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Abstract: The hypercube Qn is one of the most popular interconnection networks with high symmetry.
To reduce the diameter of Qn, many variants of Qn have been proposed, such as the n-dimensional
locally twisted cube LTQn. To further optimize the diameter of LTQn, the n-dimensional folded locally
twisted cube FLTQn is proposed, which is built based on LTQn by adding 2n−1 complementary
edges. Connectivity is an important indicator to measure the fault tolerance and reliability of a
network. However, the connectivity has an obvious shortcoming, in that it assumes all the adjacent
vertices of a vertex will fail at the same time. Super-connectivity is a more refined index to judge the
fault tolerance of a network, which ensures that each vertex has at least one neighbor. In this paper,
we show that the super-connectivity κ(1)(FLTQn) = 2n for any integer n ≥ 6, which is about twice
κ(FLTQn).

Keywords: super-connectivity; folded locally twisted cube; fault tolerance; interconnection network;
reliability

1. Introduction

High-performance computers can be widely used in many fields thanks to the de-
velopment of high performance computing technology. The topological properties of
interconnection networks are very important for high-performance computers. One typi-
cally uses an undirected graph G = (V(G), E(G)) to model the topology of a multiprocessor
system H, where the processor set of H is represented by V(G) and the link set of H is
represented by E(G).

Interconnection networks have many important properties, one of which is the con-
nectivity denoted by κ(G). A graph’s connectivity is the minimum number of vertices
whose removal makes the graph disconnected or trivial [1]. Connectivity is an important
indicator to measure the fault tolerance and reliability of a network. In a large interconnec-
tion network, each vertex has a large number of neighbors. This property has an obvious
deficiency, in that it assumes that all the adjacent vertices of a vertex will fail at the same
time. However, this situation does not happen frequently in real networks. To address
this deficiency, Esfahanian et al. [2] introduced the concept of restricted connectivity by
imposing additionally restricted conditions on a network. Super-connectivity is a special
case of restricted connectivity. When determing the super-connectivity of a network, one
needs to ensure that each vertex has at least one neighbor. Hence, super-connectivity is a
more refined index to judge the fault tolerance of a network.

Let K be a subset of V(G). G \ K (or G− K) denotes a graph obtained by removing
all the vertices in K and edges incident to at least one vertex in K from G. If G \ K is
disconnected and each component of G \ K has at least two vertices, then K is called a
super vertex cut. Let S be a subset of E(G). If G \ S is disconnected and each component
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of G \ S has at least two vertices, then S is called a super edge cut. The super-connectivity
of G (or, respectively, the super edge connectivity), denoted by κ(1)(G) (or λ(1)(G)), is
the minimum cardinality of all super vertex cuts (or super edge cuts) in G, if any exist.
Many relevant results have been obtained regarding super-connectivity and super edge
connectivity [3–16].

The hypercube Qn has become one of the most popular interconnection networks,
because of its many attractive properties, such as its regularity and symmetry. Qn is a
Cayley graph and hence vertex-transitive and edge-transitive. However, the diameter of
Qn is not optimal. In order to enhance the hypercube, researchers have proposed many
variants, such as crossed cubes [17], locally twisted cubes [18], and spined cubes [19]. The
n-dimensional locally twisted cube LTQn was proposed by Yang et al. [18], whose diameter
was only about half that of Qn. Many research results have been published on the properties
of LTQn [20–25]. LTQn is vertex-transitive if and only if n ≤ 3, and it is edge-transitive if
and only if n = 2 [25]. To further enhance the hypercube, inspired by the folded cube [26],
Peng et al. [27] proposed a new network topology called the folded locally twisted cube
FLTQn. So far there, no work has been reported on the super-connectivity of FLTQn. In
this work, we studied the super-connectivity of FLTQn and obtained the result that the
super-connectivity κ(1)(FLTQn) is 2n for n ≥ 6, which is about twice κ(FLTQn).

2. Preliminaries

In this paper, we use the terms vertex and node interchangeably. We also use (x, y)
to denote an edge between vertices x and y. For any vertex x ∈ V(G), the neighboring
set of x is denoted by NG(x) = {y|(x, y) ∈ E(G)} (or N(x) for short). Let S ⊂ V(G).
The neighboring set of S is defined as NG(S) = (

⋃
x∈S N(x)) \ S (or N(S) for short). We

define NG[S] =
⋃

x∈S N(x) and NG[x] = NG(x) ∪ {x}. We use xnxn−1 · · · x2x1 to represent
a binary string µ of length n, where xi ∈ {0, 1} for 1 ≤ i ≤ n is a part of µ. x1 is the first
part of µ, and xn is the nth part of µ. The symbol x̄i is used to represent the complement of
xi. As a variant of Qn, LTQn has the same number of vertices as Qn. Each vertex of LTQn
is denoted by a unique binary string of length n. The definition of LTQn is given below.

Definition 1 ([18]). For n ≥ 2, an n-dimensional locally twisted cube, LTQn, is defined recursively
as follows:

(1) LTQ2 is a graph consisting of four nodes labeled with 00, 01, 10, and 11, which are
connected by four edges, (00, 01), (00, 10), (01, 11), and (10, 11).

(2) For n ≥ 3, LTQn is built from two disjointed copies of LTQn−1 named LTQ0
n−1 and

LTQ1
n−1. Let LTQ0

n−1 (or, respectively, LTQ1
n−1) be the graph obtained by prefixing the label of

each node of one copy of LTQn−1 with 0 (or with 1); each node x = 0xn−1xn−2 · · · x2x1 of LTQ0
n−1

is connected to the node 1(xn−1 + x1)xn−2 · · · x2x1 of LTQ1
n−1 with an edge, where ′+′ represents

modulo 2 addition.

LTQ3 and LTQ4 are demonstrated in Figure 1. Each node in LTQ0
n−1 has only one

adjacent node in LTQ1
n−1. The set of edges between LTQ0

n−1 and LTQ1
n−1 is called a perfect

matching M of LTQn. Hence, we can write LTQn = G(LTQ0
n−1, LTQ1

n−1, M). In [18], Yang
et al. also provided a non-recursive definition of LTQn.

Definition 2 ([18]). Let µ = xnxn−1 · · · x1 and ν = ynyn−1 · · · y1 be any two distinct vertices of
LTQn for n ≥ 2. µ and ν are connected if and only if one of the following conditions is satisfied:

1. There is an integer 3 ≤ k ≤ n such that
(a) xk = ȳk;
(b) xk−1 = yk−1 + x1 (′+′ represents modulo 2 addition);
(c) all the remaining bits of µ and ν are the same.
2. There is an integer 1 ≤ k ≤ 2 such that µ and ν only differ in the kth bit.
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Let µ = xnxn−1xn−2 . . . x3x2x1 be any vertex of LTQn. By Definition 2, all the n
neighbors of µ are listed as follows:

µ1 = xnxn−1xn−2 . . . x3x2 x̄1;
µ2 = xnxn−1xn−2 . . . x3 x̄2x1;
µ3 = xnxn−1xn−2 . . . x̄3(x2 + x1)x1;
. . .
µn−1 = xn x̄n−1(xn−2 + x1)xn−3 . . . x2x1;
µn = x̄n(xn−1 + x1)xn−2 . . . x3x2x1.
We call µi the ith dimensional neighbor of µ for 1 ≤ i ≤ n.

Figure 1. (a) The three-dimensional locally twisted cube LTQ3; (b) the four-dimensional locally
twisted cube LTQ4.

Definition 3 ([27]). For any integer n ≥ 2, an n-dimensional folded locally twisted cube, denoted
by FLTQn, is a graph constructed based on LTQn by adding all complementary edges. Each
vertex x = xnxn−1 . . . x1 in LTQn is incident to another vertex x = xnxn−1 . . . x1 through a
complementary edge, where xi = 1− xi.

We call the added complementary edges c-links. FLTQn has 2n−1 c-links, and each
vertex µ = xnxn−1 . . . x1 is connected to a complementary vertex µc = xnxn−1 . . . x1 by a
c-link. The set of complementary edges between LTQ0

n−1 and LTQ1
n−1 is a perfect matching

C of FLTQn. Hence, we can write FLTQn = G(LTQ0
n−1, LTQ1

n−1, M, C) or G(LTQn, C).
Each node µ ∈ V(FLTQn) in LTQ0

n−1 (or, respectively, LTQ1
n−1) has two neighbors, µn and

µc, in LTQ1
n−1 (or LTQ0

n−1) for n ≥ 3. Compared with LTQn, each vertex in FLTQn has
one more neighbor. Then, the node degree of FLTQn is n + 1 and κ(FLTQn) = n + 1 [27].
Figure 2 demonstrates FLTQ3 and FLTQ4, respectively, and Figure 3 demonstrates FLTQ5.
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Figure 2. (a) The three-dimensional folded locally twisted cube FLTQ3; (b) the four-dimensional
folded locally twisted cube FLTQ4.

Figure 3. The five-dimensional folded locally twisted cube FLTQ5.

3. Super Connectivity of FLTQn

In this section, we study the super connectivity of FLTQn for any integer n ≥ 6.
Since FLTQn is composed of LTQn and the complementary edge set C, we can use some
properties of LTQn to prove the super-connectivity property of FLTQn.

Lemma 1 ([18]). For n ≥ 2, κ(LTQn) = λ(LTQn) = n.
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Lemma 2 ([28]). Foranytwovertices µ, ν ∈ V(LTQn)(n ≥ 2), wehave |NLTQn(µ)∩NLTQn(ν)| ≤ 2.

Lemma 3 ([28]). Let µ and ν be any two distinct vertices in LTQn(n ≥ 4) such that |NLTQn(µ)∩
NLTQn(ν)| = 2.

(1) If µ ∈ V(LTQ0
n−1) and ν ∈ V(LTQ1

n−1), then the one common neighbor is in LTQ0
n−1,

and the other one is in LTQ1
n−1.

(2) If µ, ν ∈ V(LTQ0
n−1) or V(LTQ1

n−1), then the two common neighbors are in LTQ0
n−1

or LTQ1
n−1.

Lemma 4. Let µ and ν be any two distinct vertices in the same LTQi
n−1 for 0 ≤ i ≤ 1 and n ≥ 6.

If µn = νc or µc = νn, then |NFLTQn(µ) ∩ NFLTQn(ν)| = 1.

Proof. Without loss of generality, we suppose that µ, ν ∈ V(LTQ0
n−1), and µn = νc. Then,

µn is the common neighbor for µ and ν. Let µ = xnxn−1xn−2 . . . x3x2x1 and
X = FLTQn \ {µn}. Next, we consider the neighbors of µ and ν in X according to different
values of the first part x1 of µ.

Case 1. x1 = 0.
µn = x̄nxn−1xn−2 . . . x3x20 = νc and ν = xn x̄n−1 x̄n−2 . . . x̄3 x̄21. We list NX(µ) and

NX(ν) separately in Table 1.

Table 1. The neighbors of µ and ν in X, where x1 = 0.

NX(µ) NX(ν)

µ1 = xnxn−1xn−2 . . . x3x21 ν1 = xn x̄n−1 x̄n−2 . . . x̄3 x̄20
µ2 = xnxn−1xn−2 . . . x3 x̄20 ν2 = xn x̄n−1 x̄n−2 . . . x̄3x21
µ3 = xnxn−1xn−2 . . . x̄3x20 ν3 = xn x̄n−1 x̄n−2 . . . x3x21

. . . . . .
µn−1 = xn x̄n−1xn−2 . . . x3x20 νn−1 = xnxn−1xn−2 . . . x̄3 x̄21

µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄21 νn = x̄nxn−1 x̄n−2 . . . x̄3 x̄21

It is obvious that |NX(µ) ∩ NX(ν)| = 0.
Case 2. x1 = 1.
µn = x̄n x̄n−1xn−2 . . . x3x21 = νc and ν = xnxn−1 x̄n−2 . . . x̄3 x̄20. We list NX(µ) and

NX(ν) separately in Table 2.

Table 2. The neighbors of µ and ν in X, where x1 = 1.

NX(µ) NX(ν)

µ1 = xnxn−1xn−2 . . . x3x20 ν1 = xnxn−1 x̄n−2 . . . x̄3 x̄21
µ2 = xnxn−1xn−2 . . . x3 x̄21 ν2 = xnxn−1 x̄n−2 . . . x̄3x20
µ3 = xnxn−1xn−2 . . . x̄3 x̄21 ν3 = xnxn−1 x̄n−2 . . . x3 x̄20

. . . . . .
µn−1 = xn x̄n−1 x̄n−2 . . . x3x21 νn−1 = xn x̄n−1 x̄n−2 . . . x̄3 x̄20

µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄20 νn = x̄nxn−1 x̄n−2 . . . x̄3 x̄20

It is obvious that |NX(µ) ∩ NX(ν)| = 0.
Hence, µ and ν haveonlyonecommonneighborin FLTQn and |NFLTQn(µ)∩NFLTQn(ν)| = 1.

Lemma 5. Let µ be any node in FLTQn, where n ≥ 6 and X = FLTQn \ {µ}. Then, |NX(µn) ∩
NX(µc)| = 0.

Proof. Let µ = xnxn−1xn−2 . . . x3x2x1. We consider the different values of the first part x1
of µ.



Symmetry 2023, 15, 1349 6 of 10

Case 1. x1 = 0.
Let α = µn = x̄nxn−1xn−2 . . . x3x20 and β = µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄21. All the

neighbors of α and β in X are listed separately in Table 3.

Table 3. The neighbors of α and β in X, where x1 = 0.

NX(α) NX(β)

α1 = x̄nxn−1xn−2 . . . x3x21 β1 = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄20
α2 = x̄nxn−1xn−2 . . . x3 x̄20 β2 = x̄n x̄n−1 x̄n−2 . . . x̄3x21
α3 = x̄nxn−1xn−2 . . . x̄3x20 β3 = x̄n x̄n−1 x̄n−2 . . . x3x21

. . . . . .
αn−1 = x̄n x̄n−1xn−2 . . . x3x20 βn−1 = x̄nxn−1xn−2 . . . x̄3 x̄21

αc = xn x̄n−1 x̄n−2 . . . x̄3 x̄21 βn = xnxn−1 x̄n−2 . . . x̄3 x̄21

It is obvious that NX(α) ∩ NX(β) = ∅.
Case 2. x1 = 1.
Let α = µn = x̄n x̄n−1xn−2 . . . x3x21 and β = µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄20. All the

neighbors of α and β in X are listed separately in Table 4.

Table 4. The neighbors of α and β in X, where x1 = 1.

NX(α) NX(β)

α1 = x̄n x̄n−1xn−2 . . . x3x20 β1 = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄21
α2 = x̄n x̄n−1xn−2 . . . x3 x̄21 β2 = x̄n x̄n−1 x̄n−2 . . . x̄3x20
α3 = x̄n x̄n−1xn−2 . . . x̄3 x̄21 β3 = x̄n x̄n−1 x̄n−2 . . . x3 x̄20

. . . . . .
αn−1 = x̄nxn−1 x̄n−2 . . . x3x21 βn−1 = x̄nxn−1 x̄n−2 . . . x̄3 x̄20

αc = xnxn−1 x̄n−2 . . . x̄3 x̄20 βn = xn x̄n−1 x̄n−2 . . . x̄3 x̄20

It is obvious that NX(α) ∩ NX(β) = ∅.
Hence, |NX(µn) ∩ NX(µc)| = 0.

Lemma 6. Let µ, ν ∈ V(FLTQn) where n ≥ 6. Then |NFLTQn(µ) ∩ NFLTQn(ν)| ≤ 2.

Proof. Since FLTQn is constructed from LTQn by adding the complementary edge set C,
we can study this lemma based on LTQn.

Case 1. µ, ν are in the same LTQi
n−1 for 0 ≤ i ≤ 1.

Without loss of generality, we suppose that µ, ν ∈ V(LTQ0
n−1). According to Lem-

mas 2 and 3, |NLTQn(µ) ∩ NLTQn(ν)| ≤ 2 for n ≥ 6, and the two common neighbors
are in LTQ0

n−1. According to the definition of FLTQn, we have NLTQ1
n−1

(µ) = {µn, µc},
NLTQ1

n−1
(ν) = {νn, νc}, µn 6= νn, and µc 6= νc. If µc 6= νn and µn 6= νc, then µ and ν do not

have the same neighbors in LTQ1
n−1. Hence, |NFLTQn(µ) ∩ NFLTQn(ν)| ≤ 2. According to

Lemma 4, if µc = νn or µn = νc, then µ and ν have only one common neighbor in FLTQn and
|NFLTQn(µ) ∩ NFLTQn(ν)| = 1 ≤ 2.

Case 2. µ and ν are in a different LTQi
n−1 for 0 ≤ i ≤ 1.

Without loss of generality, we suppose that µ ∈ V(LTQ0
n−1) and ν ∈ V(LTQ1

n−1).
According to Lemma 2, |NLTQn(µ) ∩ NLTQn(ν)| ≤ 2. Based on the definition of FLTQn,
we have NLTQ1

n−1
(u) = {un, uc} and NLTQ0

n−1
(v) = {vn, vc}. According to Lemma 5,

|NFLTQn\{µ}(µn)∩NFLTQn\{µ}(µc)| = 0 and |NFLTQn\{ν}(νn)∩NFLTQn\{ν}(νc)| = 0. Hence,
we cannot find a vertex µ′ ∈ V(LTQ1

n−1), where µ′ and µ ∈ V(LTQ0
n−1) have two common

neighbors, nor can we find a vertex ν′ ∈ V(LTQ0
n−1), where ν′ and ν ∈ V(LTQ1

n−1) have
two common neighbors. Then, u and v cannot have three or four common neighbors in
FLTQn. Hence, |NFLTQn(µ) ∩ NFLTQn(ν)| ≤ 2.
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Lemma 7 ([28]). If µ and ν are two vertices of LTQn and (µ, ν) ∈ E(LTQn), where n ≥ 2, then
|NLTQn(µ) ∩ NLTQn(ν)| = 0.

Lemma 8. If µ and ν are two vertices of FLTQn and (µ, ν) ∈ E(FLTQn), where n ≥ 3, then
|NFLTQn(µ) ∩ NFLTQn(ν)| = 0.

Proof. According to the position of µ and ν, we consider two cases.
Case 1. µ and ν are in the same LTQi

n−1 for 0 ≤ i ≤ 1.
Without loss of generality, we assume that µ, ν ∈ V(LTQ0

n−1). According to Lemma 7,
|NLTQ0

n−1
(µ)∩NLTQ0

n−1
(ν)| = 0. We have NLTQ1

n−1
(µ) = {µn, µc} and NLTQ1

n−1
(ν) = {νn, νc}.

If NLTQ1
n−1

(µ)∩ NLTQ1
n−1

(ν) = ∅, then |NFLTQn(µ)∩ NFLTQn(ν)| = 0. Otherwise, if µn = νc

or µc = νn, then we let µ = xnxn−1xn−2 . . . x3x2x1. All the possible values of µ and ν are
listed in Table 5.

Table 5. The possible values of µ and ν.

µ = xnxn−1xn−2 . . . x3x20
µn = νc µn = x̄nxn−1xn−2 . . . x3x20 = νc x1 = 0

ν = xn x̄n−1 x̄n−2 . . . x̄3 x̄21

µ = xnxn−1xn−2 . . . x3x21
µn = νc µn = x̄n x̄n−1xn−2 . . . x3x21 = νc x1 = 1

ν = xnxn−1 x̄n−2 . . . x̄3 x̄20

µ = xnxn−1xn−2 . . . x3x20
µc = νn µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄21 = νn x1 = 0

ν = xnxn−1 x̄n−2 . . . x̄3 x̄21

µ = xnxn−1xn−2 . . . x3x21
µc = νn µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄20 = νn x1 = 1

ν = xn x̄n−1 x̄n−2 . . . x̄3 x̄20

It is obvious that (µ, ν) /∈ E(FLTQn); then, we reach a contradiction, and all these
values of µ and ν are impossible. Hence, |NFLTQn(µ) ∩ NFLTQn(ν)| = 0.

Case 2. µ and ν are in a different LTQi
n−1 for 0 ≤ i ≤ 1.

Without loss of generality, we assume that µ ∈ V(LTQ0
n−1) and ν ∈ V(LTQ1

n−1). Since
(µ, ν) ∈ E(FLTQn), ν should be µn or µc. If µn = ν, let K = {µ, ν, µc, νc}. Otherwise, If
µc = ν, let K = {µ, ν, µn, νn}. Let µ = xnxn−1xn−2 . . . x3x2x1. All the possible values of K
are listed in Table 6.

Since (µc, ν), (µ, νc) /∈ E(FLTQn) when µn = ν and (µn, ν), (µ, νn) /∈ E(FLTQn), when
µc = ν, µ and ν do not have common neighbors. Hence, |NFLTQn(µ) ∩ NFLTQn(ν)| = 0.

Lemma 9. Let µ be any node in LTQn for any integer n ≥ 3. Then, LTQn \NLTQn [µ] is connected.

Proof. We use mathematical induction on n to prove this lemma. According to Lemma 1,
we know that this lemma obviously holds when n = 3. Suppose that this lemma holds
for n ≤ k(k ≥ 3). Let µ be any node in LTQk+1. Without loss of generality, we suppose
that µ ∈ V(LTQ0

k). Then, by the induction hypothesis, LTQ0
k \ NLTQ0

k
[µ] is connected. Since

NLTQ1
k
(µ) = {µk+1}, according to Lemma 1, LTQ1

k \ {µk+1} is connected. Since each node

in LTQ0
k is connected to a node in LTQ1

k , LTQ0
k \ NLTQ0

k
[µ] is connected to LTQ1

k \ {µk+1}.
Then, LTQk+1 \ NLTQk+1 [µ] is connected. Hence, this lemma holds.
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Table 6. The possible values of K.

µn = ν

µ = xnxn−1xn−2 . . . x3x20 = νn
µn = x̄nxn−1xn−2 . . . x3x20 = ν x1 = 0

νc = xn x̄n−1 x̄n−2 . . . x̄3 x̄21
µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄21

µn = ν

µ = xnxn−1xn−2 . . . x3x21 = νn
µn = x̄n x̄n−1xn−2 . . . x3x21 = ν x1 = 1

νc = xnxn−1 x̄n−2 . . . x̄3 x̄20
µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄20

µc = ν

µ = xnxn−1xn−2 . . . x3x20 = νc
µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄21 = ν x1 = 0

νn = xnxn−1 x̄n−2 . . . x̄3 x̄21
µn = x̄nxn−1xn−2 . . . x3x20

µc = ν

µ = xnxn−1xn−2 . . . x3x21 = νc
µc = x̄n x̄n−1 x̄n−2 . . . x̄3 x̄20 = ν x1 = 1

νn = xn x̄n−1 x̄n−2 . . . x̄3 x̄20
µn = x̄n x̄n−1xn−2 . . . x3x21

Since κ(1)(FLTQn) is the minimum cardinality of all super vertex cuts in FLTQn, to
obtain the upper bound of κ(1)(FLTQn), we just need to find a super vertex cut F. Then, we
have κ(1)(FLTQn) ≤ |F|. If we can prove that FLTQn is connected after removing |F| − 1
vertices, then we have the lower bound κ(1)(FLTQn) ≥ |F|. With these two results, we
can obtain κ(1)(FLTQn) = |F|. In the following, we will present two important lemmas to
prove the upper bound and lower bound of κ(1)(FLTQn).

Lemma 10. κ(1)(FLTQn) ≤ 2n for any integer n ≥ 6.

Proof. Consider an edge (x, y) ∈ E(FLTQn). Let F = {x, y}. Then, FLTQn − NFLTQn(F)
is disconnected, and the edge (x, y) is one component of FLTQn − NFLTQn(F). According
to Lemma 8, |NFLTQn(F)| = (n + 1) + (n + 1)− 2 = 2n. Let K = FLTQn − NFLTQn [F]. To
prove that NFLTQn(F) is a super vertex cut, we need to show that each vertex α ∈ V(K)
has at least one neighbor. According to Lemma 6, |NFLTQn(α) ∩ NFLTQn(x)| ≤ 2 and
|NFLTQn(α) ∩ NFLTQn(y)| ≤ 2. Since κ(FLTQn) = n + 1 and n + 1 − 2 − 2 ≥ 1 for
n ≥ 6, α has at least one neighbor in K. Hence, NFLTQn(F) is a super vertex cut and
κ(1)(FLTQn) ≤ 2n for n ≥ 6.

Lemma 11. κ(1)(FLTQn) ≥ 2n for n ≥ 6.

Proof. Suppose that F is a super vertex cut of FLTQn. Then, FLTQn\F is disconnected,
and each vertex in FLTQn\F has at least one neighbor. To prove κ(1)(FLTQn) ≥ 2n, we will
show that FLTQn\F is connected when |F| ≤ 2n− 1. Let Fi = F ∩ LTQi

n−1 for 0 ≤ i ≤ 1,
K0 = LTQ0

n−1 \ F0, and K1 = LTQ1
n−1 \ F1. Without loss of generality, we suppose that

|F0| ≥ |F1|. Then, |F1| ≤ n− 1.
Case 1. K1 is connected.
Let α be any node in K0. We have NLTQ1

n−1
(α) = {αn, αc}. If |NLTQ1

n−1
(α) ∩ F1| ≤ 1,

then α is connected to K1. Since K1 is connected, then K0 ∪ K1 is connected, which
means that FLTQn \ F is connected. Otherwise, since each vertex in FLTQn \ F has at
least one neighbor, there must be a vertex β ∈ K0 such that (α, β) ∈ E(K0). We have
NLTQ1

n−1
(β) = {βn, βc}. If |NLTQ1

n−1
(β) ∩ F1| ≤ 1, then α can be connected to K1 through

vertex β, and FLTQn \ F is connected. Otherwise, we have {αn, αc, βn, βc} ∈ F1, |F1| ≥ 4,
and |F0| ≤ 2n − 5. Let Y = NLTQ0

n−1
(α) ∪ NLTQ0

n−1
(β) \ {α, β}. According to Lemma 8,
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|Y| = (n− 1) + (n− 1)− 2 = 2n− 4. Since |F0| ≤ 2n− 5, we can find at least one vertex
γ ∈ Y such that α and β are connected to K1 through γ. Hence, FLTQn \ F is connected.

Case 2. K1 is disconnected.
According to Lemma 1, we have κ(LTQn−1) = n− 1. Since K1 is disconnected, then

|F1| = n− 1 and |F0| = n. There should be an isolated vertex ω in K1 and F1 = NLTQ1
n−1

(ω).

According to Lemma 9, LTQ1
n−1 \ NLTQ1

n−1
[ω] is connected. For any vertex α in K0 where

(α, ω) ∈ E(FLTQn), based on Lemma 8, α and ω do not have common neighbors. Then,
there exists a neighbor α′ of α in LTQ1

n such that α′ /∈ NLTQ1
n−1

[ω]. Hence, α is connected

to LTQ1
n−1 \ NLTQ1

n−1
[ω] through α′. For any vertex α in K0 where (α, ω) /∈ E(FLTQn), there

must exist a neighbor β in K0. Let Y = NLTQ0
n−1

(α) ∪ NLTQ0
n−1

(β). According to Lemma 8,

|Y| = (n− 1) + (n− 1) = 2n− 2. Since |F0| = n, we can find at least n− 2 vertices in Y
connected to LTQ1

n−1. Since there exist two neighbors in LTQ1
n−1 for each vertex in Y and

2n− 4 > n− 1 when n ≥ 6, we can find a vertex γ in Y such that α and β are connected to
LTQ1

n−1 \ NLTQ1
n−1

[ω] through γ. Hence, FLTQn − F is connected.

Thus, FLTQn\F is connected when |F| ≤ 2n− 1 and κ(1)(FLTQn) ≥ 2n for any integer
n ≥ 6.

According to Lemmas 10 and 11, we obtain the following result:

Theorem 1. κ(1)(FLTQn) = 2n for n ≥ 6.

4. Conclusions

The folded locally twisted cube FLTQn was introduced based on the locally twisted
cube LTQn and the folded hypercube FQn. In this paper, we studied the super-connectivity
of folded locally twisted cubes, which is an important indicator to measure the fault toler-
ance and reliability of a network. The main contribution of this work was that we addressed
the super-connectivity of FLTQn. We proved that κ(1)(FLTQn) = 2n for any integer n ≥ 6.
Independent spanning trees and mesh embedding could be considered as future research
directions. Independent spanning trees could be applied to reliable communication proto-
cols, reliable broadcasting, and so on [29]. Meshes are fundamental guest graphs on which
many algorithms, such as linear algebra algorithms and combinatorial algorithms, can be
efficiently performed [30]. The results of independent spanning trees and mesh embedding
for FLTQn could be compared with the results of LTQn [31,32].

Author Contributions: Conceptualization, L.Y.; methodology, Y.H.; investigation, J.J.; writing—
original draft preparation, L.Y. and J.J.; writing—review and editing, Y.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Research Project of Suzhou Industrial Park Institute of
Services Outsourcing (No. SISO-ZD202202) and sponsored by the Qing Lan Project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. West, D.B. Introduction to Graph Theory; Prentice Hall Publishers: Hoboken, NJ, USA , 2001.
2. Esfahanian, A.H.; Hakimi, S.L. On computing a conditional edge-connectivity of a graph. Inf. Process. Lett. 1988, 27, 195–199.

[CrossRef]
3. Xu, J.-M.; Xu, M.; Zhu, Q. The super connectivity of shuffle-cubes. Inf. Process. Lett. 2005, 96, 123–127. [CrossRef]
4. Zhu, Q.; Xu, J.-M.; Hou, X.; Xu, M. On reliability of the folded hypercubes. Inf. Sci. 2007, 177, 1782–1788. [CrossRef]
5. Guo, L.; Qin, C.; Guo, X. Super connectivity of Kronecker products of graphs. Inf. Process. Lett. 2010, 110, 659–661. [CrossRef]

http://doi.org/10.1016/0020-0190(88)90025-7
http://dx.doi.org/10.1016/j.ipl.2005.07.005
http://dx.doi.org/10.1016/j.ins.2006.11.003
http://dx.doi.org/10.1016/j.ipl.2010.05.013


Symmetry 2023, 15, 1349 10 of 10

6. Chang, J.-M.; Chen, X.-R.; Yang, J.-S.; Wu, R.-Y. Locally exchanged twisted cubes: Connectivity and super connectivity. Inf. Process.
Lett. 2016, 116, 460–466. [CrossRef]

7. Cai, X.; Vumar, E. The super connectivity of folded crossed cubes. Inf. Process. Lett. 2019, 142, 52–56. [CrossRef]
8. Wang, S.; Ma, X. Super connectivity and diagnosability of crossed cubes. J. Internet Technol. 2019, 20, 1287–1296.
9. Cai, X.; Ma, L. The super connectivity of exchanged folded hypercube. J. Anhui Norm. Univ. Nat. Sci. 2020, 43, 216–222.
10. Ning, W. Connectivity and super connectivity of the divide-and-swap cube. Theor. Comput. Sci. 2020, 842, 1–5. [CrossRef]
11. Guo, L.; Ekinci, G.B. Super connectivity of folded twisted crossed cubes. Discret. Appl. Math. 2021, 305, 56–63. [CrossRef]
12. Gu, M.; Chang, J.-M. A note on super connectivity of the bouwer graph. J. Interconnect. Netw. 2021, 21, 2142009. [CrossRef]
13. Ekinci, G.B.; Gauci, J.B. The super-connectivity of odd graphs and of their kronecker double cover. Rairo-Oper. Res. 2021, 55,

S699–S704. [CrossRef]
14. Soliemany, F.; Ghasemi, M.; Varmazyar, R. On the super connectivity of direct product of graphs. Rairo-Oper. Res. 2022, 56,

2767–2773. [CrossRef]
15. Ning, W.; Guo, L. Connectivity and super connectivity of the exchanged 3-ary n-cube. Theor. Comput. Sci. 2022, 923, 160–166.

[CrossRef]
16. Zhao, S.-L.; Chang, J.-M. Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes. Inf.

Process. Lett. 2023, 182, 106377. [CrossRef]
17. Efe, K. The crossed cube architecture for parallel computation. IEEE Trans. Parallel Distrib. Syst. 1992, 3, 513–524. [CrossRef]
18. Yang, X.; Evans, D.J.; Megson, G.M. The locally twisted cubes. Int. J. Comput. Math. 2005, 82, 401–413. [CrossRef]
19. Zhou, W.; Fan, J.; Jia, X.; Zhang, S. The spined cube: A new hypercube variant with smaller diameter. Inf. Process. Lett. 2011, 111,

561–567. [CrossRef]
20. Han, Y.; Fan, J.; Zhang, S. Changing the diameter of the locally twisted cube. Int. J. Comput. Math. 2013, 90, 497–510. [CrossRef]
21. Liu, Z.; Fan, J.; Zhou, J.; Cheng, B.; Jia, X. Fault-tolerant embedding of complete binary trees in locally twisted cubes. J. Parallel.

Distrib. Comput. 2017, 101, 69–78. [CrossRef]
22. Wang, S.; Ren, Y. The h-extra connectivity and diagnosability of locally twisted cubes. IEEE Access 2019, 7, 102113–102118.

[CrossRef]
23. Han, Y.; You, L.; Lin, C.-K.; Fan, J. Communication performance evaluation of the locally twisted cube. Int. J. Found. Comput. Sci.

2020, 31, 233–252. [CrossRef]
24. Shang, H.; Sabir, E.; Meng, J.; Guo, L. Characterizations of optimal component cuts of locally twisted cubes. Bull. Malays. Math.

Sci. Soc. 2020, 43, 2087–2103. [CrossRef]
25. Chang, X.; Ma, J.; Yang, D. Symmetric property and reliability of locally twisted cubes. Discret. Appl. Math. 2021, 288, 257–269.

[CrossRef]
26. El-Amawy, A.; Latifi, S. Properties and performance of folded hyper-cubes. IEEE Trans. Parallel Distrib. Syst. 1991, 2, 31–42.

[CrossRef]
27. Peng, S.; Guo, C.; Yang, B. Topological properties of folded locally twisted cubes. J. Comput. Inf. Syst. 2015, 11, 7667–7676.

[CrossRef]
28. Guo, L.; Su, G.; Lin, W.; Chen, J. Fault tolerance of locally twisted cubes. Appl. Math. Comput. 2018, 334, 401–406. [CrossRef]
29. Cheng, B.; Fan, J.; Jia, X.; Zhang, S.; Chen, B. Constructive Algorithm of Independent Spanning Trees on Mobius Cubes. Comput. J.

2013, 56, 1347–1362. [CrossRef]
30. Wang, X.; Fan, J.; Jia, X.; Zhang, S.; Yu, J. Embedding meshes into twisted-cubes. Inf. Sci. 2011, 181, 3085–3099.
31. Liu, Y.; Lan, J.K.; Chou, W.Y.; Chen, C. Constructing independent spanning trees for locally twisted cubes. Theor. Comput. Sci.

2011, 412, 2237–2252. [CrossRef]
32. You, L.; Han, Y. An algorithm to embed a family of node-disjoint 3D meshes into locally twisted cubes. In Proceedings of

the Algorithms and Architectures for Parallel Processing 14th International Conference, Dalian, China, 24–27 August 2014;
pp. 219–230. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ipl.2016.03.003
http://dx.doi.org/10.1016/j.ipl.2018.10.013
http://dx.doi.org/10.1016/j.tcs.2020.06.017
http://dx.doi.org/10.1016/j.dam.2021.08.022
http://dx.doi.org/10.1142/S0219265921420093
http://dx.doi.org/10.1142/S0219265921420093
http://dx.doi.org/10.1142/S0219265921420093
http://dx.doi.org/10.1142/S0219265921420093
http://dx.doi.org/10.1051/ro/2020004
http://dx.doi.org/10.1051/ro/2022085
http://dx.doi.org/10.1016/j.tcs.2022.05.003
http://dx.doi.org/10.1016/j.ipl.2023.106377
http://dx.doi.org/10.1109/71.159036
http://dx.doi.org/10.1080/0020716042000301752
http://dx.doi.org/10.1016/j.ipl.2011.03.011
http://dx.doi.org/10.1080/00207160.2012.742190
http://dx.doi.org/10.1016/j.jpdc.2016.11.005
http://dx.doi.org/10.1109/ACCESS.2019.2931574
http://dx.doi.org/10.1142/S0129054120500057
http://dx.doi.org/10.1007/s40840-019-00792-y
http://dx.doi.org/10.1016/j.dam.2020.09.009
http://dx.doi.org/10.1109/71.80187
http://dx.doi.org/10.1016/j.amc.2018.03.107
http://dx.doi.org/10.1093/comjnl/bxs123

	Introduction
	Preliminaries
	Super Connectivity of FLTQn
	Conclusions
	References

