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Abstract: Symmetries are crucial to the investigation of nonlinear physical processes, particularly the
evaluation of a differential problem in the real world. This study focuses on the investigation of the
Kadomtsev–Petviashvili (KP) model within a (3+1)-dimensional domain, governing the behavior
of wave propagation in a medium characterized by both nonlinearity and dispersion. The inquiry
employs two distinct analytical techniques to derive multiple soliton solutions and multiple solitary
wave solutions. These methods include the modified Sardar sub-equation technique and the Darboux
transformation (DT). The modified Sardar sub-equation technique is used to obtain multiple soliton
solutions, while the DT is introduced to develop two bright and two dark soliton solutions. These
solutions are presented alongside their corresponding constraint conditions and illustrated through
3-D, 2-D, and contour plots to physically portray the derived solutions. The results demonstrate
that the employed analytical techniques are useful and have not yet been explored in the context of
the analyzed models. The proposed methodologies are valuable and can be applied to additional
nonlinear evolutionary models employed to describe nonlinear physical models within the domain
of nonlinear science.

Keywords: (3+1)-dimensional Kadomtseva-Petviashvili model; the modified Sardar sub-equation
technique; Darboux transformation; soliton dynamics

1. Introduction

Recently, a higher-dimensional integrable system’s physical and mathematical aspects
have been addressed. A tremendous amount of research has gone into developing and
understanding integrable models because of their major effects in scientific fields. Many
investigations have been conducted on higher-dimensional integrable equations in many
different sectors, including solitary wave theory and plasma acoustic waves, as well as
many more scientific fields. Many soliton solutions can be found in [1–14].

A nonlinear partial differential equation, the (3+1)-dimensional Kadomtsev–Petviashvili
(KP) model describes wave events in a four-dimensional space–time context. It is an ex-
tension of the (2+1)-dimensional KP model and is applied to the study of many physical
systems, such as fluid dynamics, nonlinear optics, and plasma physics. The soliton so-
lutions, which are localized wave packets that can travel through the medium without
changing their shape or amplitude, are of great importance in the (3+1)-dimensional KP
model. Numerous scientific phenomena, including wave propagation, energy transport,
and information encoding, depend heavily on soliton behavior. A (3+1)-dimensional KP
model was presented in [1] as

αMxt −
α4 + β4 − 6α2β2

16
Mxxxx −

3(β2 − α2)

4
(M2)xx −

3
4
Myy +

3
4
Mzz = 0, (1)
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which allows for a weak dispersion factorMxxxx. Its integrability was examined by using
the Bäcklund transformation in Equation (1). The suggested version of Equation (1) is
not in the form of Painlevé integrability. To expand and generalize integrable systems to
larger-dimensional models, researchers have conducted a lot of work. The development of
numerous higher-dimensionally integrable systems is the result of these efforts. Through
the application of a number of potent approaches, the higher-order integrable model enables
the determination of the dynamic behavior of the solution. Recently, there have been two
thorough reviews of the subject of nonlinear wave structures in various physical contexts,
including consideration of nonlinear optics, photonics, and matter waves in Einstein Bose
and the condensation products [15,16]. Addressing the context of liquid crystals, molecular
Einstein’s condensates, photonic systems, and other fundamental contexts, researchers
have examined the two- and three-dimensional resonances and associated states, such as
quantum droplets [17]. In addition, new information on light bullets, the generation of
few-cycle (ultra-narrow) optical pulses and their many uses, and the appearance of rogue
waves in a variety of media was formally provided in the overview published in [18]. The
extended (3+1)-dimensional Painlevé integrable equation is now examined as:

αMxt −
α4 + β4 − 6α2β2

16
Mxxxx −

3(β2 − α2)

4
(M2)xx + aMxx + bMxy + cMxz + dMzz + eMyz +

e2

4d
Myy = 0, (2)

αMxt −
α4 + β4 − 6α2β2

16
Mxxxx −

3(β2 − α2)

4
(M2)xx + aMxx + bMxy + cMyy = 0. (3)

The majority of phenomena can be represented by nonlinear differential equations (NDEs).
Determining an exact solution for nonlinear differential equations is significantly more
difficult in this circumstance. Numerous analytical techniques have been employed to
solve nonlinear issues, including the Adomian decomposition technique and the varia-
tional homotopy perturbation technique, the variational iteration technique, the homo-
topy perturbation technique, the differential transform technique, and the variational
iteration technique.

Additionally, several intriguing techniques have been researched to find precise so-
lutions for nonlinear PDEs, including the prolonged sin-Gordon expansion technique,
the modified Tanh-function technique, and the modified Kudryashov technique. For
Schamel’s equation, accurate nondifferentiable solutions have been found. For nonlin-
ear PDEs defined in the sense of conformable and local fractional derivatives, several
of the aforementioned techniques have been attained. The Hirota bilinear technique is
perhaps one of the most fascinating exact solution techniques in solution theory for solving
nonlinear integrable equations.

Lie group theory plays a significant part in symmetry reduction, whenever the tra-
ditional methods for minimizing the number of independent components in a problem
are the solution under some subgroup of the symmetry group of that system. Numerous
scientists have claimed that finding the approximate solution to such problems is very
important either by using numerical or analytical techniques. Therefore, symmetry analysis
is a very useful system for identifying PDEs, especially when the equations are derived
from the ideas of mathematical accounting. Although symmetry is an essential compo-
nent of nature, the majority of the findings are not symmetrical. An effective approach
for hiding symmetry is to offer unexpected symmetry-breaking phenomena. Discrete
and continuous finite symmetries come in two different varieties. Parity and temporal
inversion are two examples of natural symmetries that are discrete, whereas space is a
continuous transformation.

Each of these techniques has pros and cons. The optimum auxiliary function technique,
a novel methodology, has been similarly expanded to partial differential equations (PDEs).
Recent years have seen a boom in research on multiple soliton solutions and lump solutions
because of their significance in nonlinear scientific domains. High-amplitude localization
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is a feature of lumps. The Hirota bilinear form [19–21], can be used to produce lumps
and solitons. A lump may physically separate (or emit) from a line soliton, survive for a
momentary interval, and then meld with the following soliton. Recently, Wazwaz used
this model to explore nonlinear integrable models and a number of potent approaches,
including the Hirota method and the Darboux transformation method [22–24]. Darboux
transformation is a powerful mathematical technique used in the study of integrable
systems and nonlinear partial differential equations. It was first introduced by the French
mathematician Gaston Darboux in the late 19th century as a way of constructing new
solutions to differential equations from known ones. The Darboux transformation works
by converting a given differential equation solution into a new solution that uses the same
differential equation but has different boundary conditions. The Darboux matrix, a new
function that is used to methodically alter the initial answer, is introduced in order to make
this transformation. One of the key benefits of the Darboux transformation is that it enables
the building of an endless number of new solutions to a given differential equation, which
can provide important information about how the system under study behaves. Numerous
physical systems, such as quantum mechanics, fluid dynamics, and nonlinear optics have
all been studied using it.

The novelty of this work is that the Darboux transformation and the modified Sardar
sub-equation technique are applied to the KP model in this study to evaluate and analyze
their impacts. New soliton solutions, new aspects of the model’s behavior, or other char-
acteristics that have not yet been investigated in the literature may be found through this
approach [25–27]. This paper has the potential to increase knowledge and comprehension
in the area of the KP equation by utilizing these methodologies and examining their con-
sequences. It might offer fresh perspectives, illuminate the integrability characteristics,
unearth more symmetries, or make known KP model-related events that were previously
unknown. The study of systems that can be precisely solved using analytical techniques is
the focus of the field of integrable systems, which includes the Darboux transformation as
a key tool. It has played a central role in the development of many important mathematical
concepts, such as soliton theory and the inverse scattering method [28–30].

In this paper, we use different techniques, the modified Sardar sub-equation technique
MSST and DT, to find soliton solutions.

Additionally, we improve the discussion on the theoretical implications of our research.
We illustrate our ability to achieve significant theoretical advancement by describing the
exact analytical framework used and highlighting the innovative methods used, such as
the MSST and DT. With the help of these innovations, we identify new solitons, which
are essential for comprehending the behavior of the (3+1)-dimensional KP model. The
discussion of the potential applications resulting from the derived soliton solutions is
expanded. Numerous disciplines are included in these applications, including wave
phenomena, nonlinear optics, fluid dynamics, and plasma physics.

The layout of the paper is as follows: Section 2 explains the general description of the
used techniques and the application of the governing model. In Section 3, we discuss the
DT of the given model. The results and discussion are provided in Section 4. Section 5
provides the conclusion.

2. General Description and Application of the Proposed Methods

This section provides a detailed explanation of the methodology used for Equation
(PDE) to produce soliton solutions. The following form is the generic NLPDE:

S(w, wx, wt, wxx, wxt, ...) = 0, (4)

where w = w(x, t) is an unexplained function. Applying the transformation

w(x, t) =W(τ), τ = x− vt, (5)
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Equation (1) can be changed into an ODE, as

R(W ,W ′,W ′′, ...) = 0, (6)

where v andW ′ represent the constant velocity and dw
dτ , respectively.

The methodology is described in the following subsection.

2.1. The Modified Sardar Sub-Equation Technique

The given form describes the general solution of Equation (6), as per the method.

W(τ) = R0 +
N

∑
i=1

RiP i(τ), Ri 6= 0, (7)

where W = W(τ), and the following equation is the first-order differential equation that
satisfies the general solution to Equation (7).

P ′(τ)2 = ε2P(τ)4 + ε1P(τ)2 + ε0, (8)

where ε0 6= 1 and ε1 and ε2 6= 0 are integers. We calculate the constants R0, R1, and R2,
and additionally, it is possible for Ri to be zero. We determine the value of N using the
balance principle. Following are the solutions to Equation (8).

Case 1:

• If ε0 = 0, ε1 > 0, and ε2 6= 0, then

P1(τ) =

√
− ε1

ε2
sech(

√
ε1(η + τ)), (9)

• If ε0 = 0, ε1 > 0, and ε2 6= 0, then

P2(τ) =

√
− ε1

ε2
csch(

√
ε1(η + τ)). (10)

Case 2:

• For constants f1 and f2, let ε0 = 0, ε1 > 0, and ε2 = +4 f1 f2; then,

P3(ζ) =
4 f1
√

ε1(
4 f 2

1 − ε2
)

sinh(
√

ε1(η + τ)) +
(
4 f 2

1 − ε2
)

cosh(
√

ε1(η + τ))
. (11)

Case 3:

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

P4(τ) =

√
− ε1

2ε2
tanh

(√
− ε1

2
(η + τ)

)
. (12)

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

P5(τ) =

√
− ε1

2ε2
coth

(√
− ε1

2
(η + τ)

)
. (13)

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

P6(τ) =

√
− ε1

2ε2

(
tanh

(√
− ε1

2
(η + τ)

)
+ isech

(√
−2ε1(η + τ)

))
. (14)
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• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

P7(τ) =

√
− ε1

8ε2

(
tanh

(√
− ε1

8
(η + τ)

)
+ coth

(√
− ε1

8
(η + τ)

))
. (15)

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

P8(τ) =

√
− ε1

2ε2
cosh

(√
−2ε1(η + τ)

)
sinh

(√
−2ε1(η + τ)

)
+ i

. (16)

Case 4:

• Let ε0 = 0, ε1 < 0, and ε2 6= 0; then,

P9(τ) =

√
− ε1

ε2
sec
(√
−ε1(η + τ)

)
. (17)

• Let ε0 = 0, ε1 < 0, and ε2 6= 0; then,

P10(τ) =

√
− ε1

ε2
csc
(√
−ε1(η + τ)

)
. (18)

Case 5:

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

P11(τ) =

√
− ε1

2ε2
tan
(√

ε1

2
(η + τ)

)
. (19)

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

P12(τ) = −
√
− ε1

2ε2
cot
(√

ε1

2
(η + τ)

)
. (20)

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

P13(τ) = −
√
− ε1

2ε2

(
tan
(√

2ε1(η + τ)
)
− sec

(√
2ε1(η + τ)

))
. (21)

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

P14(τ) =

√
− ε1

8ε2

(
tan
(√

ε1

8
(η + τ)

)
− cot

(√
ε1

8
(η + τ)

))
. (22)

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

P15(τ) =

√
− ε1

2ε2

(√
R2

1 − R2
2 −W1 cos

(√
2ε1(η + τ)

))
R2 + W1 sin

(√
2ε1(η + τ)

) , (23)

P16(τ) =

√
− ε1

2ε2
cos
(√

2ε1(η + τ)
)

sin
(√

2ε1(η + τ)
)
− 1

. (24)
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Case 6:

• Let ε0 = 0 and ε1 > 0; then,

P17(τ) =
4ε1e

√
ε1(η+τ)

e2
√

ε1(η+τ) − 4ε1ε2
. (25)

• Let ε0 = 0 and ε1 > 0; then,

P18(τ) =
4ε1e

√
ε1(η+τ)

1− 4ε1ε2e2
√

ε1(η+τ)
. (26)

Case 7:

• Let ε0 = 0, ε1 = 0, and ε2 > 0; then,

H19(τ) =
1√

ε2(η + τ)
. (27)

• Let ε0 = 0, ε1 = 0, andε2 > 0; then,

P20(τ) =
i√

ε2(η + τ)
. (28)

2.2. Application of the Modified Sardar Sub-Equation Technique

The extended form of the (3+1)-dimensional Kadomtsev–Petviashvili model reads as

αMxt −
α4 − 6α2β2 + β4

16
Mxxxx −

3(β2 − α2)

4
(M2)xx + aMxx + bMxy + cMxz

+dMzz + eMyz +
e2

4d
Myy = 0,

(29)

where β, a, b, c, d, and e are real coefficients, but α, d 6= 0, andM = s(x, y, z, t) is a function
that, with relation to the spatial and temporal variables, is sufficiently differentiable. The
modification described by

M(x, y, z, t) = s(τ), τ = x + y + z− vt, (30)

is used to reduce Equation (1) into the following ordinary differential equation

−α4 − 6α2β2 + β4

16
s′′ − 3(β2 − α2)

4
s2 + (a + b + c + d + e +

e2

4d
− αv)s = 0, (31)

which is second-order nonlinear. Applying the homogeneous balancing principle, we
obtain N = 2. By utilizing the modified Sardar sub-equation technique, we consider the
following form of analytical solution

M(τ) = R2P(τ)2 + R1P(τ) + R0. (32)

Putting Equation (27) into Equation (26) and utilizing Equation (8), we obtain an algebraic
system by equating all the coefficients of the various powers of (P(�)) to zero. The
following is the solution to the system of algebraic equations.
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Family 1:

{
R0 →

ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 ,

R1 → 0, R2 →
ε2
(
α4 − 6α2β2 + β4)

2(α2 − β2)
, a→ 1

4

(√(
ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

α2 − β2

−4b− 4c− e2

d
− 4d− 4e + 4αv

)}
.

(33)

The following solutions have been acknowledged as satisfying Family 1:
Case 1:

• If ε0 = 0, ε1 > 0, and ε2 6= 0, then

M1,1 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4)sech2(

√
ε1(η − tv + x + y + z))

2(α2 − β2)
.

(34)

• If ε0 = 0, ε1 > 0, and ε2 6= 0, then

M1,2 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4)csch2(

√
ε1(η − tv + x + y + z))

2(α2 − β2)
.

(35)

Case 2:

• For constants f1 and f2, let ε0 = 0, ε1 > 0, and ε2 = +4 f1 f2; then,

M1,3 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 +

8 f 2
1 ε1ε2

(
α4 − 6α2β2 + β4)

(α2 − β2)
((

4 f 2
1 − ε2

)
sinh(

√
ε1(η − tv + x + y + z)) +

(
4 f 2

1 − ε2
)

cosh(
√

ε1(η − tv + x + y + z))
)

2
.

(36)

Case 3:

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

M1,4 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) tanh2

(√
−ε1(η−tv+x+y+z)√

2

)
4(α2 − β2)

.

(37)

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,
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M1,5 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) coth2

(√
−ε1(η−tv+x+y+z)√

2

)
4(α2 − β2)

.

(38)

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

M1,6 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4)(tanh

(√
−ε1(η−tv+x+y+z)√

2

)
+ isech

(√
2
√
−ε1(η − tv + x + y + z)

))
2

4(α2 − β2)
.

(39)

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

M1,7 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4)(tanh

(√
−ε1(η−tv+x+y+z)

2
√

2

)
+ coth

(√
−ε1(η−tv+x+y+z)

2
√

2

))
2

16(α2 − β2)
.

(40)

• For constants R1 and R2, let ε0 =
ε2

1
4ε2

, ε1 < 0, and ε2 > 0; then,

M1,8 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) cosh2

(√
2
√
−ε1(η − tv + x + y + z)

)
4(α2 − β2)

(
sinh

(√
2
√
−ε1(η − tv + x + y + z)

)
+ i
)

2
.

(41)

Case 4:

• Let ε0 = 0, ε1 < 0, and ε2 6= 0; then,

M1,9 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) sec2(

√
−ε1(η − tv + x + y + z))

2(α2 − β2)
.

(42)

• Let ε0 = 0, ε1 < 0, and ε2 6= 0; then,

M1,10 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) csc2(

√
−ε1(η − tv + x + y + z))

2(α2 − β2)
.

(43)

Case 5:

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,
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M1,11 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) tan2

(√
ε1(η−tv+x+y+z)√

2

)
4(α2 − β2)

.

(44)

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

M1,12 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) cot2

(√
ε1(η−tv+x+y+z)√

2

)
4(α2 − β2)

.

(45)

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

M1,13 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4)(tan

(√
2
√

ε1(η − tv + x + y + z)
)
− sec

(√
2
√

ε1(η − tv + x + y + z)
))

2

4(α2 − β2)
.

(46)

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

M1,14 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4)(tan

(√
ε1(η−tv+x+y+z)

2
√

2

)
− cot

(√
ε1(η−tv+x+y+z)

2
√

2

))
2

16(α2 − β2)
.

(47)

• Let ε0 =
ε2

1
4ε2

, ε1 > 0, ε2 > 0, and R2
1 − R2

2 > 0; then,

M1,15 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) 1

2

√
− ε2

2(α4−6α2β2+β4)
2

(α2−β2)
2 −W1 cos

(√
2
√

ε1(η − tv + x + y + z)
)2

4(α2 − β2)

(
ε2(α4−6α2β2+β4)

2(α2−β2)
+ W1 sin

(√
2
√

ε1(η − tv + x + y + z)
))

2
.

(48)

M1,16 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 −

ε1
(
α4 − 6α2β2 + β4) cos2

(√
2
√

ε1(η − tv + x + y + z)
)

4(α2 − β2)
(

sin
(√

2
√

ε1(η − tv + x + y + z)
)
− 1
)

2
.

(49)
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Case 6:

• Let ε0 = 0 and ε1 > 0; then,

M1,17 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 +

8ε2ε2
1
(
α4 − 6α2β2 + β4)e2

√
ε1(η−tv+x+y+z)

(α2 − β2)
(

e2
√

ε1(η−tv+x+y+z) − 4ε1ε2

)
2

.

(50)

• Let ε0 = 0 and ε1 > 0; then,

M1,18 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 +

8ε2ε2
1
(
α4 − 6α2β2 + β4)e2

√
ε1(η−tv+x+y+z)

(α2 − β2)
(

1− 4ε1ε2e2
√

ε1(η−tv+x+y+z)
)

2
.

(51)

Case 7:

• Let ε0 = 0, ε1 = 0, and ε2 > 0; then,

M1,19 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2 +

α4 − 6α2β2 + β4

2(α2 − β2)(η − tv + x + y + z)2 .

(52)

• Let ε0 = 0, ε1 = 0, and ε2 > 0; then,

M1,20 =
ε1
(
α6 − 7α4β2 + 7α2β4 − β6)−√(ε2

1 − 3ε0ε2
)
(α6 − 7α4β2 + 7α2β4 − β6)

2

6(α2 − β2)
2

− α4 − 6α2β2 + β4

2(α2 − β2)(η − tv + x + y + z)2 .

(53)

3. Darboux Transformation

The corresponding Lax representation of Equation (1) takes the form:

Ψx = VΨ, Ψt = (2αµ + 4βµ2)Ψy + (+6αµ3)Ψz + UΨ, (54)

in which

V = −iµω1 + V0, U = µU1 + U0 +
i

µ + γ
U−1,

ω1 =

(
1 0
0 −1

)
, V0 =

(
0 m
−n 0

)
, U−1 =

(
ξ −l
−q ξ

)
,

U1 = γω1 + 2iβω1V0y, U0 = − i
2

uω1 +

(
0 −αmy − βmxy + iγm

iαny + βnxy − iγn 0

)
.

If λ is a complex spectral parameter that is independent of time (t), then Ψ = Ψ(x, t) =
(ψ(x, t), φ(x, t))T (T ) denote the transpose of the complex eigenfunctions. The zero curva-
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tures equation Vt −Ux + [V, U] = 0, where V and U are 2× 2 matrices that meet the linear
isospectral problem, is identical to Equation (1). According to Equation (54), the Lax pair of
Equation (1) is:

Ψ = VΨ, V =

(
−iµ m
−σm∗ iµ

)
, (55)

Ψt = UΨ, U =


iξ

µ+γ − i
2(ξ+γ)

mt

− iσ
2(ξ+γ)

m∗t − iξ
µ+γ

. (56)

3.1. The N-Fold DT

The N-fold DT of (1) is developed in this section. First, we apply the gauge modification,
shown as follows.

Ψ̃ = T Ψ, (57)

whereas Ψ satisfies the Lax pairs Equations (55) and (56), T is a 2× 2 Darboux matrix,
which is provided here, and Ψ̃ = Ψ̃(x, t) = (φ̃(x, t), ϕ̃(x, t))T should maintain the same
shape as the Lax pairing. Equations (4) and (5), excluding the replacement of V and U with
Ṽ and Ũ , are

Ψ̃x = ṼΨ̃, Ṽ =

(
−iµ m̃
−σm̃∗ iµ

)
, (58)

Ψ̃t = Ũ Ψ̃, Ũ =


iξ̃

µ+γ − i
2(µ+γ)

∂m̃
∂t

− iσ
2(µ+γ)

∂m̃∗
∂t − iξ̃

µ+γ

, (59)

where m̃ = m̃(x, t), and ξ̃ = ξ̃(x, t) are novel prospective capabilities that can also address
Equation (1). Using Equations (55)–(59), we have

Ṽ = (Tx + T V)T −1, Ũ = (Tt + T U)T −1, (60)

wherein we deduce

Ṽt − Ũx + Ṽ Ũ − Ũ Ṽ = T (Vt −Ux + VU −UV)T −1, (61)

considering that the equation for zero curvature Vt − Ux + VU − UV in the Darboux
matrices is zero T , that is, nonsingular. So, Ṽt − Ũx + Ṽ Ũ − Ũ Ṽ = 0, and it can also
provide the same Equation (1) in m, ξ → m̃, ξ̃, i.e., m̃, ξ̃ are still a solution for Equation (1)
determined by an innovative spectral issue of Equations (58) and (59). In other words, for
solitons, we can generate novel solutions to the existing ones via the gauge transformation.
It is crucial to choose a suitable Darboux matrix (T ). By doing this, we develop a certain T
in the following form:

T = T (µ) =

T11(µ) T12(µ)

T21(µ) T22(µ)

 =

γM + ∑M−1
i=0 A

iγi ∑M−1
i=0 B

iγi

−σ ∑M−1
i=0 B

i∗γi γM + ∑M−1
i=0 A

i∗γi

, (62)

whereas the complex variablesAi and Bi (i = 0, 1, ..., M− 1) are 2M. When the linear arith-
metic problem is solved, it is possible to provide indeterminate functions T (µ)qΨq(µ)q =
0 (q = 1, 2, ..., M) with 2M equations, i.e.,
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[
µM

q +
M−1

∑
i=0
Ai(µq)µ

i
q

]
φq(µq) +

[
M−1

∑
i=0
Bi(µq)µ

i
q

]
ϕq(µq) = 0,

[
−σ +

M−1

∑
i=0
Bi∗(µq)µ

i
q

]
φq(µq) +

[
µM

q +
M−1

∑
i=0
Bi(µq)µ

i
q

]
ϕq(µq) = 0,

(63)

as Ψq(µq) = (φq(µq, ϕq(µq)T = (φq, ϕq)T (q = 1, 2, ..., M), which are M solutions for the
Lax pairing of Equations (55) and (56) regarding the particular spectrum characteristics µq
and the original solutions m0 = m0(x, t), ξ0 = ξ0(x, t), µq(µq 6= µi, q 6= i, q, i = 1, 2, ..., M),
according to the determinant of the equation’s coefficients, have certain diverse parameters
that have been chosen appropriately (63).

detT (µ) =
M

∏
q=1

(
µ− µq

)(
µ− µ∗q

)
. (64)

We substitute Equation (62) into Equation (59) with Equation (63).

Theorem 1. Assume Ψ1(µ1), Ψ2(µ2), . . . , ΨM(µM) are the responses to M, a varied unit vector
addressing the spectral issues for Equations (55) and (56) of the spectrum parameter µ1, µ2, . . . , µM
and the original solution m0, ξ0 to Equation (1); then, using the following formulas,

m̃M = m0 + 2iB(M−1), ξ̃M = ξ0 − iA(M−1)
t , (65)

where B(M−1) = ∆B(M−1)

∆M
, A(M−1) = ∆A(M−1)

∆M
with

∆M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µM−1
1 φ1 µM−2

1 φ1 . . . φ1 µM−1
1 ϕ1 µM−2

1 ϕ1 . . . ϕ1
µM−1

2 φ2 µM−2
2 φ2 . . . φ2 µM−1

2 φ2 µM−2
2 ϕ2 . . . ϕ2

. . . . . . . . . . . . . . . . . . . . . . . .
µM−1

M φM µM−2
M φM . . . φM µM−1

M ϕM µM−2
M ϕM . . . ϕM(

µM−1
1

)∗
ϕ∗1

(
µM−2

1

)∗
ϕ∗1 . . . ϕ∗1 −σ∗

(
µM−1

1

)∗
φ∗1 −σ∗

(
µM−2

1

)∗
φ∗1 . . . −σ∗φ∗1(

µM−1
2

)∗
ϕ∗2

(
µM−2

2

)∗
ϕ∗2 . . . ϕ∗2 −σ∗

(
µM−1

2

)∗
φ∗2 −σ∗

(
µM−2

2

)∗
φ∗2 . . . −σ∗φ∗2

. . . . . . . . . . . . . . . . . . . . . . . .(
µM−1

M

)∗
ϕ∗M

(
µM−2

M

)∗
ϕ∗M . . . ϕ∗M −σ∗

(
µM−1

M

)∗
φ∗M −σ∗

(
µM−2

M

)∗
φ∗M . . . −σ∗φ∗M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

while ∆A(M−1) and ∆B(M−1) are expressed through the determinant ∆M by replacing its first and
(M+ 1)-th columns with the column vector (−µM

1 φ1, · · · ,−µM
MφM,−

(
µM

1
)∗

ϕ∗1 ,−
(
µM

2
)∗

ϕ∗2 , · · · ,
−
(

ϕM
M
)∗

ϕ∗M)T , respectively .

The N-fold DT of Equation (1) is transformed to Equations (57) and (65) using the
spectrum variables M and µq. Theorem 1’s proof is provided by simple calculation; the
readers are left with the task of determining the specifics of the proof’s procedure in light
of the fact that they can consult the pertinent literature [27] for further information.

3.2. Asymptotic State Analysis and Solutions to Bright–Dark Multi-Soliton Systems

By utilizing the DT obtained in the preceding part, we can generate solitons on a
constant background of Equation (1). In order to produce a single fundamental solution
with µ = µq as shown below, we first take the initial solutions m0 = 0 and ξ0 = 1 as the
constant solution.
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Ψq =

(
φq
ϕq

)
=

 e
i(−µ2

q x−µqγx+t)
µq+γ

e
−i(−µ2

q x−µqγx+t)
µq+γ

. (66)

The following always uses the parameters γ = σ = 1 to conveniently gain the dynamic
properties of soliton solutions. The M-soliton solutions of Equation (1) can therefore
be obtained from Equation (65). We depict their structures as seen in Figures 1–13 to
better comprehend their physical characteristics and interactions in Figures 14–16 when
M = 1, 2, 3, 4.

(a) (b)

(c)

Figure 1. The parametric values L = 0.5, f0 = 0.2, m = 0.3, and s2 = 0.1 display the graphical
representation of M1,1 in Equation (34). (a) Three dimensions at y = 2, z = 0.3. (b) Contour at
y = 2, z = 0.3. (c) Two dimensions at y = 2, z = 0.3, t = 1.

(a) (b)

Figure 2. Cont.
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(c)

Figure 2. The parametric values L = 0.15, f0 = 0.5, m = 0.3, and s2 = 1.1 display the graphical
representation of M1,2 in Equation (35). (a) Three dimensions at y = 1, z = 0.3. (b) Contour at
y = 1, z = 0.3. (c) Two dimensions at y = 1, z = 0.3, t = 1.

(a) (b)

(c)

Figure 3. The parametric values L = 0.9, f0 = 0.8 m = 1.3, and s2 = 0.9 display the graphical
representation ofM1,3 in Equation (36). (a) Three dimensions at y = 1.6, z = 0.5. (b) Contour at
y = 1.6, z = 0.5. (c) Two dimensions at y = 1.6, z = 0.5, t = 1.
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(a) (b)

(c)

Figure 4. The parametric values L = 1.5, f0 = 0.3, m = 0.3, and s2 = 0.4 display the graphical
representation ofM1,4 in Equation (37). (a) Three dimensions at y = 3.1, z = 1.3. (b) Contour at
y = 3.1, z = 1.3. (c) Two dimensions at y = 3.1, z = 1.3, t = 1.

(a) (b)

(c)

Figure 5. The parametric values L = 0.7, f0 = 1.2, m = 0.3, and s2 = 1.1 display the graphical
representation of the S1,5 in Equation (38). (a) Three dimensions at y = 3.1, z = 1.3. (b) Contour at
y = 3.1, z = 1.3. (c) Two dimensions at y = 3.1, z = 1.3, t = 1.
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(a) (b)

(c)

Figure 6. The parametric values L = 1, f0 = 1.2, m = 0.8, and s2 = 0.2 display the graphical
representation of M1,6 in Equation (39). (a) Three dimensions at y = 2, z = 0.3. (b) Contour at
y = 2, z = 0.3. (c) Two dimensions at y = 2, z = 0.3, t = 1.

(a) (b)

(c)

Figure 7. The parametric values L = 2.5, f0 = 1.2, m = 0.4, and s2 = 0.8 display the graphical
representation of theM1,7 in Equation (40). (a) Three dimenions at y = 1, z = 1.3. (b) Contour at
y = 1, z = 1.3. (c) Two dimensions at y = 1, z = 1.3, t = 1.
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(a) (b)

(c)

Figure 8. The parametric values L = 0.5, f0 = 0.2, m = 0.3, y = 2, z = 0.3, and s2 = 0.1 display
the graphical representation of M1,8 in Equation (41). (a) Three dimensions at y = 2, z = 0.3.
(b) Contour at y = 2, z = 0.3. (c) Two dimensions at y = 2, z = 0.3, t = 1.

(a) (b)

(c)

Figure 9. The parametric values L = 0.66, f0 = 0.112, m = 0.3, and s2 = 0.56 display the graphical
representation ofM1,9 in Equation (42). (a) Three dimensions at y = 2, z = 0.43. (b) Contour at
y = 2, z = 0.43. (c) Two dimensions at y = 2, z = 0.43, t = 1.
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(a) (b)

(c)

Figure 10. The parametric values L = 0.55, f0 = 0.12, m = 0.3, and s2 = 0.71 display the graphical
representation ofM1,10 in Equation (43). (a) Three dimensions at y = 2, z = 0.63. (b) Contour at
y = 2, z = 0.63. (c) Two dimensions at y = 2, z = 0.63, t = 1.

(a) (b)

(c)

Figure 11. The parametric values L = 0.25, f0 = 0.42, m = 0.3, and s2 = 0.71 display the graphical
representation of S1,15 in Equation (48). (a) Three dimensions at y = 1.2, z = 0.63. (b) Contour at
y = 1.2, z = 0.63. (c) Two dimensions at y = 1.2, z = 0.63, t = 1.
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(a) (b)

(c)

Figure 12. The parametric values L = 0.75, f0 = 0.2, m = 0.3, and s2 = 0.1 display the graphical
representation ofM1,17 in Equation (50). (a) Three dimensions at y = 1, z = 0.3. (b) Contour at
y = 1, z = 0.3. (c) Two dimensions at y = 1, z = 0.3, t = 1.

(a) (b)

(c)

Figure 13. The parametric values L = 0.5, f0 = 0.5, m = 0.3, and s2 = 0.4 display the graphical
representation ofM1,20 in Equation (53). (a) Three dimensions at y = 2, z = 0.3. (b) Contour at
y = 2, z = 0.3. (c) Two dimensions at y = 2, z = 0.3, t = 1.
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(a) (b)

(c)

Figure 14. The parametric values L = 0.5, f0 = 0.2, m = 0.3, and s2 = 0.1 display the graphical
representation of Re[m̃1] in Equation (68). (a) Three dimensions at y = 2, z = 0.3. (b) Contour at
y = 2, z = 0.3. (c) Two dimensions at y = 2, z = 0.3, t = 1.

(a) (b)

(c)

Figure 15. The parametric values L = 0.5, f0 = 0.2, m = 0.3, and s2 = 0.1 display the graphical
representation of Re[ξ̃1] in Equation (68). (a) Three dimensions at y = 2, z = 0.3. (b) Contour at
y = 2, z = 0.3. (c) Two dimensions at y = 2, z = 0.3, t = 1.
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(a) (b)

(c)

Figure 16. The parametric values L = 0.5, f0 = 0.2, m = 0.3, and s2 = 0.1, display the graphical
representation of Re[m̃2] in Equation (71). (a) Three dimensions at y = 2, z = 0.3. (b) Contour at
y = 2, z = 0.3. (c) Two dimensions at y = 2, z = 0.3, t = 1.

3.2.1. Dynamic Analysis and One-Soliton Solutions

For M = 1, µ1 = c + di, where c and d are constant, from Theorem 1, we obtain the
solution

m̃1 = 2i
∆B(0)

∆1
, ξ̃1 = 1− i

(
∆A(0)

∆1

)
t

(67)

where

∆1 =

∣∣∣∣ φ1 ϕ1
ϕ∗1 −σ∗φ∗1

∣∣∣∣, ∆A(0) =

∣∣∣∣ −µ1φ1 ϕ1
−µ∗1 ϕ∗1 −σ∗φ∗1

∣∣∣∣, ∆B(0) =
∣∣∣∣ φ1 −µ1φ1

ϕ∗1 −µ∗1 ϕ∗1

∣∣∣∣.
We convert the responses to their equations to examine their physical characteristics in
Equation (67) as

m̃1 = 2de2iζ Im sech(2ζRe), ξ̃1 = 1− 2d2

q
sech2(2ζRe), (68)

as ζRe =
(

dx + d
q t
)

, ζ Im =
[
−cx + (c + 1) t

q

]
, with q = c2 + d2 + 2c + 1.

It is simple to observe that m̃1 is a bright soliton framework, and ξ̃1 is a dark soliton,
from the solutions to Equation (68), and the physical characteristics, such as the intensity,
dimension, speed, wave numbers, main phase, and energy, which are listed in Table 1, can
also be easily probed. For m1 and ξ1, the energies are defined as Fm1 =

∫ ∞
−∞|m1|2dx, Fξ1 =∫ ∞

−∞(ξ1 − 1)2dx. We can easily observe the amplitudes and velocities of one-soliton solu-
tions depending on the spectral parameter µ1. Figures 15 and 16 show the bell-shaped
bright one-soliton structure of m̃1 and the anti-bell-shaped dark one-soliton structure of ξ̃1,
when µ1 = 1 + 2i (i.e., c = 1, d = 2 ).
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Table 1. The one-soliton solutions’ physical characteristics.

Solitons Intensity Dimensions Speed Wave
Numbers

Main
Phases Energies

m̃1 2c 1
2c − 1

q 2c 0 4c

ξ̃1 − 1 2c2

q
1
2c − 1

q 2c 0 8c3

3q2

3.2.2. Analysis of Two-Soliton Solutions Asymptotically

When M = 2, µ1 = c1 + d1i, µ2 = c2 + d2i, where c1, c2, d1, d2, according to Theorem 1,
are positive independent variables, and twofold DT can provide the following:

m̃2 = 2i
AB(i)
A2

, ξ̃2 = 1− i

(
AA(1)

A2

)
l

, (69)

where

m̃2 =
n1eζ∗2 + n2eζ∗1+ζ2+ζ∗2 + n∗2eζ∗1 + n∗1eζ1+ζ∗1+ζ∗2

n3

(
eζ∗1+ζ2 + eζ1+ζ∗2

)
+ n4

(
1 + eζ1+ζ∗1+ζ2+ζ∗2

)
+ n5

(
eζ1+ζ∗1 + e ζ2+ζ∗2

) , ζ̃2 =
G1

G2
, (70)

where

G1 =W1 cosh(ζ∗1 − ζ∗2) + W2 cosh(ζ1 + ζ∗2) + W∗2 cosh(ζ∗1 + ζ2) + W∗1 cosh(ζ1 − ζ2) + W3 cosh[(ζ2 − ζ∗2)− (ζ1 − ζ∗1)]

+ W4 cosh(ζ1 + ζ∗1 + ζ2 + ζ∗2) + W5 cosh(ζ2 + ζ∗2) + W6 cosh[ζ1 + ζ∗1 − (ζ2 + ζ∗2)] + W7 + W8 cosh(ζ1 + ζ∗1),

G2 =2q1q2

[
W9 cosh

(
ζ1 − ζ∗1 − (ζ2 − ζ∗2)

2

)
+ W10 cosh

(
ζ1 + ζ∗1 + ζ2 + ζ∗2

2

)
+ W11 cosh

(
ζ1 + ζ∗1 − (ζ2 + ζ∗2)

2

)]2

,

with

ζ1 = 2(d1 + c1i)x +
2(d1 − c1i− i)

q1
t,

ζ2 = −2(d2 − c2i)x− 2(d2 − c2i− i)
q2

t,

q1 = c2
1 + d2

1 + 2c1 + 1,

q2 = c2
2 + d2

2 + 2c2 + 1,

n1 =
[
4d2(c1 − c2)

2 + 4d3
2 − 4d2

1d2

]
− 8d1d2(c1 − c2)i,

n2 =
[
4d1(c1 − c2)

2 + 4d3
1 − 4d1d2

2

]
− 8d1d2(c2 − c1)i2,

n3 = W9 = −4d1d2,

n4 = W10 = (c1 − c2)
2 + (d1 + d2)

2,

n5 = W11 = (c1 − c2)
2 + (d1 − d2)

2,

W1 =
[
−8d1d2n5

(
c3

1c2 − c2
1c2

2 − c2
1d1d2 − c2

1d2
2 + c1c3

2 + c1c2d2
1 + c1c2d2

2 − c2
2d2

1 − c2
2d1d2 − d3

1d2 − d2
1d2

2

− d1d3
2 + c3

1 + c2
1c2 + c1c2

2 + c1d2
1 − 2c1d1d2 − c1d2

2 + c3
2 − c2d2

1 − 2c2d1d2 + c2d2
2 + 2c2

1 + 2c1c2

+2c2
2 − 2d1c2 + 2c1 + 2c2 + 1

)]
+ 8d1d2n5(c1d2 + c2d1 + d1 + d2)

(
c2

1 − c2
2 + d2

1 − d2
2 + 2c1 − 2c2

)
i,

W2 =
[
−8d1d2n4

(
c3

1c2 − c2
1c2

2 + c2
1d1d2 − c2

1d2
2 + c1c3

2 + c1c2d2
1 + c1c2d2

2 − c2
2d2

1 + c2
2d1d2 + d3

1d2 − d2
1d2

2

+ d1d3
2 + c3

1 + c2
1c2 + c1c2

2 + c1d2
1 + 2c1d1d2 − c1d2

2 + c3
2 − c2d2

1 + 2c2d1d2 + c2d2
2 + 2c2

1 + 2c1c2

+2c2
2 + 2d1d2 + 2c1 + 2c2 + 1

)]
+ 8d1d2n4(c1d2 − c2d1 − d1 + d2)

(
c2

1 − c2
2 + d2

1 − d2
2 + 2c1 − 2c2

)
i,
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W3 = d2
1d2

2

[
16(c1 + 1)2 + 16d2

1

][
(c2 + 1)2 + d2

2

]
,

W4 = n2
4

[
(c1 + 1)2 + d2

1

][
(c2 + 1)2 + d2

2

]
,

W5 = 2n4n5

[
−3d2

1 + (c1 + 1)2
][
(c2 + 1)2 + d2

2

]
,

W6 = n2
5

[
(c1 + 1)2 + d2

1

][
(c2 + 1)2 + d2

2

]
,

W7 =
[
36d2

2 − 12(c2 + 1)2
]
d6

1 +
{
−8d4

2 +
[
60c2

1 + (112c2 + 232)c1 − 96c2
2 − 80c2 + 76

]
d2

2 − 20
[
c2

1 − (2.4c2

+0.4)c1 + 1.2c2
2 − 0.2

]
(c2 + 1)2

}
d4

1 +
{

36d6
2 +

[
−96c2

1 + (112c2 − 80)c1 + 60c2
2 + 232c2 + 76

]
d4

2

+
[
12c4

1 + (160c2 + 208)c3
1 +

(
−288c2

2 − 96c2 + 264
)

c2
1 +

(
160c3

2 − 96c2
2 − 192c2 + 112

)
c1 + 12c4

2

+208c3
2 + 264c2

2 + 112c2 + 56
]
d2

2 − 4(c1 − c2)
2(c2 + 1)2

[
c2

1 + (−6c2 − 4)c1 + 3c2
2 − 2

]}
d2

1 + 4
[
d2

2

+(c1 − c2)
2
]2[
−3d2

2 + (c2 + 1)2
]
(c1 + 1)2,

W8 = 2n4n5

[
(c1 + 1)2 + d2

1

][
−3d2

2 + (c2 + 1)2
]
.

The expression of Equation (68) is a solution with two solitons. The distinctive feature
of an elastic collision is that system’s total energy is unaffected by the collision either before
or after it occurs. To determine that whenever two objects collide, the solitons are elastics,
the asymptotic of the soliton collision is a very effective technique. These are the two states
of the two solitons at zero and infinity. We correlate these to the two temporal patterns that
we depict in the propagation process. Of course, we can also speculate about the particular
set of parameters c1 > 0, c2 > 0, d1 < 0, d2 < 0. The examination of the asymptotic states
for possibilities of Equation (68) obtains the following eight asymptotic expressions.

(i) With regard to this aspect m̃2 in the addresses for Equation (68):
Before the collision (t→ −∞),

m̃1 → ε−1 =
n∗2

2
√

n4n5
e−ζ1Imi sech

(
ζ1Re −

1
2

ln
n4

n5

)
, (ζ1 + ζ∗1 ∼ 0, ζ2 + ζ∗2 → −∞),

m̃1 → ε−2 =
n∗1

2
√

n4n5
e−ζ2Imi sech

(
ζ2Re +

1
2

ln
n4

n5

)
, (ζ2 + ζ∗2 ∼ 0, ζ1 + ζ∗1 → +∞),

(71)

where ε−1 and ε−2 are asymptotic illustrations of m̃2 before they smash into one another.
After a collision (t→ +∞),

m̃2 → ε+1 =
n2

2
√

n4n5
e−ζ1Imi sech

(
ζ1Re +

1
2

ln
n4

n5

)
, (ζ1 + ζ∗1 ∼ 0, ζ2 + ζ∗2 → +∞),

m̃2 → ε+2 =
n1

2
√

n4n5
e−ζ2Imi sech

(
ζ2Re −

1
2

ln
n4

n5

)
, (ζ2 + ζ∗2 ∼ 0, ζ1 + ζ∗1 → −∞),

(72)

where ε+1 and ε+2 are the formulas of tildem2 that asymptotically follow their collision.
When assessed by Equations (71) and (72), through direct calculation, we can obtain

(ii) With regard to the element ξ̃2 as solution to Equation (68):
Before the collision (t→ −∞),

ξ̃1 − 1→ τ−1 = −
2d2

1
q1

sech2
(

ζ1Re −
1
2

ln
W10

W11

)
, (ζ1 + ζ∗1 ∼ 0, ζ2 + ζ∗2 → −∞),

ξ̃1 − 1→ τ−2 = −
2d2

2
q2

sech2
(

ζ2Re +
1
2

ln
W10

W11

)
, (ζ2 + ζ∗2 ∼ 0, ζ1 + ζ∗1 → +∞),

(73)
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where τ−1 and τ−2 , prior to their collision with one another, constitute the asymptotic
interpretations of ξ̃2 − 1.

After a collision (t→ +∞),

ξ̃2 − 1→ τ+
1 = −

2d2
1

q1
sech2

(
ζ1Re +

1
2

ln
W10

W11

)
, (ζ1 + ζ∗1 ∼ 0, ζ2 + ζ∗2 → +∞),

ξ̃2 − 1→ τ+
2 = −

2d2
1

q1
sech2

(
ζ1Re −

1
2

ln
W10

W11

)
, (ζ2 + ζ∗2 ∼ 0, ζ1 + ζ∗1 → −∞),

(74)

where τ+
1 , τ+

2 represent the exponential formulations of ξ̃2 − 1 following their collision.
We deduce the respective physical characteristics of ξ̃2 − 1, as shown in Table 2, from the
analysis above.

Table 2. Specifications regarding the two-soliton solution’s physical state m̃2.

Soliton Amplitude Width Velocity Wave
Numbers

Primary
Phase Energy

ε−1 2d1
1

2d1
− 1

q1
2d1

1
2 ln n4

n4
4d1

ε−2 2d2
1

2d2
− 1

q2
2d2 − 1

2 ln n3
n4

4d2

ε+1 2d1
1

2d1
− 1

q1
2d1 − 1

2 ln ns
ns

4d1

ε+2 2d2
1

2d2
− 1

q2
2d2

1
2 ln n4

n4
4d2

In view of the aforementioned discussion, we may conclude that the transmission and
impact of two solitons possess the following attributes.

(i) The solitons’ amplitudes, lengths, velocity, pulse numbers, formats, and energy are
unaffected by the collision in both the before and after states.

(ii) Only the stages of the two solitons that collided have changed, and they are now
opposite. As a result, we conclude that the collisions of two solitons become elastic. For
a solution to Equation (68), with the parameters γ1 = 2i and γ2 = i, Figure 16 shows the
significant two-soliton configurations of m2 and ξ2. From this, we can see that part m̃2 is an
exceptional two-soliton framework, while part ξ̃2 is a dark two-soliton framework.

4. Results and Discussion

This section covers the comparison of the new work to previous work. Wazwaz et al. [31],
studied the (3+1)-dimensional Kadomtsev–Petviashvili equation to find multiple solutions. We
compared the innovative soliton solution produced by employing the Sardar substitution and
Darboux transformation methods with the preceding article’s analysis of the (3+1)-dimensional
Kadomtsev–Petviashvili (KP) equation determined using the streamlined Hirota’s direct
method. The soliton solution that was found in the present research is different from the
multiple-soliton solutions that Hirota’s direct technique yielded. The solutions of this study
have potential applications in a variety of domains, including nonlinear optics, engineering,
applied sciences, and communications. These solutions also expand our understanding of
nonlinear phenomena. Furthermore, the KP model can be solved using a variety of solutions,
and the suggested method’s robustness is demonstrated by the consistency and correctness of
the results.

This study was used to investigate the (3+1)-dimensional KP model using two different
useful techniques, including the MSST and the DT. The aim was to obtain one and two
bright and dark soliton solutions and multiple solitary wave solutions.

The studies show that any of the two approaches can be used to successfully arrive
at the intended results. Solutions for hyperbolic, trigonometric, singular, dark, and bright
solitons were found using the MSST. Then, two bright and two dark solitons were created
using the DT. The solutions’ physical characteristics were reviewed, and the outcomes
were shown using 3-D plots, contour plots, and 2-D curves. The study shows that the
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obtained solutions are reliable and may be applied to many physical phenomena in various
scientific domains. In conclusion, the study illuminates the behavior of the KP model in
(3+1)-dimensional space and emphasizes the efficiency of the MSST and DT in obtaining
various soliton solutions. Future research in mathematical physics, engineering, and
applied mathematics may be affected by the findings.

We were able to solve Equation (34)–(53) using the MSST, and the results are provided
in Figures 1–13, which show the dark, singular, bright, exponential, and periodic solutions
as well as their 3-D, 2-D, and contour plot representations.

We were able to solve Equations (67)–(74) using the DT, and the results are shown in
Figures 14 and 15, which represent the one-soliton dark and bright solutions, and Figure 16,
which represent the two-soliton solutions provided and represented through 3D, 2D, and
contour plots.

Finally, understanding the dynamics and characteristics of the (3+1)-dimensional KP
equation improves our understanding of the behavior of nonlinear waves in a variety of
physical conditions and advances our understanding of wave phenomena in multidimen-
sional systems.

5. Conclusions

The MSST and DT were used in this study to analyze the KP model in (3+1)-dimensional
space using two alternative methodologies. The major goal of the study was to find many
solitary wave solutions, one and two bright and dark soliton solutions and so on. This
paper exhibits the originality of the MSST and DT application to the (3+1)-dimensional
KP model. The obtained innovative soliton solutions not only improve the knowledge
of soliton dynamics in higher-dimensional spaces but also the viability of the suggested
approach. The results show the potential of the MSST and DT for further research on
nonlinear wave phenomena and broaden the KP equation’s applicability. The study’s
findings show that both methods are successful in obtaining the desired solutions. While
the DT was utilized to produce two bright and two dark soliton solutions, the MSST was
employed to provide dark, single, bright, exponential, and periodic solutions. The physical
properties of the solutions were discussed, and the results were depicted using various
visualization techniques. The obtained solutions are stable and can be used to describe
various physical phenomena in different fields of research, such as fluid dynamics, plasma
physics, and nonlinear optics. Overall, this study contributes to the understanding of the
behavior of the KP equation in (3+1)-dimensional space and highlights the effectiveness
of the MSST and the DT in obtaining different types of soliton solutions. Exploring the
(3+1)-dimensional KP model and its soliton solutions has a wide range of potential applica-
tions and future research avenues. Researchers can further expand their comprehension
of nonlinear wave phenomena while also revealing useful applications in disciplines like
optics, fluid dynamics, and plasma physics by exploring these topics.
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