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Abstract: The phenomenon of amplifying asymmetric autocatalysis (AAA) has recently been restricted
to alkylation of several specific substrates with diisopropyl zinc (Soai reaction). Targeting the extension
of the scope of this phenomenon, we studied the reaction of triazolic aldehydes with diisopropyl
zinc. Experiments demonstrated a diversity of results for the dissipation of chirality, conserving the
existent ee and spontaneous chirality generation. Computational analysis showed that depending on
the level of oligomerization of the catalyst, one could expect amplification (monomeric catalyst) while
maintaining the existing chirality (dimeric catalyst) or dissipation of chirality (tetrameric catalyst).
These findings are promising for the elaboration of synthetic protocols controlling chirality generation.
In addition, three optically active triazolic alcohols were characterized.
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1. Introduction

The discovery of the autocatalytic and autoamplifying Soai reaction [1] made a strong
impression on the chemists of that time. The capability of a chiral catalyst to reproduce
and amplify its chirality inevitably results in an aptitude of this system for spontaneous
chirality generation [2], which is extremely interesting from several points of view. First,
this phenomenon is closely connected with the fundamental problem of the emergence of
chiral life on Earth [3]. Not any less important are the conceivable synthetic applications
if the regularities of this process could be elucidated to a sufficient extent. Additionally,
the analysis of the structural requirements necessary for the reagents to promote such
a complicated event opens new perspectives for understanding the details of molecular
behavior in sophisticated and challenging systems [4].

The inherently stochastic character of spontaneous chirality generation implies an
exponential increase in the number of experiments required to reach a reliable conclusion on
the authentic event. However, the principal question of the authenticity of this phenomenon
in a system demonstrating asymmetric autoamplification was solved positively 20 years
ago in a series of publications [5–7]. On the other hand, Soai’s group provided ample
evidence for the aptitude of various chiral additives to initiate the induction of chirality
with the handedness determined by the structure of the inductor [8]. It is evident that both
these events require the same thing, i.e., the presence of AAA (Amplifying Asymmetric
Autocatalysis) [4].

These considerations lead to an important conclusion: if some reactions without chiral
additives provide a scalemic product, we do not need to determine whether true absolute
asymmetric synthesis was observed in this particular experiment or if this event was caused
by the presence of tiny amounts of a chiral inductor of unspecified origin. In any case, AAA
is effective, and if it would be absolutely necessary, real spontaneous chirality generation
can be confirmed for this system.
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Another important feature of the Soai reaction is its strict requirements regarding the
structure of reagents. Thus, so far, only diisopropyl zinc has been successfully applied
as an alkylating reagent. Structures of the effective substrates are also rigorously limited
by combination of a pyrymidynic core, acetylenic linker and bulky terminal anchor (t-Bu,
Me3Si, adamantyl). These limitations arise from a sophisticated tetrameric structure of
the amplifying autocatalyst [9]; any simplification of the structure leads to a considerable
worsening of the performance with the notable exception of a recently reported pyridine-
based molecule with the same linker and anchor [10].

Numerous possibilities of AAA are conceivable for oligomeric catalysts following the
Frank–Decker scheme for autoamplification or due to the reservoir effect for the monomeric
catalyst [11]. As we were interested in extending the structural scope of autocatalytic
and autoamplifying reactions, we have launched a project to search for new examples of
such transformations.

2. Materials and Methods
2.1. Experimental Details

Diisopropylzinc 1M solution in toluene (Sigma-Aldrich, Schnelldorf, Germany) was
used as received without further purification. All solvents were purified and distilled using
standard procedures. Analytical thin-layer chromatography (TLC) was carried out on Sorb-
fil PTLC-AF-A-UF plates using acetone–chloroform (1:4) as the eluent and UV light (254 nm)
as the visualizing agent. Silica gel 60A (Acros Organics, 400–230 mesh, 0.040–0.063 mm)
was used for open-column chromatography. Melting points were recorded with a Boëtius
melting point instrument and are uncorrected. NMR spectra were measured on a Bruker
Avance 300 spectrometer at 300.13 MHz (1H) and 75.47 MHz (13C), Bruker Avance 600 spec-
trometer at 600.13 MHz (1H) and 150.90 MHz (13C) at 20 ◦C in the deuterated chloroform.
The chemical shifts (δ) are expressed in parts per million (ppm) and are calibrated using
residual undeuterated solvent peak as an internal reference (CDCl3: δH 7.26, δC 77.16).
All coupling constants (J) are reported in Hertz (Hz), and multiplicities are indicated as
follows: s (singlet), d (doublet) and m (multiplet). High-resolution mass spectra (HRMS)
were obtained through electrospray ionization (ESI) with positive (+) ion detection on a
Bruker micrOTOF–QIII quadrupole time-of-flight mass spectrometer. The ee measurements
were performed via HPLC analysis. HPLC analysis was performed on an HPLC system
equipped with chiral stationary phase columns (AD-H, AS-H, OD-H, OJ-H), detection at
220 or 254 nm. Synthetic procedures and characterization details for the new compounds
can be found in the Supplementary Materials.

2.2. Chemical Synthesis

1-Benzyl-1H-1,2,3-triazole-4-carbaldehyde (1) [12], 1-phenyl-1H-1,2,3-triazole-4-
carboxaldehyde (2) and 1-(4-chlorophenyl)-1H-1,2,3-triazole-4-carboxaldehyde (3) [13]
were synthesized according to the known methods.

All reactions were carried out using standard Schlenk techniques under argon atmosphere.

2.3. Computational Details

Geometry optimizations were performed without any symmetry constraints (C1 symmetry)
using theωB97XD functional [14] as implemented in the Gaussian09 software package [15].
Frequency calculations were undertaken to confirm the nature of the stationary points,
yielding one imaginary frequency for all transition states (TSs) and zero for all minima.
Constrained energy hypersurface scans were conducted to investigate the molecular re-
activity and to locate viable reaction channels. Where low-lying barriers were estimated,
frequency calculations were performed at the crude saddle points, and the obtained force
constants were used to optimize the transition-state structures employing the Berny algo-
rithm [16]. All atoms were described with a 6–31G** basis set in the geometry optimization
and frequency calculation [17–22]. Non-specific solvation was introduced by using the
SMD continuum model [23] (acetonitrile).



Symmetry 2023, 15, 1382 3 of 13

3. Results
3.1. Development of a Strategy for the Screening of Promising Substrates

Despite the extensive development of various enantioselective reactions seen at the
present time, practically all of them require more or less arbitrary optimization of the
reaction conditions, i.e., structure of the catalyst, solvent, reaction temperature, pressure,
additives, etc. Among a dozen chiral catalysts, most providing a high performance in
some already-known transformations; only one or two are actually working in a newly
discovered asymmetric catalytic reaction. Before these winners are actually found, the
tables listing yields and ee values may look rather empty, and only persistence in this
random search may result in a happy finding.

In our case, it is impossible to incorporate the same approach to each of the substrate
candidates for AAA, since it would require too much time. Nevertheless, we need more
readily available results that would justify the transfer of a reaction into step two of the
screening. We decided to check if the ability to effectuate an autocatalytic reaction can serve
as such a criterion without making the whole screening process unreasonably tiresome.

To do this, we designed and synthesized, to an extent, a small series of compounds
similar to the effective substrates of the Soai reaction and used them in the following trial
sequence (Schemes 1 and 2).
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3.2. Design and Synthesis of the Perspecvtive Substrates

In looking for possible perspective substrates, we were attracted by the 1,2,3-triazole
skeleton since it presents the possibility of introducing the aldehyde group into 1,4-position
with the aromatic nitrogen atom (Scheme 2). Additionally, substituted triazoles find
numerous applications in pharmaceuticals, supramolecular chemistry, organic synthesis,
chemical biology and industry [24–29]. Moreover, compounds containing the 1,2,3-triazole
moiety show a wide spectrum of biological activity [30] including antitubercular [31],
antibacterial [32], antimalarial [33], anti-HIV [34], anticancer [35], antiallergic [36] and
antifungal [37] properties.

A series of aldehydes with triazole fragments were prepared using the recently de-
scribed procedures [12,13] (Scheme 3).
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Scheme 3. Synthesis of substituted 1,2,3-triazole aldehydes 1–3.

3.3. Reactions of Compounds 1–3 with Diisopropylzinc

Compounds 1–3 react with excess diisopropylzinc in the presence of a chiral catalyst
or without any catalyst (Schemes 4 and 5, Table 1).
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Table 1. Reactions of compounds 1–3 with diisopropyl zinc.

Entry Compound Number Cat Ratio Ald:Zn(i-Pr)2:Cat Conditions Yield, % ee, %

1 R = Bn (1) none 1:10 r.t., 4 h 43 3

2 1:10 reflux 0.1 h
(NMR tube) 25 41

3 Ephedrine 1:10:0.2 80 ◦C, 6 h 20 35
4 1:10:0.1 80 ◦C, 4 h 33 37

5 1:10:0.1 reflux, 0.1 h
(NMR tube) 29 10

6 (R,R)-QiunoxP * 1:10:0.1 80 ◦C, 4 h 25 2
7 (R,R)-BenzP * 1:10:0.1 80 ◦C, 4 h 30 20
8 1, 20% ee 1:10:0.2 r.t., overnight 11 0
9 1, 37% ee 1:10:0.2 80 ◦C, 4 h 30 25

10 R = Ph (2) none 1:10 r.t., 4 h 48 0
11 Ephedrine 1:10:0.1 r.t., 1 h 40 27
12 (R,R)-QiunoxP * 1:10:0.1 r.t., 1 h 75 2
13 (R,R)-BenzP * 1:10:0.1 r.t., overnight 24 13
14 (–)Sparteine 1:10:0.1 r.t., 4 h 13 3
15 2, 13% ee 1:10:0.2 r.t., 3 h 48 0
16 2, 27% ee 1:10:0.2 r.t., overnight 47 0

17 R = p-ClC6H4 (3) none 1:10 r.t., 4 h 37 10
18 1:10 r.t., overnight 52 11

19 1:10 reflux, 0.1 h
(NMR tube) 21 0

20 Ephedrine 1:20:0.1 r.t., overnight 31 33

21 (R,R)-QiunoxP * 1:10:0.1 reflux, 0.1 h
(NMR tube) 25 15

22 (R,R)-BenzP * 1:10:0.1 reflux, 0.1 h
(NMR tube) 20 9

23 3, 33% ee 1:10:0.2 r.t., overnight 53 5

Asterix means asymmetric carbon atom.

Analysis of the experimental data collected in Table 1 leads to the following conclusions:

• A significant accelerating effect of a catalyst was observed only in the reaction of 2
catalyzed by (R,R)-QuinoxP* (entry 12). For 1 and 3, the highest yields were obtained
in the non-catalyzed reactions (entries 1, 18).

• Among the applied chiral catalysts, only ephedrine led to the formation of notably
optically enriched products (entries 3–5, 11, 20). Even in these cases, a negative non-
linear effect was observed, since the ee of the products was significantly lower than
the ee of the catalyst.

• Autocatalysis was not observed: compare entries 1 and 8; 10 and 15, 16; 17, 18 and 23.
• Some of the results of the autocatalytic reactions roughly correspond to preserving the

ee of the catalyst diluted by a larger amount of the non-chiral product (entries 9, 23).
Other results indicate dissipation of chirality (entries 8, 15, 16).

• Spontaneous chirality generation was observed for substrates 1 and 3 (entries 1, 2, 17, 18).

We assumed that these findings might be a result of different mechanisms operating
under dissimilar reaction conditions. We leave the accurate elucidation of these conditions,
extending the scope of the substrates, experimental studies of the reaction pools and
kinetic simulations for a full paper. In this preliminary communication, we would like
to perform a demonstration of principle by locating computationally probable catalysts
in the reaction pool that are capable of exhibiting either positive or negative non-linear
effects in one of the reactions under study. The former species might be operative in the
synthetic protocol, resulting in the spontaneous generation of chirality, whereas the latter
one might be responsible for the dissipation of the enantiomeric excess in the reactions
with the pre-formed catalyst.
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3.4. Computational Analysis of the Reaction of Aldehyde 3 with Diisopropyl Zinc

A primary product of the alkylation of aldehyde 3 is alcoholate 7 (Scheme 6). From
previous studies, it is known that similar alcoholates readily form oligomers that play an
important role in the autocatalysis. We have computed possible oligomerization pathways
for 7.
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Similarly to the previously studied cases [9,38], the dimerization of 7 is strongly
exergonic and leads to the formation of the square dimers 8(SS) and 8(RS). However,
unlike the previous cases, in which the stabilities of the homo- and heterochiral dimers
were practically equal, 8(RS) was computed to be more stable than 8(SS) for 3.0 kcal/mol
(Scheme 7).
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The greater stability of 8(RS) is due to a larger number of CH . . . HC interactions
across the Zn2O2 square (Figure 1) arising due to conformational restrictions created by the
coordination binding of Zn with the nitrogen atoms in position 2 of the triazolic rings.

Importantly, the significantly higher stability of the heterochiral dimer 8(SR) implies a
possibility of a positive NLE via the so-called “reservoir effect”. This means that the catalyst
is a monomer capable of catalyzing an enantioselective reaction, and the minor enantiomer
is deactivated via its accumulation in the more stable dimer [11]. We investigated this
possibility computationally (Scheme 8).
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Figure 1. Optimized structures, important interatomic distances (Å) and relative Gibbs free ener-
gies (∆G298, relative to 2 7(S)) of the square dimers 8(SS) and 8(SR). Atoms: gray—carbon; light
gray—hydrogen; red—oxygen; blue—nitrogen; green—chlorine; turquoise—zinc. Interatomic dis-
tances: red—CH . . . HC; green—Zn–N.

Diisopropyl zinc coordinates in a chelate way to the oxygen and N(2) atoms of 7(S),
yielding adduct 9(S). Aldehyde 3 coordinates to the Zn atom, yielding 10. The isopropyl
groups in 10 can attack the prochiral plane from the opposite sides via TS1(S) or TS1(R),
yielding the adducts 7(S) • 7(S) or 7(S) • 7(R), respectively.Since TS1(R) is 7.2 kcal/mol less
stable than TS1(S) due to the significantly smaller number of stabilizing weak interactions
between the substrate and the catalyst compared to TS1(S) (Figure 2), amplification of
chirality takes place via predominant formation of 7(S) • 7(S).

Thus, we concluded that AAA is possible for compound 7 via the “reservoir” mechanism
through the combination of the greater stability of the heterochiral dimer 8(SR) compared to
8(SS) and the enantioselective alkylation catalyzed by the monomeric alcoholate.
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Figure 2. Optimized structures, important interatomic distances (Å) and Gibbs free energies (∆G298,
relative to 7(S) + Zn(i-Pr)2 + 3) of the transition states TS1(S) and TS1(R). Atoms: gray—carbon;
light gray—hydrogen; red—oxygen; blue—nitrogen; green—chlorine; turquoise—zinc. Interatomic
distances: yellow—forming bonds and those being broken; green—Zn–N; blue: CH . . . O; violet,
CH . . . N; brown CH . . . π.
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Scheme 8. Computational results (∆G298 and ∆H relative to 7(S) + Zn(i-Pr)2 + 3) for the reaction of
diisopropyl zinc with aldehyde 3 catalyzed by 7(S). AAA via reservoir mechanism.

It is evident that very similar transition states can be found for the reactions catalyzed
by the resting-state species, i.e., square dimers 8 (e.g., Scheme 9, Figure 3). In that case, the
reservoir effect is absent and the enantiomeric pairs, 8(SS) and 8(RR) and 8(SR) and 8(RS),
would do exactly the same job producing preferentially the opposite enantiomers, and
neither amplifying nor dissipating effects are expected. This mechanism would correlate
with the experimental results from entries 9 and 23 (Table 1).
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Scheme 9. Computational results (∆G298 and ∆H relative to 7(S) + Zn(i-Pr)2 + 3) for the reaction of
diisopropyl zinc with aldehyde 3 catalyzed by 8(SS). Optical activity is not affected.

The smaller size of the 5-membered heterocycle compared to the pyrimidine or pyri-
dine rings in the classic Soai substrates does not allow for creating a 12-membered macro-
cycle as the core of the tetrameric cluster. Instead, a 10-membered ring is formed by one
coordination N–Zn bond and one hydrogen O–H bond (Scheme 10).

As a result, only one Zn atom in the core remains capable of coordinating Zn(i-Pr)2,
yielding 12(SSSS). Either of the two i-Pr groups of Zn(i-Pr)2 can participate in the alkylation
(Figure 4). In this case, a preferential formation of the opposite enantiomer 7(R) from
8(SSSS)) was computed. The π-π stacking due to the practically coplanar orientation of
the incoming aldehyde with one of the alcoholate units of the tetramer in TS3(R) makes it
significantly more stable than TS3(S). Although it is evident that 8(RRRR) would generate
7(S) with the same efficiency, a simple analysis shows that in that situation, any existing
enantiomeric excess will be degraded to microscopic values. This prediction corresponds
to the experimental results from entries 8, 15, 16 and 21 in Table 1.
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Figure 3. Optimized structures, important interatomic distances (Å) and Gibbs free energies (∆G298,
relative to 2 8(SS) + Zn(i-Pr)2 + 3) of the transition states TS2(S) and TS2(R) for the alkylation of 3
catalyzed with 8(SS). Atoms: gray—carbon; light gray—hydrogen; red—oxygen; blue—nitrogen;
green—chlorine; turquoise—zinc. Interatomic distances: yellow—forming bonds and those being
broken; green—Zn–N; blue: CH . . . O; violet, CH . . . N; red—CH . . . HC.
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to 13(SSSS) + Zn(i-Pr)2 + 3) of the transition states TS2(S) and TS2(R) for the alkylation of 3 catalyzed
with 8(SS). Atoms: gray—carbon; light gray—hydrogen; red—oxygen; blue—nitrogen; green—chlorine;
turquoise—zinc. Interatomic distances: yellow—forming bonds and those being broken.

4. Discussion

Our computational results based on the preliminary experimental findings testify to
the fact that in the reaction of diisopropyl zinc with triazoles 1–3, three different regimes of
ee changes occur in the course of the reaction: accumulation to detectable amounts, keeping
the microscopic ee unchanged and degradation of the macroscopic ee to microscopic values.

This situation must be a much more frequent occurrence compared to the perfect asym-
metric auto amplification in the Soai reaction. On the other hand, the evidently increasing
randomness of the chiral amplification makes its observation and proper characterization
significantly more difficult.

We realize that a much larger set of experimental data would be necessary to claim the
achievement of exercising some control over AAA. Extension of the substrates’ scope, serial
experiments, NMR studies on the reaction pools of these reactions and kinetic simulations
based on the computed catalytic cycles are in progress in our laboratories.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym15071382/s1. Experimental details, NMR and HPLC charts,
computational details, cartesian coordinates for all computed minima and transition states. Table S1:
describing changes in the thermodynamic parameters for the intermediates and transition states in
the computed catalytic cycles.
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