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Abstract: In nature, symmetry is all around us. The symmetry framework represents integer partial
differential equations and their fractional order in the sense of Caputo derivatives. This article
suggests a semi-analytical approach based on Aboodh transform (AT) and the homotopy perturbation
scheme (HPS) for achieving the approximate solution of time-fractional porous media and heat
transfer equations. The AT converts the fractional problems into simple ones and obtains the
recurrence relation without any discretization or assumption. This nonlinear recurrence relation can
be decomposed via the use of the HPS to obtain the iterations in terms of series solutions. The initial
conditions play an important role in determining the successive iterations and yields towards the
exact solution. We provide some numerical applications to analyze the accuracy of this proposed
scheme and show that the performance of our scheme has strong agreement with the exact results.

Keywords: Aboodh transform; homotopy perturbation scheme; porous media and heat transfer
equations; convergence analysis

1. Introduction

In recent years, numerous researchers have investigated the study of fluid flow over
various symmetries and their related properties in a wide range of applications in sci-
ence and engineering. This symmetry analysis is significant, from both a theoretical and
practical angle of study. In particular phenomena, various researchers and academics
have constructed fluid flow over a symmetry idea and demonstrated the heat transfer
model to obtain their efficient solutions [1,2]. A change that makes the differential equation
compatible is considered a symmetry differential problem. In the presence of such sym-
metries, these types of differential problems might be solvable. Lie point symmetries are
used to build the optimal system of one-dimensional Lie subalgebra [3]. In other words,
symmetries can be evaluated via the results of an associated formulation of some differ-
ential problems [4,5]. These equations can occasionally be solved more quickly than the
original differential equations. These equations have drawn a lot of attention due to their
outstanding simulation over traditional integer-order differential equations for a variety of
physical and biological phenomena. They are often used to explain the viscous materials,
system of control, and signal analysis in a variety of fields, including physics, engineering,
biology, economics, and much more [6–9].

Numerous scientists have provided various numerical and analytical schemes for
deriving the solution of ordinary and fractional differential problems in science and engi-
neering fields [10,11]. Ali et al. [12] obtained the solitary wave solution for a fractional-order
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general equal-width equation via a semi-analytical technique. Khalid et al. [13] consid-
ered the separation of a variable scheme to handle the stefan problems in the cylindrical
form under the eigen conditions. Momani and Odibat [14] implemented two analytical
schemes to obtain the approximate results of linear PDEs in the Caputo-sense fractional
derivatives. Cakmak and Alkan [15] studied the nonlinear Pantograph problems and
provided approximate solutions via the Fibonacci collocation approach. Nuruddeen and
Nass [16] utilized the Kudryashov method to obtain the solitary solution of the GEW-
burgers problems. Iqbal et al. [17] obtained the numerical solution for the fractional-order
Kersten–Krasil’shchik coupled KdV-mKdV system using the Atangana–Baleanu derivative.
Mansal and Sene [18] obtained the analysis of a fractional model in the context of time-
fractional order. Fang et al. [19] presented a novel scheme for the solution of Klein–Gordon
and Sine–Gordon problems. Shah et al. [20] utilized the Laplace decomposition transform
method to compute series-type solutions under fuzzy fractional PDEs. Nadeem and Li [21]
proposed a significant scheme based on the Mohand transform and the HPS to derive
the solution of fourth-order parabolic PDEs with fractional derivatives. Merdan [22] used
the fractional variational iteration method for finding the approximate analytical solu-
tions of the nonlinear fractional Klein–Gordon equation with the Riemann–Liouville sense.
Arasteh et al. [23] emphasized the desire to investigate the partially embedded porous
medium in a channel due to its numerous application uses in heat transfer and fluid flows.
Barnoon et al. [24] investigated the heat transfer and non-Newtonian nanofluid flow in
a porous enclosure with two cylinders inserted in the cavity with and without the effect
of thermal radiation. A recent study on porous media and heat transfer equations can be
found in [25–28]. The heat transfer and fluid flow of a channel are mostly unexplored. This
is true even though numerous research has addressed the demand to explore the porous
media partially embedded in a channel due to its numerous technical uses. To address
this theory and difference, we carried out a study with a three-layered porous medium
(occupying 60% of a heat sink) across Reynolds numbers ranging from 50 to 150 and water
base fluid.

The Aboodh homotopy perturbation transform scheme (AHPTS) is a committing
strategy to derive the solution of fractional PDEs. This strategy has various advantages
over traditional numerical schemes for the solution of PDEs of time-fractional order. Firstly,
the AHPTS is a semi-analytical approach where the analytical and numerical schemes are
combined to obtain the results of the fractional differential problems. Moreover, this allows
more precise results in the comparison of purely numerical schemes and also minimizes
the heavy computational work compared to the other analytical techniques. Secondly, the
AHPTS has the advantage of overcoming the fractional PDEs, which makes it a fascinating
approach for the outcome of broad challenges. Finally, the AHPTS is a computationally
efficient approach for solving fractional PDEs since it is simple to develop and can be
promptly parallelized. We start this paper as follows: We present some preliminaries and
concept of the AT in Section 2. The development of AHPTS and its convergence analysis
are provided in Sections 3 and 4. In Section 5, we tested this semi-analytical scheme on the
time-fractional porous media and heat transfer equations and showed that the proposed
strategy is valid. In the end, we conclude the results in Section 6.

2. Preliminaries of AT

This segment describes some preliminaries and the concept of AT, which will be
further use to construct the idea of a semi-analytical approach.

Definition 1. The Caputo definition of order α is described as [29]:

Dα
t ϑ(t) =

1
Γ(k− α)

∫ t

0
(t− φ)k−α−1ϑ(k)(x, φ)dφ, k− 1 < α ≤ k. (1)
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Definition 2. The AT for a function of ϑ(t) is defined as [29]:

A[ϑ(t)] = R(w) =
1
w

∫ ∞

0
e−wtϑ(t)dt, t ≥ 0, k1 ≤ w ≤ k2. (2)

where A denotes the sign of AT, and k1 and k2 are parameters, whereas w is the transformation
element of the variable time function t. Conversely, R(w) is the AT of ϑ(t); then,

A−1[R(w)] = ϑ(t), A−1 is known as the inverse AT.

Proposition 1. The linear property of AT is defined as [30].
Let A{ϑ1(t)} = R1(w) and A{ϑ2(t)} = R2(w); then,

A{aϑ1(t) + bϑ2(t)} = aA{ϑ1(t)}+ bA{ϑ2(t)},
⇒ A{aϑ1(t) + bϑ2(t)} = aR1(w) + bR2(w).

(3)

Proposition 2. The differential properties are defined as [29,30].
If A{ϑ(t)} = R(w), then

(i) A{ϑ′(x, t)} = wR(x, w)− ϑ(0)
w

,

t(ii) A{ϑ′′(x, t)} = w2R(x, w)− ϑ(0)− ϑ′(0)
w

,

(iii) A{ϑm(x, t)} = wmR(x, w)− ϑ(0)
w2−m −

ϑ′(0)
w3−m − · · · −

ϑm−1(0)
w

.

(4)

Proposition 3. The fractional differential property is defined as [30].
If A{ϑ(t)} = R(w), then

A{Dα
t ϑ(x, t)} = wαR(x, w)− Σr−1

k=0
ϑ(k)(x, 0)
wk−α+2 . (5)

3. Formulation of AHPTS

This segment demonstrates the construction of AHPTS based on the combined form
of the Aboodh transform and the homotopy perturbation scheme. The scheme does not
require any theory of assumption and restriction of any elements. We start the formulation
of this scheme by considering the following fractional differential problems as

Dα
t ϑ(x, t) = L1ϑ(x, t) + L2ϑ(x, t) + g(x, t), (6)

with initial condition

ϑ(x, 0) = c1(x), (7)

where Dα
t =

∂α

∂tα
presents the Caputo fractional derivative, and L1 and L2 express the linear

and nonlinear parameters, accordingly, whereas g(x, t) shows the source element.
Thus, AT for Equation (6) yields

A
[

Dα
t ϑ(x, t)

]
= A

[
L1ϑ(x, t) + L2ϑ(x, t) + g(x, t)

]
. (8)

Using the proposition (4) of AT, we obtain

hαA[ϑ(x, t)]− ϑ(x, 0)
h2−α

= A
[

L1ϑ(x, t) + L2ϑ(x, t) + g(x, t)
]
.
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After some simplifications, we obtain

A[ϑ(x, t)] =
ϑ(x, 0)

h2 +
1
hα

A
[

L1ϑ(x, t) + L2ϑ(x, t) + g(x, t)

]
,

using condition (7), it becomes

A[ϑ(x, t)] =
c1(x)

h2 +
1
hα

A
[

L1ϑ(x, t) + L2ϑ(x, t) + g(x, t)

]
.

Now, applying the inverse AT, we obtain the above equation as follows

ϑ(x, t) = G(x, t) +A−1
[ 1

hα
A
{

L1ϑ(x, t) + L2ϑ(x, t)
}]

, (9)

where

G(x, t) = A−1
[ c1(x)

h2 +
1
hα

A
{

g(x, t)
}]

.

The HPS reads the results in the terms of power series as follows

ϑ(x, t) = ϑ0 + p1ϑ1 + p2ϑ2 + · · · =
∞

∑
i=0

piϑi, (10)

where p ∈ [0, 1] stands for homotopy parameter.
The nonlinear operator L2ϑ(x, t) is defined as follows

L2ϑ(x, t) = H0 + p1H1 + p2H2 + · · · =
∞

∑
i=0

pi Hi(ϑ), (11)

where Hn polynomials are derived as

Hn(ϑ0, ϑ1, · · · , ϑn) =
1
n!

∂n

∂pn

(
L2

( ∞

∑
i=0

piϑi

))
p=0

. n = 0, 1, 2, · · · (12)

Substituting Equations (11) and (12) into Equation (10), we obtain

∞

∑
i=0

piϑi(x, t) = G(x, t) + p

[
A−1

{
1
hα

A
(

L1

∞

∑
i=0

piϑi(x, t) +
∞

∑
i=0

pi Hn

)}]
.

Now, we equate the similar powers of p to obtain the following series:

p0 : ϑ0(x, t) = G(x, t),

p1 : ϑ1(x, t) = A−1

[
1
hα

A
{

L1ϑ0(x, t) + H0(ϑ)

}]
,

p2 : ϑ2(x, t) = A−1

[
1
hα

A
{

L1ϑ1(x, t) + H1(ϑ)

}]
,

p3 : ϑ3(x, t) = A−1

[
1
hα

A
{

L1ϑ2(x, t) + H2(ϑ)

}]
,

...
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Continuing these iterations, we can summarize it as

ϑ(x, t) = ϑ0(x, t) + p1ϑ1(x, t) + p2ϑ2(x, t) + p3ϑ3(x, t) + · · · . (13)

In limiting cases, when p→ 1, we can write it as follows:

ϑ(x, t) = ϑ0 + ϑ1 + ϑ2 + · · · =
∞

∑
i=0

ϑi, (14)

which shows the approximate solution of the fractional differential problem (5).

4. Convergence Analysis

In this section, we plan to provide the convergence analysis of AHPTS. We aim
to demonstrate that the obtained results of Equation (14) converge to the problem of
Equation (6). Now, the following theorem is very helpful in providing the sufficient condi-
tion of the convergence.

Theorem 1. Consider that P1 and P2 are Banach spaces and Q : P1 → P2 is a nonlinear mapping
such as

∀r, r∗ ∈ P1 : ‖Q(r)−Q(r∗)‖ ≤ λ‖r− r∗‖. 0 < λ < 1

The Banach’s fixed point theorem states that, if Q involves a unique point which is fixed with η such
that Q(η) = η, then, consider that the sequence in Equation (14) is represented as

Tn = Q(Tn−1), Tn−1 =
n−1

∑
i=0

Ti, n = 1, 2, 3, · · ·

and considering that T0 = r0 ∈ Rr(s), where Bh(r) = {r? ∈ P1 | ‖r? − r‖ < r}, we have (i)
Tn ∈ Ch(r) (ii) limn→∞ Tn = r.

Proof.

(i) By the property of mathematical induction, let n = 1; we have

‖T1 − r‖ = ‖Q(T0)−Q(r)‖ ≤ λ‖r0 − r‖.

Assuming ‖Tn−1 − r‖ ≤ λn+1‖r0 − r‖ as an induction hypothesis, we obtain

‖Tn − r‖ = ‖Q(Tn−1)−Q(r)‖ ≤ λ‖Tn−1 − r‖ ≤ λn‖r0 − r‖,

using the definition of Bh(r), we have

‖Tn − r‖ ≤ λn‖r0 − r‖ ≤ λnh < h which implies Tn ∈ Bh(r).

(ii) As ‖Tn − r‖ ≤ λn‖r0 − r‖ and limn→∞ λn = 0,

lim
n→∞
‖Tn − r‖ = 0, that is, lim

n→∞
Tn = r.

Hence, the stated statement has been proven.

5. Numerical Applications

In this section, we present the performance of a semi-analytical approach using some
numerical applications of time-fractional porous media and heat transfer equations. This
scheme shows that the differential problems involving fractional order yield a straightfor-
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ward recurrence relation and the results are obtained in the form of series. We plotted this
in 2D and 3D to show the authenticity of this proposed strategy.

5.1. Problem 1

Consider the nonlinear time-fractional porous media problem such as

∂αϑ

∂tα
=

∂

∂x

(
ϑ

∂ϑ

∂x

)
, (15)

with the initial condition

ϑ(x, 0) = x, (16)

Using AT on Equation (15), we obtain

A
[

∂αϑ

∂tα

]
= A

[
∂

∂x

(
ϑ

∂ϑ

∂x

)]
, (17)

hαA[ϑ(x, t)]− ϑ(x, 0)
h2−α

= A
[

∂

∂x

(
ϑ

∂ϑ

∂x

)]
,

A[ϑ(x, t)] =
ϑ(x, 0)

h2 +
1
hα

A
[

∂

∂x

(
ϑ

∂ϑ

∂x

)]
.

Utilizing the inverse AT, we obtain

ϑ(x, t) = ϑ(x, 0) +A−1

[
1
hα

A
{ ∂

∂x

(
ϑ

∂ϑ

∂x

)}]
. (18)

Now, use HPS to derive the He’s components

∞

∑
i=0

piϑi(x, t) = x +A−1
[ 1

hα
A
{ ∂

∂x

∞

∑
i=0

piϑi
∂ϑi
∂x

}]
. (19)

Evaluating similar components of p, we obtain

p0 : ϑ0(x, t) = x,

p1 : ϑ1(x, t) = A−1

[
1
hα

A
{

∂

∂x

(
ϑ0

∂ϑ0

∂x

)}]
=

tα

Γ(α + 1)
,

p2 : ϑ2(x, t) = A−1

[
1
hα

A
{

∂

∂x

(
ϑ0

∂ϑ1

∂x
+ ϑ1

∂ϑ0

∂x

)}]
= 0,

p3 : ϑ3(x, t) = A−1

[
1
hα

A
{

∂

∂x

(
ϑ0

∂ϑ2

∂x
+ ϑ1

∂ϑ1

∂x
+ ϑ2

∂ϑ0

∂x

)}]
= 0,

....

Similarly, we can examine approximation series such as

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + ϑ4(x, t) + · · · ,

= x +
tα

Γ(α + 1)
.

(20)
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The exact solution at α = 1 states

ϑ(x, t) = x + t. (21)

We will now discuss the graphical representations of the time-fractional porous media
problem. We sketched the 3D results for the graphical behavior of example 1 in various
fractional orders. We obtained the series results by utilizing our proposed technique and
then we drew four graphical structures in fractional orders of α = 0.4, 0.6, 0.8, and 1 with
a domain of −5 ≤ x ≤ 5 and t = 10, shown in Figure 1. Table 1 also demonstrates the
physical behavior of the approximate solution at different fractional order. We illustrate
the 2D graphical structure in Figure 2 at x = 5 and t = 0.01 to analyze that the increase in
fractional order from low to high provides an excellent performance. It states that we may
adequately describe any surface by following the appropriate physical processes that exist
in the fields of engineering and science.

(a) (b)

(c) (d)

Figure 1. The solution behavior of the approximate solution for ϑ4(x, t) at α = 1 and the exact
solution. (a) The approximate solution for Equation (20) at α = 0.6. (b) The approximate solution
for Equation (20) at α = 0.8. (c) The approximate solution for Equation (20) at α = 1. (d) The exact
solution for Equation (21).
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Table 1. The approximate results for distinct parameters of α for example 1.

x t α = 0.25 α = 0.50 α = 0.75 α = 1

0.1

1

1.20326 1.22838 1.18807 1.1

0.2 1.30326 1.32838 1.28807 1.2

0.3 1.40326 1.42838 1.38807 1.3

0.4 1.50326 1.52838 1.48807 1.4

0.5 1.60326 1.62838 1.58807 1.5

0.1

3

1.55198 2.05441 2.58025 3.1

0.2 1.65198 2.15441 2.68025 3.2

0.3 1.75198 2.25441 2.78025 3.3

0.4 1.85198 2.35441 2.88025 3.4

0.5 1.95198 2.45441 2.98025 3.5

0.1

5

1.74976 2.62313 3.73817 5.1

0.2 1.84976 2.72313 3.83817 5.2

0.3 1.94976 2.82313 3.93817 5.3

0.4 2.04976 2.92313 4.03817 5.4

0.5 2.14976 3.02313 4.13817 5.5

α=0.4

α=0.6

α=0.8

α=1

1 2 3 4 5
x

1

2

3

4

5

t

ϑ (x, t)

Figure 2. The physical behavior of the approximate solution ϑ4(x, t) for α ∈ [0.4, 0.6, 0.8, 1] compared
with the exact solution.

5.2. Problem 2

We consider the nonlinear time-fractional heat transfer problem such as

∂αϑ

∂tα
=

∂2ϑ

∂x2 − 2ϑ3, (22)

with the initial condition

ϑ(x, 0) =
1 + 2x

x2 + x + 1
, (23)

Using AT on Equation (13), we obtain

A
[

∂αϑ

∂tα

]
= A

[
∂2ϑ

∂x2 − 2ϑ3

]
, (24)
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hαA[ϑ(x, t)]− ϑ(x, 0)
h2−α

= A
[

∂2ϑ

∂x2 − 2ϑ3

]
, (25)

A[ϑ(x, t)] =
ϑ(x, 0)

h2 +
1
hα

A
[

∂2ϑ

∂x2 − 2ϑ3

]
.

Utilizing the inverse AT, we obtain

ϑ(x, t) = ϑ(x, 0) +A−1

[
1
hα

A
{∂2ϑ

∂x2 − 2ϑ3
}]

. (26)

Now, we use HPS to derive the He’s components

∞

∑
i=0

piϑi(x, t) = x +A−1
[ 1

hα
A
{ ∞

∑
i=0

pi ∂2ϑi
∂x2 − 2

∞

∑
i=0

piϑ3
i

}]
. (27)

Evaluating similar components of p, we obtain

p0 : ϑ0(x, t) =
1 + 2x

x2 + x + 1
,

p1 : ϑ1(x, t) = A−1

[
1
hα

A
{

∂2ϑ0

∂x2 − 2ϑ3
0

}]
=

(
−6(1 + 2x)
(1 + x + x2)2

)
tα

Γ(α + 1)
,

p2 : ϑ2(x, t) = A−1

[
1
hα

A
{

∂2ϑ1

∂x2 − 6ϑ2
0ϑ1

}]
=

(
72(1 + 2x)

(1 + x + x2)3

)
t2α

Γ(2α + 1)
,

p3 : ϑ3(x, t) = A−1

[
1
hα

A
{

∂2ϑ2

∂x2 − 6ϑ0ϑ2
1 − 6ϑ2

0ϑ2

}]
=

(
−1296(1 + 2x)
(1 + x + x2)4 +

216(1 + 2x)3

(1 + x + x2)5

)
t3α

Γ(3α + 1)
,

....

In a similar way, we can consider the approximate series such as

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + ϑ4(x, t) + · · · ,

=
1 + 2x

x2 + x + 1
− 6(1 + 2x)

(1 + x + x2)2
tα

Γ(α + 1)
+

72(1 + 2x)
(1 + x + x2)3

t2α

Γ(2α + 1)
− 1296(1 + 2x)

(1 + x + x2)4
t3α

Γ(3α + 1)
.

(28)

If α = 1, the result is th same as that given by [31,32].

ϑ(x, t) =
1 + 2x

x2 + x + 1
− 6(1 + 2x)

(1 + x + x2)2 t +
36(1 + 2x)

(1 + x + x2)3 t2 − 216(1 + 2x)
(1 + x + x2)4 t3. (29)

We will now discuss the graphical representations of the time-fractional heat transfer
problem. We sketched the 3D results for the graphical behavior of example 2 in various
fractional orders. We obtained the series results by utilizing our proposed technique and
then we drew four graphical structures in fractional orders of α = 0.25, 0.50, 0.75, and 1
with a domain of −1 ≤ x ≤ 1 and t = 1, shown in Figure 3. Table 2 also demonstrates the
physical behavior of the approximate solution at different fractional order. We illustrate
the 2D graphical structure in Figure 4 at x = 5 and t = 0.01 to analyze that the increase in
fractional order from low to high provides an excellent performance. It states that we may
adequately describe any surface by following the appropriate physical processes that exist
in the fields of engineering and science.
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Table 2. The approximate results for distinct parameters of α for example 2.

x t α = 0.25 α = 0.50 α = 0.75 α = 1

0.1

0.001

−4.07945 0.911369 1.04676 1.07527

0.2 −2.75201 0.968709 1.09681 1.12321

0.3 −1.69189 1.00347 1.12166 1.14585

0.4 −0.908809 1.02026 1.12748 1.14943

0.5 −0.358122 1.02333 1.1195 1.13895

0.1

0.003

−10.8119 0.782813 1.00654 1.06383

0.2 −7.71798 0.855137 1.05874 1.11288

0.3 −5.22826 0.904019 1.08662 1.13636

0.4 −3.37602 0.933293 1.09884 1.14068

0.5 −2.06287 0.922491 1.0913 1.13122

0.1

0.005

−16.552 0.658231 0.975656 1.05263

0.2 −11.9565 0.753374 1.02932 1.10236

0.3 −8.24851 0.821376 1.05939 1.12676

0.4 −5.48297 0.865682 1.0711 1.13208

0.5 −3.51699 0.891058 1.06912 1.1236

(a) (b)

(c) (d)

Figure 3. The solution behavior of the approximate solution for ϑ4(x, t) at α = 1 and the exact
solution. (a) The approximate solution for Equation (29) at α = 0.25. (b) The approximate solution
for Equation (29) at α = 0.5. (c) The approximate solution for Equation (29) at α = 0.75. (d) The
approximate solution for Equation (29) at α = 1.
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Figure 4. The physical behavior of the approximate solution ϑ4(x, t) for α ∈ [0.25, 0.5, 0.75, 1] com-
pared with the exact solution.

6. Conclusions

In this paper, we successfully obtained the approximate solution of time-fractional
porous media and heat transfer equations using a semi-analytical approach. The Abdooh
transform converts the fractional problem to a recurrence relation without any perturbation
or small parameter of assumption. This recurrence relation is feasible for the process of
the homotopy perturbation method to obtain He’s polynomials. We observed that these
iterations are very easy to compute and converge to the exact solution after a limited series.
We demonstrated the 2D and 3D graphical visuals in various fractional order and showed
that this proposed scheme has a strong agreement in finding the approximate solution.
We considered Mathematica Software 11 to compute the graphical visuals and tabular
values. We recommend the audience to study this strategy for the nonlinear fractional-
order systems in their future work that exist in the engineering and science fields.
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