory in continuum (DRHBc) has been developed [39–42]. The DRHBc theory not only
inherits the advantageous treatment of pairing correlations and continuum effects from the
RCHB theory but also incorporates the axial deformation degrees of freedom by assuming
axial symmetry. The success of the DRHBc theory for nuclear halos was demonstrated in
the description of halo phenomena in 17,19B [43,44], 15,19,22C [45,46], and 31Ne [47] as well
as the prediction of deformed halo nuclei 39Na [4] and 42,44Mg [39,40,48]. Currently, efforts
are underway to construct a nuclear mass table that incorporates both deformation and
continuum effects based on the DRHBc theory [49–54].

Deviations from axial symmetry in the intrinsic density, known as triaxial distributions,
are of significant interest in enhancing the understanding of the mechanisms underlying
nuclear deformation. Recently, the triaxial relativistic Hartree–Bogoliubov theory in contin-
uum (TRHBc) has been developed, which incorporates the triaxial deformation degrees of
freedom, pairing correlations, and continuum effects in a microscopic and self-consistent
way [55]. The TRHBc theory has explored the existence of triaxially deformed halo nuclei
and predicted 42Al to be a candidate [55].

This paper is organized as follows. Section 2 presents the basic framework of the CDFT
and shows how symmetry simplifies the formalism of the RCHB, DRHBc, and TRHBc
theories. Section 3 introduces the background of the development of these theories and
their first applications to spherical, axially deformed, and triaxially deformed halo nuclei.
Section 4 gives a summary.

2. Symmetries in the CDFT for Halo Nuclei
2.1. Basic Framework of the CDFT

Taking the point-coupling density functional as an example, the CDFT starts from the
Lagrangian density [56]

L =ψ̄(iγµ∂µ −M)ψ− 1
2

αS(ψ̄ψ)(ψ̄ψ)− 1
2

αV(ψ̄γµψ)(ψ̄γµψ)− 1
2

αTV(ψ̄~τγµψ)(ψ̄~τγµψ)

− 1
2

αTS(ψ̄~τψ)(ψ̄~τψ)− 1
3

βS(ψ̄ψ)3 − 1
4

γS(ψ̄ψ)4 − 1
4

γV [(ψ̄γµψ)(ψ̄γµψ)]2

− 1
2

δS∂ν(ψ̄ψ)∂ν(ψ̄ψ)− 1
2

δV∂ν(ψ̄γµψ)∂ν(ψ̄γµψ)− 1
2

δTV∂ν(ψ̄~τγµψ)∂ν(ψ̄~τγµψ)

− 1
2

δTS∂ν(ψ̄~τψ)∂ν(ψ̄~τψ)− 1
4

FµνFµν − eψ̄γµ 1− τ3

2
Aµψ,

(1)

where M is the nucleon mass, e is the charge unit, Aµ and Fµν are, respectively, the four-
vector potential and field strength tensor of the electromagnetic field, and α, β, γ, and
δ represent the coupling constants for different channels with the subscripts S, V, and
T standing for scalar, vector, and isovector, respectively. The isovector-scalar channel
including the terms αTS and δTS in Equation (1) are usually neglected since they do not
improve the description of nuclear ground-state properties [57].

The energy density functional can be constructed by assuming the ground-state wave
function as the quasiparticle vacuum

|Φ〉 = ∏
k

βk|0〉, (2)

where |0〉 is the bare vacuum and βk is the quasiparticle annihilation operator. The quasi-
particle operators β†

k and βk are defined by a unitary Bogoliubov transformation from
particle operators c†

l and cl of an arbitrary complete and orthogonal basis,

β†
k = ∑

l
(Ulkc†

l + Vlkcl), (3)

where U and V are quasiparticle wave functions.
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The variation in the energy density functional leads to the relativistic Hartree–Fock–
Bogoliubov equation, (

ĥD − λτ ∆̂
−∆̂∗ −ĥ∗D + λτ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (4)

which treats the nuclear mean field and pairing correlations on the same footing. In most
cases, only the Hartree (direct) terms are considered, and the Fock (exchange) terms are
neglected by assuming that their effects could be absorbed in the adjustments of the
coupling constants of energy density functionals. This paper will also be limited to the
relativistic Hartree–Bogoliubov (RHB) framework. Details on the relativistic Hartree–Fock–
Bogoliubov theory and its applications can be found in Refs. [58–60].

In Equation (4), ĥD is the Dirac Hamiltonian, ∆̂ is the pairing field, λτ is the Fermi
surface for the neutron or proton (τ = n or p), and Ek is the quasiparticle energy. The Dirac
Hamiltonian reads

hD(r) = α · p + V(r) + β[M + S(r)], (5)

with the scalar and vector potentials

S(r) = αSρS + βSρ2
S + γSρ3

S + δS∆ρS, (6)

V(r) = αVρV + γVρ3
V + δV∆ρV + eA0 + αTVτ3ρ3 + δTVτ3∆ρ3, (7)

constructed by various densities

ρS(r) = ∑
k>0

V†
k (r)γ0Vk(r),

ρV(r) = ∑
k>0

V†
k (r)Vk(r),

ρ3(r) = ∑
k>0

V†
k (r)τ3Vk(r).

(8)

The pairing field is
∆(r1, r2) = Vpp(r1, r2)κ(r1, r2), (9)

where the spin and isospin degrees of freedom are not shown for simplicity, Vpp is the
pairing force, and κ is the pairing tensor [61]. In the CDFT, a zero-range density-dependent
force and a finite-range Gogny or separable force are usually employed in the pairing
channel [35,62,63].

After the RHB equation is iteratively solved, one can calculate the total energy of a
nucleus by

ERHB = ∑
k>0

(λτ − Ek)v2
k − Epair

−
∫

d3r
(

1
2

αSρ2
S +

1
2

αVρ2
V +

1
2

αTVρ2
3

+
2
3

βSρ3
S +

3
4

γSρ4
S +

3
4

γVρ4
V +

1
2

δSρS∆ρS

+
1
2

δVρV∆ρV +
1
2

δTVρ3∆ρ3 +
1
2

ρpeA0
)

,

(10)

where
v2

k =
∫

d3rV†
k (r)Vk(r), (11)

and
Epair = Tr(∆κ) (12)
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is the pairing energy. The root-mean-square (rms) radius is calculated as

Rrms = 〈r2〉1/2 =

√∫
r2ρv(r)d3r∫
ρv(r)d3r

. (13)

The intrinsic quadrupole moments are calculated as

Q20 = 〈r2Y20〉 =
∫

r2Y20ρv(r)d3r,

Q22 =
1
2
〈r2(Y22 + Y2−2)〉 =

1
2

∫
r2(Y22 + Y2−2)ρv(r)d3r,

(14)

which can be used to extract the deformation parameters β and γ of a nucleus. For
spherical nuclei, β = 0 and γ = 0. For axially deformed nuclei, γ = 0 and the quadrupole
deformation parameter β2 is commonly used instead of β. For triaxially deformed nuclei,
both β and γ take nonzero values.

The single-particle levels in the canonical basis |ψi〉 are very useful to study the nuclear
properties in a microscopic way. These are eigenstates of the density matrix ρ̂ = V∗VT and
the corresponding eigenvalues are their occupation probabilities [61]. In general, |ψi〉 is not
an eigenstate of the Dirac Hamiltonian ĥD. The expectation value 〈ψi|ĥD|ψi〉 is referred to
as its single-particle energy.

2.2. Solving the RHB Equation

Solving the RHB equation is usually transformed into a matrix diagonalization prob-
lem in the harmonic oscillator (HO) basis [64], because the HO potential can be easily
solved and the analytical form of the HO wave function can bring some convenience in
the matrix element calculation. However, due to the incorrect asymptotic behavior of HO
wave functions, the expansion in a localized HO basis is incapable of describing weakly
bound nuclei with diffuse spatial density distributions, e.g., halo nuclei. To improve the
asymptotic behavior of HO wave functions, a transformed HO basis has been proposed in
Refs. [65,66] via a local scaling transformation.

Solutions in coordinate space can properly describe the asymptotic behavior of wave
functions. For nuclei with small separation energies, the coordinate-space calculations
in large boxes are found to be more effective than the transformed HO basis [67]. How-
ever, only the RHB equation assuming spherical symmetry has been solved in coordinate
space [14,68]. Solving the deformed RHB equation in coordinate space is extremely difficult
if not impossible [69].

A Woods–Saxon basis, whose wave function has an appropriate asymptotic behavior,
was proposed as a reconciler between the HO basis and coordinate space [70]. It is obtained
by solving the Schrödinger equation or the Dirac equation containing spherical Woods–
Saxon potentials with box boundary conditions, and is correspondingly referred to as the
Schrödinger Woods–Saxon (SWS) or the Dirac Woods–Saxon (DWS) basis. For spherical
nuclei, the solution of the relativistic Hartree equations in the SWS or DWS basis is found
to be almost equivalent to that in coordinate space [70]. However, the DWS basis expansion
is more straightforward in the CDFT because there is no need to expand the upper and
lower components of the relativistic wave function separately. It turns out that the DWS
basis expansion is more efficient than the SWS one in solving the relativistic Hartree
equations [70]. Both SWS and DWS bases have been widely applied to various nuclear
models to study weakly bound nuclei [58–60,71,72]. Recently, an optimized DWS basis
whose corresponding potential is close to the nuclear mean field is proposed, and its basis
space required for convergence is substantially reduced compared to the original one [73].

The wave function of the DWS basis can be written as

|nκm〉 = ip Rnκ(r, p)
r

Y l(p)
κm (Ω, s), (15)
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where n, κ, and m are its quantum numbers, which will be introduced below. r, s, and p
are the spatial coordinate, spin, and index (p = 1 or 2) for the upper or lower component,
respectively. Rnκ is the radial wave function and n is its node number. Y l

κm is the spinor
spherical harmonic,

Y l
κm(Ω, s) = ∑

ml ,ms

〈1
2

mslml |jm〉Ylml
(Ω)χ 1

2 ms
(s), (16)

where Ylml
is the spherical harmonic function, χ 1

2 ms
is the spin wave function, l is the

orbital angular momentum, j is the total angular momentum, and ml , ms, and m are the
third components of l, s, and j, respectively. The quantum number κ is given by the parity
π and j, κ = π(−1)j+1/2(j + 1/2). The orbital angular momenta for upper and lower
components are

l(1) = j +
1
2

sgn(κ), l(2) = j− 1
2

sgn(κ), (17)

respectively.

2.3. Spherical Symmetry

The spherical RHB equation was solved in coordinate space in the RCHB theory. With
spherical symmetry, the quasiparticle wave function in coordinate space can be written as

Uk =
1
r

(
iGk

U(r)Y l
κm(Ω, s)

Fk
U(r)(σ · r̂σ · r̂σ · r̂)Y l

κm(Ω, s)

)
χt(t), Vk =

1
r

(
iGk

V(r)Y l
κm(Ω, s)

Fk
V(r)(σ · r̂σ · r̂σ · r̂)Y l

κm(Ω, s)

)
χt(t), (18)

where G and F are radial wave functions and χt is the isospin wave function. The angular
part can be dealt with analytically, and the RHB equation is reduced to a set of integral-
differential equations for radial wave functions [35],

dGU(r)
dr

+
κ

r
GU(r)− (E + λ−V(r) + S(r))FU(r) + r

∫
r′dr′∆F(r, r′)FV(r′) = 0,

dFU(r)
dr

− κ

r
FU(r) + (E + λ−V(r)− S(r))GU(r) + r

∫
r′dr′∆G(r, r′)GV(r′) = 0,

dGV(r)
dr

+
κ

r
GV(r) + (E− λ + V(r)− S(r))FV(r) + r

∫
r′dr′∆F(r, r′)FU(r′) = 0,

dFV(r)
dr

− κ

r
FV(r)− (E− λ + V(r) + S(r))GV(r) + r

∫
r′dr′∆G(r, r′)GU(r′) = 0,

(19)

which can be solved using the shooting method with Runge—Kutta algorithms. These
quasiparticle wave functions can be used to calculate various densities (8) and the pairing
tensor so as to construct new potentials (6,7) and the pairing field (9) during the iterative
solution of the RHB equation. With spherical symmetry, all these quantities only depend
on the radial coordinate r such that the solving process is largely simplified.

2.4. Axial Symmetry

The axial RHB equation was solved in the DWS basis in the DRHBc theory. With
the DWS basis, solving the RHB equation is equivalent to the diagonalization of the RHB
matrix. For axially deformed nuclei with spatial reflection symmetry, π and m are good
quantum numbers. Therefore, the RHB matrix can be decomposed into different mπ blocks.
Moreover, because of time-reversal symmetry, one only needs to diagonalize the RHB
matrix in each positive-m block,(

A− λτ B
B† −A∗ + λτ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (20)
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where the matrix elements are

A = h(m)
D(nκ)(n′κ′) = 〈nκm|hD|n′κ′m〉, (21)

B = ∆(m)
(nκ)(n′κ′) = 〈nκm|∆|n′κ′m〉. (22)

Details for the calculation of RHB matrix elements can be found in Ref. [40]. Note that for
odd–mass or odd–odd nuclei, the equal filling approximation that conserves time-reversal
symmetry is often adopted [41,54,74].

The obtained eigenvectors from the diagonalization process correspond to the expan-
sion coefficients of quasiparticle wave functions in the DWS basis

Uk = (u(m)
k,(nκ)

), Vk = (v(m)
k,(nκ)

). (23)

From these coefficients and the basis wave functions, new densities and potentials can be
calculated, which are axially deformed and expanded in terms of Legendre polynomials in
the DRHBc theory [39,40,75],

f (r) = ∑
λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, · · · , (24)

with
fλ(r) =

2λ + 1
4π

∫
dΩ f (r)Pλ(Ω). (25)

They only depend on the radial coordinate r and the polar angle θ because of axial sym-
metry. The expansion order λ is restricted to be even numbers due to the spatial reflection
symmetry, which will be explained below.

2.5. Triaxial Symmetry

The triaxial RHB equation has been solved in the DWS basis in the TRHBc theory.
In this case, m is no longer a quantum number due to the breaking of axial symmetry.
Therefore, the RHB matrix is decomposed into π = + and π = − blocks.

The triaxially deformed densities and potentials depend on not only r and θ but also
the azimuth angle ϕ. They are expanded in terms of spherical harmonic functions in the
TRHBc theory,

f (r) = ∑
λµ

fλµ(r)Yλµ(θ, ϕ), λ = 0, 1, 2, · · · , µ = −λ,−λ + 1, · · · , λ. (26)

Symmetry analysis can provide limitations on the expansion orders λ and µ in
Equation (26). Under the spatial reflection transformation,

P̂ f (r) = P̂ ∑
λµ

fλµ(r)Yλµ(θ, ϕ)

= ∑
λµ

fλµ(r)Yλµ(π − θ, π + ϕ)

= ∑
λµ

fλµ(r)(−1)λYλµ(θ, ϕ).

(27)

Therefore, the spatial reflection symmetry limits λ to being even numbers. This limitation
also applies to Equation (24). Under the mirror transformation with respect to the xy plane,
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P̂zV(r) = P̂z ∑
λµ

fλµ(r)Yλµ(θ, ϕ)

= ∑
λµ

fλµ(r)Yλµ(π − θ, ϕ)

= ∑
λµ

fλµ(r)(−1)λ+µYλµ(θ, ϕ).

(28)

Therefore, the mirror symmetry with respect to the xy plane limits λ + µ to being even
numbers. Considering the limitation on λ by the spatial reflection symmetry, here µ can
also only be even numbers. Under the mirror transformation with respect to the yz plane,

P̂xV(r) = P̂x ∑
λµ

fλµ(r)Yλµ(θ, ϕ)

= ∑
λµ

fλµ(r)Yλµ(θ, π − ϕ)

= ∑
λµ

fλµ(r)Yλ−µ(θ, ϕ).

(29)

Therefore, the mirror symmetry with respect to the yz plane limits the +µ component to
the same as the −µ one, i.e., fλµ(r) = fλ−µ(r). The mirror symmetry with respect to the xz
plane also gives this limitation, because these symmetries are not independent; they satisfy
P̂ = P̂x P̂y P̂z. Finally, for triaxial nuclei, the expansion (26) can be simplified by symmetry
analysis as

f (r) = f00(r)Y00(Ω) +
µ=2,4,··· ,λ

∑
λ=2,4,···

fλµ(r)[Yλµ(Ω) + Yλ−µ(Ω)]

= f00(r)Y00(Ω) +
µ=2,4,··· ,λ

∑
λ=2,4,···

2 fλµ(r)Re[Yλµ(Ω)].

(30)

3. Applications to Halo Nuclei
3.1. The RCHB Theory

Since the discovery of the neutron halo in 11Li, considerable efforts have been devoted
to describing this nucleus in a microscopic way. Based on the Skyrme–Hartree–Fock [76,77]
and the relativistic mean field [78] models, a qualitative description of the observed halo
features in 11Li could be achieved by an ad hoc renormalization of the mean-field potential
to reproduce the neutron separation energies or the radius. A three-body quasiparticle
continuum random-phase approximation calculation [79] takes into account the pairing
correlations and quantitatively reproduces the radius of 11Li, but a structureless core of 9Li
that neglects polarization effects is assumed. A fully self-consistent description of 11Li is
achieved by the RCHB theory [14], which takes into account the pairing correlations and
continuum effects.

With the density functional NL2 and a zero-range density-dependent pairing force,
the RCHB theory reproduces both the binding energies and the matter radii for Li isotopes.
As shown in Figure 2, the RCHB calculated neutron density distribution for 11Li is much
more diffuse than that of 9Li and reproduces the experimental results within uncertainties.
The neutron halo in 11Li contributes to the long tail of its density distribution and causes
the sudden increase in the radius.
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Figure 2. Calculated and experimental density distributions in 11Li and 9Li. The solid line shows the
result of 11Li, while the dashed line corresponds to the calculation of 9Li. The shaded area gives the
experimental results with error bars. Taken from Ref. [14].

A microscopic study of the single-particle levels in the canonical basis for 11Li reveals
that the pairing correlations cause a partial occupation of the very weakly bound ν1p1/2
orbital and the ν2s1/2 orbital embedded in the continuum. By analyzing the rms radii of
different orbitals and their contributions to the total rms radius, it was found that the 2s1/2
orbital plays a crucial role in the formation of the neutron halo in 11Li. More detailed results
and discussion can be found in Ref. [14].

3.2. The DRHBc Theory

Around 2000, halos in deformed nuclei began to attract increasing attention. However,
there had been controversy over the existence of deformed halos. The calculation based
on a spherical Woods–Saxon potential suggests that all drip-line nuclei are spherical [80].
The calculation based on an axially deformed Woods–Saxon potential raises doubt about
the existence of deformed halos because the s1/2 component becomes overwhelmingly
dominant in the wavefunctions of mπ = 1/2+ orbitals as their binding energies approach
zero [81]. The calculation based on a three-body model indicates that it is unlikely to find
deformed halo nuclei near the dripline because the correlations between nucleons and
those due to the deformation/excitation of the core inhibit the formation of halos [82]. To
resolve the controversy, the experimental evidence and further theoretical investigations
based on microscopic nuclear models are indispensable. In 2010, the DRHBc theory was
developed, which self-consistently considers the axial deformation, pairing correlations,
and continuum effects [39]. The deformed halos in neutron-rich magnesium isotopes are
predicted and the shape decoupling between the core and the halo is illustrated by the
DRHBc theory [39,40]. Later, the experimental evidence for deformed halo nuclei 31Ne [83]
and 37Mg [84,85] was reported in 2014.

Figure 3 shows the DRHBc calculated density distributions for 44Mg with the density
functional NL3. In Figure 3a, owing to the large neutron excess, the neutron density extends
much farther in space than the proton density and shows a halo structure. The neutron
density is decomposed into the contribution of the core in Figure 3b and that of the halo in
Figure 3c. The core is prolate while the halo has an oblate deformation, which is so-called
shape decoupling. This shape decoupling is considered an interesting phenomenon near
the dripline to be detected in future experiments [86]. Details on the prediction of the
neutron halo and shape decoupling in 44Mg can be found in Ref. [39].
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Figure 3. Density distributions of 44Mg with the z axis as the symmetry axis. (a) The proton density
(for x < 0) and the neutron density (for x > 0); (b) the density of the neutron core; and (c) the density
of the neutron halo. In each plot, a dotted circle is drawn to guide the eye. Taken from Ref. [39].

Although magnesium isotopes heavier than 40Mg are yet to be produced in the labora-
tory [87] and the prediction is to be verified, the DRHBc description is in good agreement
with the existing data of binding energies, neutron separation energies, matter radii, and
quadrupole deformations for magnesium isotopes [40,48,53]. Recently, the DRHBc theory
achieved a microscopic, self-consistent, and density-functional independent description of
the deformed p-wave neutron halo in 37Mg [88].

3.3. The TRHBc Theory

Non-axial deformation, i.e., triaxial deformation, is one of the fundamental deforma-
tion degrees of freedom in atomic nuclei. Its importance has been demonstrated in nuclear
fission [89], nuclear chirality [90], and wobbling motion [34]. Recently, the information
on nuclear deformation has been extracted from relativistic heavy-ion collision experi-
ments [91], and the evidence of the triaxial structure in 129Xe has been revealed at the CERN
Large Hadron Collider [92], which greatly stimulates research interest in triaxial nuclei.
The existence of the halo phenomenon in triaxial nuclei is an interesting but less explored
topic. In 2021, calculations based on Woods–Saxon potentials pointed out that the region of
halo nuclei might be extended because the triaxial deformation allows the appearance of s
or p wave components in some weakly bound orbitals [93]. In 2022, the TRHBc theory was
developed, which considers the triaxial deformation, pairing correlations, and continuum
effects in a microscopic and self-consistent way [55]. The TRHBc theory has predicted that
42Al is a triaxial halo nucleus and there is a novel shape decoupling on the triaxial level
between its core and halo.

The experimental proton drip line and the available data of neutron separation energies
and charge radii for aluminum isotopes are well reproduced by the TRHBc theory with
the density functionals PC-PK1, NL3*, NL-SH, and PK1. The neutron-richest odd–odd
aluminum isotope observed so far, 42Al [87], is predicted to be triaxially deformed with
β = 0.35 and γ = 42◦. Its one-neutron separation energy is predicted to be 0.68 MeV,
in agreement with the AME2020 [94], and the neutron rms radius is 3.94 fm, remarkably
larger than the empirical value. Figure 4 displays the neutron density distributions in
different planes contributed by the core and the halo of 42Al. It can clearly be seen that the
halo density extends much farther than the core, particularly in the yz plane, supporting
a triaxial halo. Quantitatively, the rms radii are 5.26 fm for the halo and 3.85 fm for the
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core; the deformation parameters (β, γ) are (0.79, −23◦) for the halo and (0.38, 50◦) for the
core. Here, the negative value of γ for the halo means that the y axis is the intermediate
axis while x is the short one, which is just the reverse of the case for the core. With the
corresponding rms radius, β and γ, schematic pictures are also given in Figure 4, where
the short, intermediate, and long axes can be clearly distinguished. The novel shape
decoupling between the core and the halo in 42Al includes the change in the deformation
and the exchange of the intermediate and short axes. More detailed results and discussions
on exploring triaxial halo nuclei can be found in Ref. [55].

Figure 4. Neutron density distributions in xy, xz, and yz planes contributed by the core (a–c) and
the halo (d–f) of 42Al. In each plot, a circle in a dotted line is drawn to guide the eye. With the rms
radius and deformation parameters, β and γ from the densities, the corresponding schematic shapes
for the core and the halo are given in the left, in which s, i, and l, respectively, represent the short,
intermediate, and long axes. Taken from Ref. [55].

4. Summary and Prospect

Since the discovery of the halo phenomenon in 11Li, the study of halo nuclei has always
been one of the most important topics in both experimental and theoretical nuclear physics.
In tandem with advancements in experimental investigation, the CDFT has achieved great
success in describing and predicting halo nuclei. Based on spherical symmetry, the RCHB
theory has described the first halo nucleus 11Li self-consistently and predicted the giant
halo phenomenon. Based on axial symmetry, the DRHBc theory has many applications to
deformed halo nuclei, including the prediction of deformed halo nuclei 39Na and 42,44Mg
and the shape decoupling phenomena therein, the description of deformed halo nuclei
17,19B, 15,19,22C, 31Ne, and 37Mg, etc. Based on triaxial symmetry, the TRHBc theory has been
recently developed and applied to explore halos in triaxially deformed nuclei. In this paper,
the basic framework of the CDFT, the methodology for solving the RHB equation, and the
roles of symmetries in simplifying the formalism of the RCHB, DRHBc, and TRHBc theories
are presented in Section 2. The background of the development of these theories and their
first applications to spherical (11Li), axially deformed (44Mg), and triaxially deformed (42Al)
halo nuclei are introduced in Section 3.

The shape decoupling between the core and the halo in deformed halo nuclei imme-
diately attracted the attention of experimental physicists once predicted [86]. Its concept
was further extended beyond the originally proposed prolate–oblate shape decoupling
to those on the triaxial [55] and higher-order deformation (e.g., hexadecapole) [88] levels.
However, the experimental manifestations associated with shape decoupling phenomena
were not yet identified. It is hoped that the future precise measurements of nuclear density
distributions or scattering experiments utilizing hadronic probes will unravel the mystery
surrounding shape decoupling in deformed halo nuclei.
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How can the excited states in halo nuclei be described? In 2021, the AMP method was
implemented in the DRHBc theory to explore the rotational excitation of deformed halo
nuclei [95,96]. The ground-state rotational bands of 36,38,40Mg are reproduced reasonably
well [96], and it has been demonstrated that the deformed halo structure persists from the
ground state in the intrinsic frame to collective states [95]. In 2022, the finite amplitude
method (FAM) based on the DRHBc theory was developed and applied to study the
isoscalar giant monopole resonance of even–even nuclei in the calcium isotopic chain [97],
where giant halos were predicted near the neutron dripline about twenty years ago [98,99].
Due to the advantages of the DRHBc theory in describing exotic nuclei, the DRHBc-
FAM calculated results are closer to the energy-weighted sum rule than the calculations
on the HO basis [97]. The DRHBc theory was also extended to go beyond the mean-
field framework by performing the two-dimensional collective Hamiltonian [100], which
paves an alternative means of investigating the collective states in halo nuclei. Similarly,
these approaches can be developed based on the new TRHBc theory, enabling the future
exploration of rotational bands, vibrational excitations, and shape transitions in triaxial
halo nuclei.
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