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Abstract: Computer vision has become an essential interdisciplinary field that aims to extract valuable
information from digital images or videos. To develop novel concepts in this area, researchers have
employed powerful tools from both pure and applied mathematics. Recently, the use of fractional
differential equations has gained popularity in practical applications. Moreover, symmetry is a
critical concept in digital image processing that can significantly improve edge detection. Investing
in symmetry-based techniques, such as the Hough transform and Gabor filter, can enhance the
accuracy and robustness of edge detection algorithms. Additionally, CNNs are incredibly useful in
leveraging symmetry for image edge detection by identifying symmetrical patterns for improved
accuracy. As a result, symmetry reveals promising applications in enhancing image analysis tasks
and improving edge detection accuracy. This article focuses on one of the practical aspects of research
in computer vision, namely, edge determination in image segmentation for water-repellent images
of insulators. The article proposes two general structures for creating fractional masks, which are
then calculated using the Atangana–Baleanu–Caputo fractional integral. Numerical simulations are
utilized to showcase the performance and effectiveness of the suggested designs. The simulations’
outcomes reveal that the fractional masks proposed in the study exhibit superior accuracy and
efficiency compared to various widely used masks documented in the literature. This is a significant
achievement of this study, as it introduces new masks that have not been previously used in edge
detection algorithms for water-repellent images of insulators. In addition, the computational cost
of the suggested fractional masks is equivalent to that of traditional masks. The novel structures
employed in this article can serve as suitable and efficient alternative masks for detecting image edges
as opposed to the commonly used traditional kernels. Finally, this article sheds light on the potential
of fractional differential equations in computer vision research and the benefits of developing new
approaches to improve edge detection.

Keywords: computer vision; fractional differential equations; image segmentation; edge detection;
Atangana–Baleanu–Caputo fractional integral; computational efficiency

1. Introduction

In recent years, there has been a notable surge in utilizing symmetry for mathematical
modeling and analysis of significant real-world problems. Symmetry is a concept that has
been utilized in science and technology for centuries. It refers to the property of an object
or system that remains invariant under certain transformations, such as reflection, rotation,
or translation. Symmetry can be found in various natural phenomena, and it has been used
to develop many technological applications. One of the most well-known applications of
symmetry is in crystallography. The study of crystals involves analyzing their symmetrical
properties to understand their atomic structure and chemical composition. The discovery
of X-ray crystallography in the early 20th century enabled scientists to analyze the internal
structure of crystals with unprecedented detail. By studying the symmetrical arrangement
of atoms within a crystal, scientists can determine its physical and chemical properties,
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including its strength, electrical conductivity, and optical behavior. Another important
application of symmetry is in the field of physics. Many fundamental laws of nature are
based on symmetries. For example, the principle of conservation of energy is based on
the fact that physical laws are invariant under time translation. Similarly, the principle
of conservation of momentum is based on the fact that physical laws are invariant under
spatial translation. The concept of symmetry has also contributed significantly to the
development of modern particle physics, where symmetries are used to describe the
interactions between subatomic particles. In engineering, symmetry is often used to achieve
balance and stability in structures. For example, in civil engineering, symmetric designs are
used to distribute loads evenly across buildings, bridges, and other structures. Similarly,
in mechanical engineering, symmetric designs are used to achieve balanced movement in
machinery and vehicles. Symmetry is also increasingly being used in computer science and
artificial intelligence. The use of symmetry can help reduce the complexity of algorithms,
making them more efficient and easier to implement. Some machine learning algorithms
use symmetry to identify patterns in data and make predictions about future outcomes.

Image processing refers to the manipulation or analysis of digital images using algo-
rithms and mathematical operations. Image processing comprises several operations. For
example, image denoising is the process of reducing or removing unwanted noise from
a digital image, resulting in a cleaner and visually more appealing picture [1–3]. Image
segmentation is the process of dividing an image into multiple distinct regions or objects
based on their visual characteristics, enabling more precise analysis and understanding of
the image content [4]. Image inpainting refers to the restoration or filling in of missing or
damaged parts of an image using surrounding information, resulting in a visually coherent
and complete representation of the original image [5]. Image compression is the tech-
nique of reducing the file size of an image while preserving its visual quality by removing
redundant or nonessential data, making it more efficient for storage and transmission
purposes [6]. Image reconstruction refers to the process of recovering a high-quality image
from incomplete or degraded input data, often achieved through advanced algorithms
and techniques that fill in missing information or enhance the image based on available
data [7,8]. Also, video signal processing involves manipulating and enhancing video
signals to improve their quality, correct errors, adjust color and brightness levels, apply
special effects, compress the data for efficient storage or transmission, and perform other
operations to enhance the visual experience of videos [9]. Stereo image processing is a
technique that involves analyzing and manipulating a pair of stereo images taken from
slightly different perspectives to extract depth information, perform 3D reconstruction,
create visual effects, or generate immersive experiences by simulating the perception of
depth in the human visual system [10]. Also, optimization techniques play a crucial role in
image processing by enhancing image quality, reducing noise, and improving computa-
tional efficiency through methods like image denoising algorithms or optimal parameter
selection for various filters [11–14]. Image captioning is the task of automatically generating
textual descriptions that accurately capture the content and context of an image, enabling
better accessibility, understanding, and utilization of visual information for various ap-
plications such as assistive technologies, image indexing, and content recommendation
systems [15]. Image matching, also known as image registration or image alignment, is
the process of finding correspondences between two or more images to determine their
spatial relationship or similarity. It involves identifying common features, key points, or
patterns in the images and aligning them based on these matches, enabling tasks such as
image stitching, object recognition, motion tracking, or image retrieval [16–18]. Mirror
detection is the process of identifying and locating mirrors in an image or a scene. It
involves the use of computer vision techniques to analyze visual information and identify
objects that resemble mirrors based on their properties [19]. Machine learning is a field of
artificial intelligence (AI) that focuses on the development of algorithms and models that
enable computers to learn from and make predictions or decisions based on data, without
being explicitly programmed. It involves creating mathematical models and algorithms
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that automatically improve their performance through experience [20]. Deep learning is a
subset of machine learning that focuses on training artificial neural networks with multiple
layers (deep architectures) to learn and make predictions from complex patterns in data.
It is inspired by the structure and function of the human brain’s neural networks [21–23].
Finally, depth estimation is the process of inferring the depth information (distance) of
objects within a scene from a given image or a sequence of images [24–26].

In recent years, image processing has made significant progress due to advancements
in machine learning and deep learning algorithms. These improvements have resulted in a
wide range of applications in different fields. For instant, image processing in intelligent
transportation systems is utilized for tasks such as vehicle detection and tracking, license
plate recognition, and traffic analysis [27–29]. These systems also enable incident detection,
real-time monitoring and efficient management of road networks to enhance safety and
optimize traffic flow [30–32]. In cluster analysis, image processing can be applied to seg-
ment and group similar objects or regions within images, allowing for tasks such as object
recognition, traffic sign detection, vehicle classification, and road condition assessment in
intelligent transportation systems [33]. Image processing techniques are also employed in
the optical design to simulate and analyze the performance of optical systems, enabling
tasks such as image quality assessment, distortion correction, and evaluation of system
parameters, ultimately aiding in the optimization and enhancement of optical designs for a
variety of applications, including imaging, microscopy, and spectroscopy [34,35]. In the
context of transmitting signals, image-processing techniques can be applied to design and
analyze bandpass filters for signal conditioning. These filters are used to selectively pass
a specific frequency range of the transmit signal while attenuating frequencies outside
the desired band, facilitating efficient transmission and reception of signals in applica-
tions such as wireless communication systems, radar, and audio processing [36–39]. In
emotion recognition, image-processing techniques can be utilized to analyze facial expres-
sions and extract relevant features such as facial landmarks, texture patterns, and color
variations [40–42]. These features are then processed using machine learning algorithms
to classify and recognize different emotions, enabling applications in fields like human-
computer interaction, affective computing, and psychological research [43,44]. In pattern
analysis, image-processing techniques can be employed to extract meaningful patterns
and features from images or visual data. These techniques involve tasks such as image
segmentation, feature extraction, and classification, allowing for the identification and
characterization of complex patterns in various domains such as object recognition, medical
imaging, handwriting recognition, and quality control. By leveraging image-processing
algorithms, pattern analysis enables the automated interpretation and understanding of
visual information in diverse applications [45–48]. In object detection, image-processing
techniques play a crucial role in identifying and localizing objects within images or video
streams. These techniques involve the use of algorithms such as convolutional neural
networks (CNNs), feature extraction, and bounding box regression to detect and classify
objects of interest based on visual cues. Object detection finds applications in autonomous
driving, surveillance systems, robotics, and many other fields where real-time identifi-
cation and localization of objects are required for decision-making and analysis [49–52].
In classification algorithms, image-processing techniques can be utilized to preprocess
and extract relevant features from images or visual data. These techniques involve tasks
such as image resizing, color normalization, feature extraction (e.g., using methods like
the histogram of oriented gradients or deep-learning-based feature extraction), and di-
mensionality reduction. The processed image features are then used as input to various
classification algorithms, such as support vector machines (SVMs), decision trees, random
forests, or deep neural networks, to classify the input into predefined categories or classes.
This enables applications in diverse fields, including image recognition, medical diagnosis,
object recognition, and sentiment analysis [53,54]. In feature extraction, image-processing
techniques are employed to transform raw data, such as images or signals, into a set of
representative features that capture relevant information. These techniques encompass
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methods like edge detection, texture analysis, shape descriptors, and color histograms,
which extract meaningful characteristics from the data [55–57]. Feature extraction plays a
crucial role in various applications, such as image recognition, object detection, biometrics,
and data compression, as it enables the reduction in data dimensionality while retaining key
discriminative information for subsequent analysis and decision-making processes [58–60].
More diverse applications of this research field can be further found in [61–66].

Edge detection is a fundamental task in image processing that involves identifying and
extracting the boundaries of objects or regions of interest in an image [67–69]. The process of
edge detection plays a crucial role in many computer vision tasks such as object recognition,
image segmentation, and feature extraction [70–72]. Symmetry can be leveraged to enhance
edge detection by exploiting the inherent symmetrical properties of images. Specifically,
symmetry-based techniques have been developed to improve the accuracy and robustness
of edge detection algorithms. One approach to leveraging symmetry for edge detection is
the Hough transform. This mathematical technique can identify lines or curves within an
image by detecting symmetrical patterns. For instance, if an image contains parallel lines,
the Hough transform can detect the symmetry between them and use this information for
more accurate edge detection. Another technique to use symmetry in edge detection is
through the Gabor filter. This type of linear filter identifies edges and other features by
analyzing the local frequency and orientation of the image’s spatial structure. The detection
of symmetrical patterns within this structure can enhance the detection of edges using the
Gabor filter. Deep learning techniques, specifically convolutional neural networks (CNNs),
can also use symmetry for image edge detection. CNNs can learn and identify underlying
symmetries within an image to optimize edge detection accuracy. For example, a CNN can
identify symmetrical regions within an image and leverage that information to improve
edge detection.

Some well-known edge detection techniques are

• Sobel Operator: One of the most commonly used edge detection algorithms is the
Sobel operator. The Sobel operator is a gradient-based method that calculates the
intensity gradient of an image at each pixel using a small convolution kernel. The
Sobel operator has two kernels, one for horizontal edges and one for vertical edges,
which are convolved with the image to produce two separate gradient images. The
final edge map is obtained by combining these two gradient images.

• Canny Edge Detector: The Canny edge detector is another popular method used for
edge detection. The Canny edge detector is a multi-stage algorithm that involves
smoothing the image to reduce noise, calculating the gradient magnitude and orienta-
tion, applying nonmaximum suppression to thin the edges, and finally thresholding
to identify strong edges.

• Laplacian Operator: The Laplacian operator is another gradient-based edge detection
algorithm that calculates the second derivative of an image to detect edges. The
Laplacian operator is more sensitive to noise than other edge detection algorithms,
so it is often used in combination with other methods to improve edge detection
performance.

• Marr–Hildreth Edge Detector: The Marr–Hildreth edge detector uses a Laplacian of
the Gaussian (LoG) filter to detect edges. The LoG filter is used to smooth the image
and highlight edges, and then zero crossings are detected to identify edges.

• Prewitt Operator: The Prewitt operator is another gradient-based edge detection
algorithm that calculates the intensity gradient of an image using a 3 × 3 convolution
kernel. The Prewitt operator is similar to the Sobel operator, but it has a simpler kernel
and is less computationally expensive.

• Roberts Cross Operator: The Roberts cross operator is a simple edge detection algo-
rithm that uses two kernels to detect edges in the horizontal and vertical directions.
The Roberts cross operator is less sensitive to noise than other edge detection algo-
rithms, but it is also less accurate.
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Moreover, symmetry can be a useful tool in edge detection techniques, particularly
when trying to identify the presence of lines or shapes in an image. One application of
symmetry in edge detection is the use of the Canny edge detection algorithm. The Canny
edge detection algorithm works by identifying edges in an image based on changes in
intensity values across neighboring pixels. By using symmetry as a guiding principle, the
algorithm can be made more robust and accurate in its identification of edges. Specifically,
the Canny algorithm uses the principle of symmetry to identify and suppress edges that are
not likely to be part of the true object boundary. The algorithm achieves this by performing
two rounds of convolution with a Gaussian filter, followed by computation of gradient
magnitude and direction. In the first round of convolution, the filter is applied in both
the x and y directions, while in the second round, it is only applied in the x direction.
This ensures that the resulting edge map is symmetric and reduces the number of false
edges detected. Detecting tampered digital images is vital due to the widespread use
of tools for image manipulation. To address this, a new algorithm combining the faster
R-CNN model with edge detection was proposed in [73]. The algorithm extracts tampering
features from symmetrical ResNet101 networks and uses RoI pooling layer to fuse features
and classify tampering in the fully connected layer. Bilinear interpolation is used instead
of the RoI max pooling, and the region proposal network (RPN) locates forgery regions.
Experiments on three datasets show that this algorithm is more effective than existing
ones. A new edge detection algorithm is proposed in [74] for multi-view SAR images
using a GAN network model. This overcomes the low accuracy of Canny-based methods.
The GAN network generates symmetric difference nuclear SAR image data, which are
used to construct an edge detection model for any direction. Post-processing eliminates
nonedges and Hough transform calculates edge direction. Experimental results show 93.8%
accuracy with 96.85% correct edge detection and 97.08% detection within three-pixel widths,
demonstrating high accuracy for kernel SAR images. A deconvolution model that uses the
Gram matrix to calculate filter response correlation and adjusts parameters to learn salient
area patterns using shape templates has been proposed in [75]. It also estimates unknown
blur kernels using image prior knowledge and gradient-domain algorithms. The model is
robust, insensitive to noise, and overcomes the water ripple effect. The paper also studies
hydrophobic indicator function methods and improves the contrast of the hydrophobic
image by extracting the B channel component. Connected-domain wave processing is used
to filter water droplets, and “hole filling” is used to eliminate reflection problems caused
by uneven illumination. The work of [76] proposes a computational method for edge
detection based on precise and comprehensive goals. The approach defines detection and
localization criteria for different types of edges and presents mathematical forms for these
criteria. The study concludes that there is a natural uncertainty principle between detection
and localization performance, leading to the development of an optimal single-operator
shape for detecting edges at any scale. The proposed operator has a simple implementation
using maxima in the gradient magnitude of a Gaussian-smoothed image. Ref. [77] presents
a method for edge detection in digital images that uses morphological gradient and fuzzy
logic. The authors improved a basic method for edge detection by applying fuzzy logic,
eliminating the need for filtering the image. Simulation results showed that the images
obtained with fuzzy logic were better than those obtained using only the morphological
gradient method. The interval type-2 fuzzy inference system (IT2FIS) achieved the best
results due to its ability to model uncertainty in gradient values and gray ranges. The
membership function parameters were obtained directly from the images, making the
proposed method applicable to images with different gray scales.

This article delves into the significance of symmetry in image processing and its
various applications in edge detection. The paper sheds light on how symmetry aids in
comprehending intricate systems and phenomena by revealing the fundamental govern-
ing principles. It concludes by underscoring the unresolved issues and hurdles in the
exploration of symmetry and presents potential avenues for further investigation. The
primary objective of this paper is to apply a novel set of approaches that efficiently employ
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Atangana–Baleanu–Caputo fractional operators with noninteger orders. These techniques
can be used to mitigate salt-and-pepper noise from digital images, and we believe that they
have great potential in the realm of image denoising. In order to accomplish this goal, our
study provides a comprehensive analysis of the effectiveness and possible applications of
these novel techniques. It is important to note that the approach used in this study has not
been explored for edge detection algorithms in water-repellent images of insulators in the
previous literature. Our results demonstrate that this fresh approach exhibits considerable
potential as a feasible solution for developing efficient window masks in the field of edge
detection. Through our research, we provide a detailed explanation of how this technique
works and its superiority over other existing methods. Our experimental analysis shows
that our proposed method is highly efficient in removing salt-and-pepper noise from dig-
ital images. This demonstrates the effectiveness of our approach and its potential use in
real-world applications. Additionally, we conduct a comparative analysis of our employed
technique with other well-known edge-detecting methods, and our findings indicate its
superiority over other currently available approaches.

The article is structured as follows. In Section 2, the basic definitions related to
fractional differential calculus will be reviewed to provide a necessary foundation for
understanding the concepts discussed in the rest of the article. In the third section, different
filter structures used in image processing will be presented and their effectiveness will be
analyzed. This section provides a comprehensive overview of the various methods available
for removing noise from digital images. The main results of the article are also presented in
Section 4 where we focus on the discretization techniques for the fractional integral operator
of the Atangana–Baleanu–Caputo type. In this section, several approaches for the numerical
approximation of this operator are employed to construct edge-detector window masks.
In Section 5, we present the results of numerical simulations and comparisons between
our employed techniques and some well-known masks. These results will demonstrate
the effectiveness of the proposed approach and its superiority over other existing methods.
The article’s final section will provide a summary of the key findings and conclusions.

2. A Brief Overview of Some Essential Concepts in Fractional Calculus

Within this section, a concise overview of several fundamental concepts in fractional
calculus is provided.

� The fractional derivative of the Liouville–Caputo sense is given by [78]

∂ν
LCP(τ) =

1
Γ(1− ν)

∫ τ

0
(τ − ν)−νṖ(ν)dν, 0 < ν ≤ 1. (1)

� The Caputo–Fabrizio derivative [79] is given by

∂ν
CFP(τ) =

(2− ν)A(ν)

2(1− ν)

∫ τ

0
exp
[
− ν

(τ − ν)

1− ν

]
Ṗ(ν)dν, 0 < ν < 1, (2)

where A(ν) = ν/(2− ν).
� The Atangana–Baleanu–Caputo derivative is given by [80]

∂ν
ABCP(τ) =

M(ν)

1− ν

∫ τ

0
M
[
− ν

(τ − ν)℘

1− ν

]
Ṗ(ν)dν, 0 < ν ≤ 1, (3)

where M(.) is the Mittag–Leffler function given by M(τ) = ∑∞
i=0

τi

Γ(νi+1) , and M(ν) =

1− ν + ν/Γ(ν).
Also, the definition corresponding to the integral for this operator is as follows:

Iν
ABCP(τ) =

1− ν

M(ν)
P(τ) + ν

Γ(ν)M(ν)

∫ τ

0
P(τ)(τ − σ)ν−1dσ. (4)
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The application of fractional calculus in the fields of mathematical modeling, applied
sciences, and fractional calculus has proven to be highly valuable and impactful. In
mathematical modeling, fractional calculus offers a powerful tool for capturing complex
dynamics characterized by memory effects and nonlocal behavior [81–87].

3. Some Popular Mask-Based Techniques Used for Image Processing
3.1. Windows Mask Applications in Image Denoising

The general basis of many fractional masks in the literature is based on the discretized
form for fractional operators. For example, let us consider

IνP(τ) ≈ ℘0P(τ) + ℘1P(τ − h̄) + ℘2P(τ − 2h̄) + ℘3P(τ − 3h̄) + . . . , (5)

where h̄ is the time-step length, and the initial coefficients of the expansion corresponding
to the fractional operator are denoted by ℘i’s. This idea can be further extended in higher
dimensions as

xIνP(x, y) ≈ ℘0P(x, y) + ℘1P(x− h̄x, y) + ℘2P(x− 2 h̄x, y) + ℘3P(x− 3 h̄x, y) + . . . ,
yIνP(x, y) ≈ ℘0P(x, y) + ℘1P

(
x, y− h̄y

)
+ ℘2P

(
x, y− 2 h̄y

)
+ ℘3P

(
x, y− 3 h̄y

)
+ . . . .

(6)

The symmetrical coefficients that have been acquired can be employed to create masks
for various image-processing applications. For h̄x = h̄y = 1, these masks can be designed
in a variety of configurations with differing dimensions, including the examples below.

Very recently, these ideas have been used to construct the following window masks in
image denoising [88]:

• The following 3× 3 symmetrical window mask is used as a fractional integral mask:

Λ3 = [λ3
i,j] :=

℘1 ℘1 ℘1
℘1 8℘0 ℘1
℘1 ℘1 ℘1

.

• Also, the fractional integral mask in size of 5× 5 is suggested as

Λ5 = [λ5
i,j]:=

℘2 ℘2 ℘2 ℘2 ℘2
℘2 ℘1 ℘1 ℘1 ℘2
℘2 ℘1 8℘0 ℘1 ℘2
℘2 ℘1 ℘1 ℘1 ℘2
℘2 ℘2 ℘2 ℘2 ℘2

.

• The structure of this mask, considering the dimensions 7× 7, becomes as follows:

Λ7 = [λ7
i,j] :=

℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3
℘3 ℘2 ℘2 ℘2 ℘2 ℘2 ℘3
℘3 ℘2 ℘1 ℘1 ℘1 ℘2 ℘3
℘3 ℘2 ℘1 8℘0 ℘1 ℘2 ℘3
℘3 ℘2 ℘1 ℘1 ℘1 ℘2 ℘3
℘3 ℘2 ℘2 ℘2 ℘2 ℘2 ℘3
℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3

.

• The structure of this mask, considering the dimensions 9× 9, becomes as follows:
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Λ9 = [λi,j] :=

℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4
℘4 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘4
℘4 ℘3 ℘2 ℘2 ℘2 ℘2 ℘2 ℘3 ℘4
℘4 ℘3 ℘2 ℘1 ℘1 ℘1 ℘2 ℘3 ℘4
℘4 ℘3 ℘2 ℘1 8℘0 ℘1 ℘2 ℘3 ℘4
℘4 ℘3 ℘2 ℘1 ℘1 ℘1 ℘2 ℘3 ℘4
℘4 ℘3 ℘2 ℘2 ℘2 ℘2 ℘2 ℘3 ℘4
℘4 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘4
℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4

.

• Finally, the structure of this mask, considering the dimensions 11× 11, becomes as
follows in a symmetric form as:

Λ11 = [λi,j] :=

℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5
℘5 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘5
℘5 ℘4 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘4 ℘5
℘5 ℘4 ℘3 ℘2 ℘2 ℘2 ℘2 ℘2 ℘3 ℘4 ℘5
℘5 ℘4 ℘3 ℘2 ℘1 ℘1 ℘1 ℘2 ℘3 ℘4 ℘5
℘5 ℘4 ℘3 ℘2 ℘1 8℘0 ℘1 ℘2 ℘3 ℘4 ℘5
℘5 ℘4 ℘3 ℘2 ℘1 ℘1 ℘1 ℘2 ℘3 ℘4 ℘5
℘5 ℘4 ℘3 ℘2 ℘2 ℘2 ℘2 ℘2 ℘3 ℘4 ℘5
℘5 ℘4 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘3 ℘4 ℘5
℘5 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘4 ℘5
℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5 ℘5

.

3.2. Windows Mask Applications in Edge Detection

Edge detection is a fundamental task in image processing, and one of the most widely
used filters for this purpose is the Prewitt operator. This method relies on approximating
the first-order derivative using central differences and produces results by convolving
an image with two specific kernels. In recent years, there has been significant interest in
optimizing edge detection techniques, particularly with regard to increasing accuracy and
reducing computational complexity. Despite this ongoing research, the Prewitt operator
remains a popular choice due to its simplicity and effectiveness. In this paper, we examine
the Prewitt operator in both directions using the following window masks

Hx=
−1 0 1
−1 0 1
−1 0 1

, Hy=
−1 −1 −1
0 0 0
1 1 1

. (7)

The Prewitt operator also has some limitations. One disadvantage is that it can pro-
duce weaker edge responses compared to other more advanced edge detection methods,
particularly around edges that are not aligned with the x- or y-axis of the image. Another
limitation is the inability to detect edges at angles that do not align with the kernel orien-
tations used in the filter. This can lead to missed edges or inaccurate edge detections in
certain images. Finally, like many traditional edge detection methods, the Prewitt operator
is sensitive to noise and can produce false edge responses in noisy images. Despite these
limitations, the Prewitt operator remains a popular choice for edge detection due to its
simplicity and effectiveness in many applications.

The Sobel operator is a commonly used filter that utilizes central finite differences and
gives more weightage to the pixels closer to the center of the mask compared to the Prewitt
operator, resulting in more accurate edge detection. To achieve this, the Sobel operator
employs specific convolution kernels which differ from those used in the Prewitt operator.
Although the Sobel operator is often compared to the Prewitt operator, each has unique
strengths and weaknesses that make them suitable for different applications. In this paper,
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we delve into the Sobel operator and explore its effectiveness as an edge detection tool
using two following convolution kernels:

Hx=
−1 0 1
−2 0 2
−1 0 1

, Hy=
−1 −2 −1
0 0 0
1 2 1

. (8)

While the Sobel operator is generally effective at detecting edges in images, it does
have some limitations. One disadvantage is its sensitivity to noise, which can result in
false edge detections. Additionally, the Sobel operator’s kernel size is fixed, making it
difficult to adapt to images with varying resolutions or varying edge widths. Finally, the
Sobel operator may not perform well in cases where edges are curved or occur at angles
that do not align with the mask orientations used in the filter. Despite these drawbacks,
the Sobel operator remains a widely used and effective tool for edge detection in many
image-processing applications.

Over the past few years, fractional differential operators have been increasingly uti-
lized in image processing to achieve significant advancements in areas such as texture
enhancement, noise reduction, and edge analysis. The effectiveness of these operators in
enhancing image quality has been demonstrated through numerous impressive results. In
the domain of image processing, there is a fundamental formula that plays a significant
role in expanding fractional differential operators. This formula is essential for performing
various operations such as edge detection and image enhancement. It involves breaking
down an image into its constituent parts and applying fractional differential operators to
these parts. The resulting output provides valuable information about the underlying struc-
tures present in the image, which can be further utilized for various applications, including
computer vision, medical imaging, and satellite imagery analysis. In this paper, we delve
into the use of fractional differential operators in depth, exploring their capabilities and
limitations for improving various aspects of image processing. Here again, we assume that
we have

Iν
xP(x, y) ≈ ℘0P(x, y) + ℘1P(x− h̄x, y) + ℘2P(x− 2 h̄x, y) + ℘3P(x− 3 h̄x, y) + . . . ,

Iν
yP(x, y) ≈ ℘0P(x, y) + ℘1P

(
x, y− h̄y

)
+ ℘2P

(
x, y− 2 h̄y

)
+ ℘3P

(
x, y− 3 h̄y

)
+ . . . .

(9)

By using the coefficients of these expansions, two different types of masks can be
identified:

• Type I

Hx=
−℘0 0 ℘0
−℘1 0 ℘1
−℘2 0 ℘2

, Hy=
℘0 ℘1 ℘2
0 0 0
−℘0 −℘1 −℘2

. (10)

• Type II

Hx=
℘0 ℘1 ℘2
−℘3 0 ℘3
−℘2 −℘1 −℘0

, Hy=
−℘2 −℘3 ℘0
−℘1 0 ℘1
−℘0 ℘3 ℘2

. (11)

The construction of these two kernels involves utilizing adjacent pixels in the vertical,
horizontal, and diagonal directions around the central pixel. This critical feature makes
them an exceptional tool for capturing intricate image details, including edges and texture.
This ability to extract fine image details using these kernels is due to the specific pattern
in which they are designed, which enables them to capture and accentuate the subtle
variations in image intensity. As a result, these kernels find widespread application in
various image-processing tasks, including feature extraction, object recognition, and image
segmentation.
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Once the kernels are created, it is common practice to utilize their absolute values for
approximating the gradient moduli as

|H| ≈ |P(x, y) ∗ Hx|+ |P(x, y) ∗ Hy|, (12)

where P(x, y) represents the pixel value of the image, and ∗ denotes the image convolution
operator. This approach involves computing the magnitude of changes in image intensity
across its various regions by applying the kernels to these regions and taking the absolute
value of the resulting output. This technique of using absolute values to approximate
gradient moduli finds widespread application in various image-processing tasks, including
edge detection, motion estimation, and texture analysis. It enables the identification of
significant local variations in image intensity that are crucial for detecting edges and
differentiating between various image patterns. Moreover, the use of such an approach
allows for efficient and accurate computation of gradient moduli, which can be further
utilized for performing more complex image-processing tasks, such as feature extraction
and object recognition.

4. Some Recent Fractional Masks in Edge Detecting

Due to the nonlocal nature of fractional operator (4), their numerical approximation
can be quite challenging. There are various methods available for approximating fractional
operators, and each method has its strengths and weaknesses depending on the specific ap-
plication. One common approach is to use a finite difference method, where the derivative
is approximated using discrete points. Some of these approaches are presented in [89] for
the discretization of fractional derivatives, which we will review in the rest of this section.

4.1. The Results of the Grumwald–Letnikov (GL) Approach

First, consider the following fractional integral operator

Iν
ABCP(τ) =

1− ν

M(ν)
P(τ) + ν

Γ(ν)M(ν)

∫ τ

0
P(τ)(τ − σ)ν−1dσ. (13)

The integral in this definition can be discretized as follows [90]:

Iν
GLP(τ) ≈

∫ τ

0

P(τ)
(τ − σ)1−ν

dσ

= lim
h̄→0

1
h̄ν

(
P(τ) + νP(τ − h̄) +

(−ν)(−ν + 1)
2

P(τ − h̄) + . . . +
Γ(−ν + 1)

k! Γ(−ν− k + 1)
P(τ − kh̄)

)
.

(14)

By inserting h̄ = 1 in Equation (14) and then placing the derived expression in
Equation (13), it reads

Iν
GLP(τ) ≈

1− ν

M(ν)
P(τ) + ν

M(ν)

(
P(τ) + νP(τ − 1) +

ν(ν− 1)
2

P(τ − 2) +
ν(1− ν2)

6
P(τ − 3) + . . .

)
. (15)

By performing some simplifications in Equation (15), in both x and y directions, we
obtain

xIν
GLP(x, y) ≈ 1

M(ν)
P(x, y) +

ν2

M(ν)
P(x− 1, y) +

ν3 − ν2

2M(ν)
P(x− 2, y) +

ν2 − ν4

6M(ν)
P(x− 3, y) + . . . , (16)

yIν
GLP(x, y) ≈ 1

M(ν)
P(x, y) +

ν2

M(ν)
P(x, y− 1) +

ν3 − ν2

2M(ν)
P(x, y− 2) +

ν2 − ν4

6M(ν)
P(x, y− 3) + . . . . (17)
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Thus, the coefficients required are established in the following manner:

℘0 =
1

M(ν)
,

℘1 =
ν2

M(ν)
,

℘2 =
ν3 − ν2

2M(ν)
,

℘3 =
ν2 − ν4

6M(ν)
.

(18)

As we know, Equations (10) and (11) provide a general structure for analyzing images.
Additionally, by using the coefficients obtained from Equation (18), we reach two new
masks that help identify the edges of an image.

• Fractional window mask of GL1:

Hx=

− 1
M(ν)

0 1
M(ν)

− ν2

M(ν)
0 ν2

M(ν)

− ν3−ν2

2M(ν)
0 ν3−ν2

2M(ν)

, Hy=

1
M(ν)

ν2

M(ν)
ν3−ν2

2M(ν)

0 0 0
− 1
M(ν)

− ν2

M(ν)
− ν3−ν2

2M(ν)

. (19)

• Fractional window mask of GL2:

Hx=

1
M(ν)

ν2

M(ν)
ν3−ν2

2M(ν)

− ν2−ν4

6M(ν)
0 ν2−ν4

6M(ν)

− ν3−ν2

2M(ν)
− ν2

M(ν)
− 1
M(ν)

, Hy=

− ν3−ν2

2M(ν)
− ν2−ν4

6M(ν)
1

M(ν)

− ν2

M(ν)
0 ν2

M(ν)

− 1
M(ν)

ν2−ν4

6M(ν)
ν3−ν2

2M(ν)

. (20)

4.2. Toufik–Atangana’s Method-Based Fractional Window Masks (TA) Approach

An alternative approach involves approximating the function P(τ) through interpola-
tion within the interval [tk, τk+1] as

P(τ) = P(tk)

h̄
(τ − τk−1) +

P(τk−1)

h̄
(τ − tk). (21)

When we set τ = τn in the ABC-fractional integral formula (4), we obtain

Iν
TAP(τn) =

1− ν

M(ν)
P(tn) +

ν

Γ(ν)M(ν)

∫ τn+1

0
P(τ)(τ − τ)ν−1dτ,

=
1− ν

M(ν)
P(τ) + ν

Γ(ν)M(ν)

n

∑
k=0

∫ τk+1

tk

P(τ)(τ − τ)ν−1dτ.
(22)

Using Equation (21) in Equation (22) and performing some necessary calculations, we
obtain [91]

Iν
TAP(τn) =

1− ν

M(ν)
P(τn) +

νh̄ν

M(ν)Γ(ν + 2)
×

n

∑
s=0

(
P(τs)

[
(n− s + 1)ν(n− s + 2 + ν)− (n− s)ν(n− s + 2 + 2ν)

]
−P(τs−1)

[
(n− s + 1)ν+1 − (n− s)ν(n− s + 1 + ν)

])
.

(23)

Therefore, it is possible to express Equation (23) in an alternative form as follows:

Iν
TAP(τn) =

[
(1−ν)Γ(ν+2)+ν h̄ν(ν+2)

M(ν)Γ(ν+2)

]
P(τn) +

[
ν h̄ν((ν+3)2ν−2 ν−4)
M(ν)Γ(ν+2)

]
P(τn−1)+[

νh̄ν((ν+4)3ν−(2ν+5)2ν+ν+2)
M(ν)Γ(ν+2)

]
P(τn−2) +

[
νh̄ν((ν+5)4ν−(2ν+6)3ν+(ν+3)2ν)

M(ν)Γ(ν+2)

]
P(τn−3) + . . . .

(24)
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Especially for h̄ = 1 in Equation (24), we will have

xIν
TAP(x, y) =

[
(1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2)

]
P(x, y) +

[
(ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2)

]
P(x− 1, y)+[

(ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2)

]
P(x− 2, y) +

[
(ν2+5ν)4ν−(2ν2+6ν)3ν+(ν2+3ν)2ν

M(ν)Γ(ν+2)

]
P(x− 3, y) + . . . ,

(25)

yIν
TAP(x, y) =

[
(1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2)

]
P(x, y) +

[
(ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2)

]
P(x, y− 1)+[

(ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2)

]
P(x, y− 2) +

[
(ν2+5ν)4ν−(2ν2+6ν)3ν+(ν2+3ν)2ν

M(ν)Γ(ν+2)

]
P(x, y− 3) + . . . .

(26)

Hence, the required coefficients are established in the following manner:

℘0 =
(1− ν)Γ(ν + 2) + ν2 + 2 ν

M(ν)Γ(ν + 2)
,

℘1 =

(
ν2 + 3ν

)
2ν − 2 ν2 − 4ν

M(ν)Γ(ν + 2)
,

℘2 =

(
ν2 + 4ν

)
3ν −

(
2ν2 + 5ν

)
2ν + ν2 + 2ν

M(ν)Γ(ν + 2)
,

℘3 =

(
ν2 + 5ν

)
4ν −

(
2ν2 + 6ν

)
3ν +

(
ν2 + 3ν

)
2ν

M(ν)Γ(ν + 2)
.

(27)

In this way, the following two fractional windows are achieved.

• Fractional window mask of TA1:

Hx=

− (1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2) 0 (1−ν)Γ(ν+2)+ν2+2 ν

M(ν)Γ(ν+2)

− (ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2) 0 (ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2)

− (ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2) 0 (ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2)

,

Hy=

(1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2)

(ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2)
(ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2)
0 0 0

− (1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2) − (ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2) − (ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2)

.

(28)

• Fractional window mask of TA2:

Hx=

(1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2)

(ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2)
(ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2)

− (ν2+5ν)4ν−(2ν2+6ν)3ν+(ν2+3ν)2ν

M(ν)Γ(ν+2) 0 (ν2+5ν)4ν−(2ν2+6ν)3ν+(ν2+3ν)2ν

M(ν)Γ(ν+2)

− (ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2) − (ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2) − (1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2)

,

Hy=

− (ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2) − (ν2+5ν)4ν−(2ν2+6ν)3ν+(ν2+3ν)2ν

M(ν)Γ(ν+2)
(1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2)

− (ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2) 0 (ν2+3ν)2ν−2 ν2−4ν

M(ν)Γ(ν+2)

− (1−ν)Γ(ν+2)+ν2+2 ν
M(ν)Γ(ν+2)

(ν2+5ν)4ν−(2ν2+6ν)3ν+(ν2+3ν)2ν

M(ν)Γ(ν+2)
(ν2+4ν)3ν−(2ν2+5ν)2ν+ν2+2ν

M(ν)Γ(ν+2)

.

(29)
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4.3. Euler’s Method-Based Fractional Window Masks (Eu)

Another possible process in the discretization of the integral fractional operator (4) at
τ = τn is proposed as follows [92]:

Iν
EuP(τn) =

1− ν

M(ν)
P(τn) +

νh̄ν

M(ν)Γ(ν + 1)

n−1

∑
s=0

τn,sP(τs), (30)

where
τn,s = (n− s)ν − (n− s− 1)ν. (31)

Therefore, Equation (30) is reformulated as

Iν
EuP(τn) =

[
1−ν
M(ν)

]
P(τn) +

[
ν h̄ν

M(ν)Γ(ν+1)

]
P(τn−1) +

[
νh̄ν(2ν−1)
M(ν)Γ(ν+1)

]
P(τn−2) +

[
νh̄ν(3ν−2ν)
M(ν)Γ(ν+1)

]
P(τn−3) + . . . . (32)

Applying the same idea to the x and y directions, it follows that

xIν
EuP(x, y) ≈

[
1−ν
M(ν)

]
P(x, y) +

[
ν

M(ν)Γ(ν+1)

]
P(x− 1, y) +

[
ν(2ν−1)

M(ν)Γ(ν+1)

]
P(x− 2, y) +

[
ν(3ν−2ν)
M(ν)Γ(ν+1)

]
P(x− 3, y) + . . . , (33)

yIν
EuP(x, y) ≈

[
1−ν
M(ν)

]
P(x, y) +

[
ν

M(ν)Γ(ν+1)

]
P(x, y− 1) +

[
ν(2ν−1)

M(ν)Γ(ν+1)

]
P(x, y− 2) +

[
ν(3ν−2ν)
M(ν)Γ(ν+1)

]
P(x, y− 3) + . . . . (34)

Hence, the required coefficients are established in the following manner:

℘0 =
1− ν

M(ν)
,

℘1 =
ν

M(ν)Γ(ν + 1)
,

℘2 =
ν(2ν − 1)

M(ν)Γ(ν + 1)
,

℘3 =
ν(3ν − 2ν)

M(ν)Γ(ν + 1)
.

(35)

In this way, the following two fractional windows are achieved.

• Fractional window mask of Eu1

Hx=

− 1−ν
M(ν)

0 1−ν
M(ν)

− ν
M(ν)Γ(ν+1) 0 ν

M(ν)Γ(ν+1)

− νh̄ν(2ν−1)
M(ν)Γ(ν+1) 0 νh̄ν(2ν−1)

M(ν)Γ(ν+1)

, Hy=

1−ν
M(ν)

ν
M(ν)Γ(ν+1)

νh̄ν(2ν−1)
M(ν)Γ(ν+1)

0 0 0

− 1−ν
M(ν)

− ν
M(ν)Γ(ν+1) − νh̄ν(2ν−1)

M(ν)Γ(ν+1)

. (36)

• Fractional window mask of Eu2

Hx=

1−ν
M(ν)

ν
M(ν)Γ(ν+1)

νh̄ν(2ν−1)
M(ν)Γ(ν+1)

− νh̄ν(3ν−2ν)
M(ν)Γ(ν+1) 0 νh̄ν(3ν−2ν)

M(ν)Γ(ν+1)

− νh̄ν(2ν−1)
M(ν)Γ(ν+1) − ν

M(ν)Γ(ν+1) − 1−ν
M(ν)

, Hy=

− νh̄ν(2ν−1)
M(ν)Γ(ν+1) − νh̄ν(3ν−2ν)

M(ν)Γ(ν+1)
1−ν
M(ν)

− ν
M(ν)Γ(ν+1) 0 ν

M(ν)Γ(ν+1)

− 1−ν
M(ν)

νh̄ν(3ν−2ν)
M(ν)Γ(ν+1)

νh̄ν(2ν−1)
M(ν)Γ(ν+1)

. (37)

4.4. The Middle Point Approach Based on Fractional Window Masks (MP)

In this part, let us re-consider the following fractional integral operator

Iν
ABCP(τ) =

1− ν

M(ν)
P(τ) + ν

Γ(ν)M(ν)

∫ τ

0

P(ω)

(τ −ω)1−ν
dω. (38)
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If we consider the variable σ = τ − ω into the integral denoted by Equation (38),
we obtain

Iν
ABCP(τ) =

1− ν

M(ν)
P(τ) + ν

Γ(ν)M(ν)

∫ τ

0

P(τ − σ)

σ1−ν
dσ. (39)

The integral in Equation (39) can be partitioned as follows:

Iν
ABCP(τ) =

1− ν

M(ν)
P(τ) + ν

Γ(ν)M(ν)

n−1

∑
s=0

∫ τs+1

τs

P(τ − σ)

σ1−ν
dσ. (40)

Here, the integrals in Equation (40) are approximated through the following formulae:∫ τs+1

τm

P(σ)
σ1−ν

dτ ≈ P(τm) + P(τs+1)

2

∫ τs+1

τs

dσ

σ1−ν
, (41)

Taking Equation (41) into account in Equation (40) yields

Iν
MPP(τ) =

1− ν

M(ν)
P(τ) + ν

Γ(ν)M(ν)

n−1

∑
s=0

P(τ − τs) + P(τ − τs+1)

2

∫ τs+1

τs

dτ

τ1−ν
,

=
1− ν

M(ν)
P(τ) + ν

Γ(ν)M(ν)

n−1

∑
s=0

P(τ − τs) + P(τ − τs+1)

2ν

[
τν

s+1 − τν
s
]
.

(42)

By substituting τ = τn = nh̄ into Equation (40), the following discrete form is obtained:

Iν
MPP(tn) =

1− ν

M(ν)
P(tn) +

ν

Γ(ν)M(ν)

n−1

∑
s=0

P(tn − tm) + P(tn − τs+1)

2ν

[
((s + 1)h̄)ν − (sh̄)ν],

=
1− ν

M(ν)
P(tn) +

h̄ν

Γ(ν)M(ν)

n−1

∑
s=0

P(τn−s) + P(τn−s−1)

2
[(s + 1)ν − sν].

(43)

Then, after using basic algebraic calculations, Equation (43) can be converted into the
following equation:

Iν
MPP(τn) =

[
1−ν
M(ν)

+ h̄ν

2M(ν)Γ(ν)

]
P(τn)+[

h̄ν

2M(ν)Γ(ν) (2
ν)
]
P(τn−1) +

[
h̄ν

M(ν)Γ(ν)

(
3ν−1

2

)]
P(τn−2) +

[
h̄ν

M(ν)Γ(ν)

(
4ν−2ν

2

)]
P(τn−3) + . . . .

(44)

We can express the related equations for the x and y directions as follows:

xIν
MPP(x, y) ≈

[
2Γ(ν)(1−ν)+1

2M(ν)Γ(ν)

]
P(x, y)

+
[

2ν−1

M(ν)Γ(ν)

]
P(x− 1, y) +

[
3ν−1

2M(ν)Γ(ν)

]
P(x− 2, y) +

[
4ν−2ν

2M(ν)Γ(ν)

]
P(x− 3, y) + . . . ,

(45)

yIν
MPP(x, y) ≈

[
2Γ(ν)(1−ν)+1

2M(ν)Γ(ν)

]
P(x, y)

+
[

2ν−1

M(ν)Γ(ν)

]
P(x, y− 1) +

[
3ν−1

2M(ν)Γ(ν)

]
P(x, y− 2) +

[
4ν−2ν

2M(ν)Γ(ν)

]
P(x, y− 3) + . . . .

(46)

Hence, the required coefficients are established in the following manner:

℘0 =
2Γ(ν)(1− ν) + 1

2M(ν)Γ(ν)
,

℘1 =
2ν−1

M(ν)Γ(ν)
,

℘2 =
3ν − 1

2M(ν)Γ(ν)
,

℘3 =
4ν − 2ν

2M(ν)Γ(ν)
.

(47)
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Thus, the following two fractional window masks are derived:

• Fractional window mask of MP1

Hx=

− 2Γ(ν)(1−ν)+1
2M(ν)Γ(ν) 0 2Γ(ν)(1−ν)+1

2M(ν)Γ(ν)

− 2ν−1

M(ν)Γ(ν) 0 2ν−1

M(ν)Γ(ν)

− 3ν−1
2M(ν)Γ(ν) 0 3ν−1

2M(ν)Γ(ν)

, Hy=

2Γ(ν)(1−ν)+1
2M(ν)Γ(ν)

2ν−1

M(ν)Γ(ν)
3ν−1

2M(ν)Γ(ν)
0 0 0

− 2Γ(ν)(1−ν)+1
2M(ν)Γ(ν) − 2ν−1

M(ν)Γ(ν) − 3ν−1
2M(ν)Γ(ν)

. (48)

• Fractional window mask of MP2

Hx=

2Γ(ν)(1−ν)+1
2M(ν)Γ(ν)

2ν−1

M(ν)Γ(ν)
3ν−1

2M(ν)Γ(ν)

− 4ν−2ν

2M(ν)Γ(ν) 0 4ν−2ν

2M(ν)Γ(ν)

− 3ν−1
2M(ν)Γ(ν) − 2ν−1

M(ν)Γ(ν) − 2Γ(ν)(1−ν)+1
2M(ν)Γ(ν)

, Hy=

− 3ν−1
2M(ν)Γ(ν) − 4ν−2ν

2M(ν)Γ(ν)
2Γ(ν)(1−ν)+1

2M(ν)Γ(ν)

− 2ν−1

M(ν)Γ(ν) 0 2ν−1

M(ν)Γ(ν)

− 2Γ(ν)(1−ν)+1
2M(ν)Γ(ν)

4ν−2ν

2M(ν)Γ(ν)
3ν−1

2M(ν)Γ(ν)

. (49)

5. Numerical Implementations

To obtain numerical results in this paper, we have used various algorithms including
the Canny mask (CM), Prewitt mask (PM), Sobol mask (SM), GL1 in Equation (19), GL2
in Equation (20), TA1 in Equation (28), TA2 in Equation (29), Eu1 in Equation (36), Eu2
in Equation (37), MP1 in Equation (48), and MP2 in Equation (49) for edge detecting of
Sample 1–4 images. The fundamental aspect highlighted in the structures described in this
article pertains to the presence of parameter ν within the configuration of Windows masks.
Figures 1–4 demonstrate an examination of the impact of this parameter on two factors,
namely peak signal-to-noise ratio (PSNR) and ENTROPY. In these plots, the value of the
PSNR index is calculated using the following formula:

PSNR = 10 log10
255× 255

MSE
, (50)

where

MSE =
1

m× n

n

∑
s=1

m

∑
r=1

[P∗(r, s)−P(r, s)]2. (51)

A higher PSNR value indicates that the image is closer to the original image in terms
of visual quality and fidelity.

On the other hand, the formula for determining ENTROPY is as follows [89]:

ENTROPY = −
L−1

∑
i=0
P(i) log2 P(i), (52)

where L is the number of intensity levels, and P(i) is the probability of occurrence of
intensity level i. Entropy is a statistical measure of randomness or uncertainty in a signal or
data set. In the context of image processing, entropy can be used as a measure of the amount
of information contained in an image. In Figures 5–8, we demonstrate the performance
outcomes of these algorithms until attaining the highest PSNR, alongside the corresponding
value for parameter ν at this point. According to Table 1, the MP1 algorithm gives better
performance in Sample 1, which can also be seen in the Figure 5 as well. This table also
indicates that the TA2 algorithm exhibits superior performance in Sample 2, as can also be
observed in Figure 6. The MP2 algorithm displays superior performance for Sample 3 as
indicated by Table 1 and depicted in Figure 7. Finally, as per the data presented in Table 1,
it is evident that the TA1 algorithm performs better in Sample 4. This observation is also
supported by the findings depicted in Figure 8.

Furthermore, the Windows masks evaluated in this article exhibit significantly higher
accuracy and efficiency than the widely used standard masks of Canny, Prewitt, and Sobol
masks within all analyzed sample images.
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Figure 1. The highest PSNR achieved using different techniques for the image of Sample 1.
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Figure 2. The highest PSNR achieved using different techniques for the image of Sample 2.
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Figure 3. The highest PSNR achieved using different techniques for the image of Sample 3.
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Figure 4. The highest PSNR achieved using different techniques for the image of Sample 4.
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Clean image  CM, psnr = -39.58 PM, psnr = 11.558

SM, psnr = 11.288 GL1, psnr = 11.568 at  = 1.34 GL2, psnr = 11.546 at  = 1.4

TA1, psnr = 11.548 at  = 0.56 TA2, psnr = 11.543 at  = 0.52 Eu1, psnr = 11.537 at  = 1.84

Eu2, psnr = 11.52 at  = 0.98 MP1, psnr = 11.567 at  = 1.3 MP2, psnr = 11.551 at  = 1

Figure 5. The highest PSNR achieved using different techniques for the image of Sample 1.
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Clean image  CM, psnr = -40.617 PM, psnr = 8.368

SM, psnr = 8.496 GL1, psnr = 8.625 at  = 1.84 GL2, psnr = 8.634 at  = 2.04

TA1, psnr = 8.625 at  = 1.48 TA2, psnr = 8.68 at  = 1.14 Eu1, psnr = 8.636 at  = 2.4

Eu2, psnr = 8.65 at  = 1.84 MP1, psnr = 8.635 at  = 2.12 MP2, psnr = 8.666 at  = 1.66

Figure 6. The highest PSNR achieved using different techniques for the image of Sample 2.
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Clean image  CM, psnr = -43.739 PM, psnr = 6.26

SM, psnr = 6.489 GL1, psnr = 6.666 at  = 1.86 GL2, psnr = 6.668 at  = 1.98

TA1, psnr = 6.668 at  = 1.52 TA2, psnr = 6.675 at  = 1 Eu1, psnr = 6.65 at  = 2.4

Eu2, psnr = 6.673 at  = 1.76 MP1, psnr = 6.671 at  = 2.14 MP2, psnr = 6.675 at  = 1.66

Figure 7. The highest PSNR achieved using different techniques for the image of Sample 3.
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Clean image  CM, psnr = -40.476 PM, psnr = 10.843

SM, psnr = 11.277 GL1, psnr = 11.363 at  = 1.66 GL2, psnr = 11.348 at  = 1.78

TA1, psnr = 11.369 at  = 1 TA2, psnr = 11.312 at  = 0.78 Eu1, psnr = 11.292 at  = 2.3

Eu2, psnr = 11.315 at  = 1.48 MP1, psnr = 11.362 at  = 1.86 MP2, psnr = 11.303 at  = 1.38

Figure 8. The highest PSNR achieved using different techniques for the image of Sample 4.

Table 1. Evaluating the highest PSNRs achieved through various algorithms.

Sample No. CM PM SM GL1 GL2 TA1 TA2 Eu1 Eu2 MP1 MP2

1 −39.58 11.56 11.29 11.57 11.45 11.55 11.54 11.54 11.52 11.57 11.55
2 −40.62 8.37 8.50 8.63 8.64 8.63 8.68 8.64 8.65 8.64 8.67
3 −43.74 6.26 6.49 6.67 6.67 6.67 6.68 6.65 6.67 6.67 6.68
4 −40.48 10.84 11.28 11.36 11.35 11.37 11.31 11.29 11.31 11.36 11.30
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6. Conclusions

Edge detection is an important task in image processing that is used in many computer
vision applications. There are several edge detection algorithms available, each with its
strengths and weaknesses. The choice of algorithm depends on the specific application
and the characteristics of the input image. Evaluating the performance of edge detection
algorithms requires careful consideration of several metrics, and the choice of metric
depends on the specific application and the desired performance characteristics. Fractional
differential calculus, which involves the use of fractional derivatives and integrals, holds
significant importance in various fields related to image processing. In this study, we delve
into designing novel edge detectors by utilizing the fractional definition for integral as
per Atangana–Baleanu–Caputo’s concept. The aim is to leverage the benefits of fractional
calculus, particularly the order in corresponding definitions, to overcome the drawbacks
associated with conventional methods like Canny, Prewitt, and Sobel. We conducted
empirical experiments to demonstrate the superior performance of the new fractional
kernels proposed in this study in terms of improving edge information and preserving
image quality. It is seen that these kernels can be deemed as one of the most promising
alternative kernels for enhancing edge information in images. In addition, we assert that
the novel fractional kernels offer more precise details compared to conventional methods,
resulting in enhanced comprehension of the underlying patterns present in the image data.
It is important to note that the computational expense of each of the new fractional masks
remains the same as that of traditional fractional masks, making them incredibly efficient
and feasible. Moving forward, the researchers emphasize the need to explore the optimal
value for the fractional order sigma to further enhance the effectiveness of the proposed
method. Overall, this study offers valuable insights into the potential of using fractional
differential calculus in the field of image processing. By leveraging its unique properties
and advantages, researchers can devise innovative approaches to tackle the challenges
associated with conventional methods and achieve more accurate and reliable results.
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