Article

Super-Connectivity of the Folded Locally Twisted Cube

Lantao You ${ }^{1,2,3,4}$, Yuejuan Han ${ }^{4, *}$ and Jianfeng Jiang ${ }^{1}$
1 School of Information Engineering, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, China; yoult@siso.edu.cn (L.Y.); jiangj@siso.edu.cn (J.J.)
2 Suzhou Industrial Park Human Resources Development Co., Ltd., Suzhou 215028, China
3 Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou 215006, China
4 School of Computer Science and Technology, Soochow University, Suzhou 215006, China
* Correspondence: hyj@suda.edu.cn

Citation: You, L.; Han, Y.; Jiang, J. Super-Connectivity of the Folded Locally Twisted Cube. Symmetry 2023, 15, 1349. https://doi.org/ 10.3390/sym15071349

Academic Editors: Dongqin Cheng, Jou-Ming Chang and Chengkuan Lin

Received: 19 June 2023
Revised: 28 June 2023
Accepted: 29 June 2023
Published: 2 July 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The hypercube Q_{n} is one of the most popular interconnection networks with high symmetry. To reduce the diameter of Q_{n}, many variants of Q_{n} have been proposed, such as the n-dimensional locally twisted cube $L T Q_{n}$. To further optimize the diameter of $L T Q_{n}$, the n-dimensional folded locally twisted cube $F L T Q_{n}$ is proposed, which is built based on $L T Q_{n}$ by adding 2^{n-1} complementary edges. Connectivity is an important indicator to measure the fault tolerance and reliability of a network. However, the connectivity has an obvious shortcoming, in that it assumes all the adjacent vertices of a vertex will fail at the same time. Super-connectivity is a more refined index to judge the fault tolerance of a network, which ensures that each vertex has at least one neighbor. In this paper, we show that the super-connectivity $\kappa^{(1)}\left(F L T Q_{n}\right)=2 n$ for any integer $n \geq 6$, which is about twice $\kappa\left(F L T Q_{n}\right)$.

Keywords: super-connectivity; folded locally twisted cube; fault tolerance; interconnection network; reliability

1. Introduction

High-performance computers can be widely used in many fields thanks to the development of high performance computing technology. The topological properties of interconnection networks are very important for high-performance computers. One typically uses an undirected graph $G=(V(G), E(G))$ to model the topology of a multiprocessor system H, where the processor set of H is represented by $V(G)$ and the link set of H is represented by $E(G)$.

Interconnection networks have many important properties, one of which is the connectivity denoted by $\kappa(G)$. A graph's connectivity is the minimum number of vertices whose removal makes the graph disconnected or trivial [1]. Connectivity is an important indicator to measure the fault tolerance and reliability of a network. In a large interconnection network, each vertex has a large number of neighbors. This property has an obvious deficiency, in that it assumes that all the adjacent vertices of a vertex will fail at the same time. However, this situation does not happen frequently in real networks. To address this deficiency, Esfahanian et al. [2] introduced the concept of restricted connectivity by imposing additionally restricted conditions on a network. Super-connectivity is a special case of restricted connectivity. When determing the super-connectivity of a network, one needs to ensure that each vertex has at least one neighbor. Hence, super-connectivity is a more refined index to judge the fault tolerance of a network.

Let K be a subset of $V(G)$. $G \backslash K$ (or $G-K$) denotes a graph obtained by removing all the vertices in K and edges incident to at least one vertex in K from G. If $G \backslash K$ is disconnected and each component of $G \backslash K$ has at least two vertices, then K is called a super vertex cut. Let S be a subset of $E(G)$. If $G \backslash S$ is disconnected and each component
of $G \backslash S$ has at least two vertices, then S is called a super edge cut. The super-connectivity of G (or, respectively, the super edge connectivity), denoted by $\kappa^{(1)}(G)\left(\right.$ or $\left.\lambda^{(1)}(G)\right)$, is the minimum cardinality of all super vertex cuts (or super edge cuts) in G, if any exist. Many relevant results have been obtained regarding super-connectivity and super edge connectivity [3-16].

The hypercube Q_{n} has become one of the most popular interconnection networks, because of its many attractive properties, such as its regularity and symmetry. Q_{n} is a Cayley graph and hence vertex-transitive and edge-transitive. However, the diameter of Q_{n} is not optimal. In order to enhance the hypercube, researchers have proposed many variants, such as crossed cubes [17], locally twisted cubes [18], and spined cubes [19]. The n-dimensional locally twisted cube $L T Q_{n}$ was proposed by Yang et al. [18], whose diameter was only about half that of Q_{n}. Many research results have been published on the properties of $L T Q_{n}$ [20-25]. $L T Q_{n}$ is vertex-transitive if and only if $n \leq 3$, and it is edge-transitive if and only if $n=2$ [25]. To further enhance the hypercube, inspired by the folded cube [26], Peng et al. [27] proposed a new network topology called the folded locally twisted cube $F L T Q_{n}$. So far there, no work has been reported on the super-connectivity of $F L T Q_{n}$. In this work, we studied the super-connectivity of $F L T Q_{n}$ and obtained the result that the super-connectivity $\kappa^{(1)}\left(F L T Q_{n}\right)$ is $2 n$ for $n \geq 6$, which is about twice $\kappa\left(F L T Q_{n}\right)$.

2. Preliminaries

In this paper, we use the terms vertex and node interchangeably. We also use (x, y) to denote an edge between vertices x and y. For any vertex $x \in V(G)$, the neighboring set of x is denoted by $N_{G}(x)=\{y \mid(x, y) \in E(G)\}$ (or $N(x)$ for short). Let $S \subset V(G)$. The neighboring set of S is defined as $N_{G}(S)=\left(\bigcup_{x \in S} N(x)\right) \backslash S$ (or $N(S)$ for short). We define $N_{G}[S]=\bigcup_{x \in S} N(x)$ and $N_{G}[x]=N_{G}(x) \cup\{x\}$. We use $x_{n} x_{n-1} \cdots x_{2} x_{1}$ to represent a binary string μ of length n, where $x_{i} \in\{0,1\}$ for $1 \leq i \leq n$ is a part of μ. x_{1} is the first part of μ, and x_{n} is the nth part of μ. The symbol \bar{x}_{i} is used to represent the complement of x_{i}. As a variant of $Q_{n}, L T Q_{n}$ has the same number of vertices as Q_{n}. Each vertex of $L T Q_{n}$ is denoted by a unique binary string of length n. The definition of $L T Q_{n}$ is given below.

Definition 1 ([18]). For $n \geq 2$, an n-dimensional locally twisted cube, $L T Q_{n}$, is defined recursively as follows:
(1) $L T Q_{2}$ is a graph consisting of four nodes labeled with $00,01,10$, and 11 , which are connected by four edges, $(00,01),(00,10),(01,11)$, and $(10,11)$.
(2) For $n \geq 3, L T Q_{n}$ is built from two disjointed copies of $L T Q_{n-1}$ named $L T Q_{n-1}^{0}$ and $L T Q_{n-1}^{1}$. Let $L T Q_{n-1}^{0}$ (or, respectively, $L T Q_{n-1}^{1}$) be the graph obtained by prefixing the label of each node of one copy of $L T Q_{n-1}$ with 0 (or with 1); each node $x=0 x_{n-1} x_{n-2} \cdots x_{2} x_{1}$ of $L T Q_{n-1}^{0}$ is connected to the node $1\left(x_{n-1}+x_{1}\right) x_{n-2} \cdots x_{2} x_{1}$ of $L T Q_{n-1}^{1}$ with an edge, where' $+^{\prime}$ represents modulo 2 addition.
$L T Q_{3}$ and $L T Q_{4}$ are demonstrated in Figure 1. Each node in $L T Q_{n-1}^{0}$ has only one adjacent node in $L T Q_{n-1}^{1}$. The set of edges between $L T Q_{n-1}^{0}$ and $L T Q_{n-1}^{1}$ is called a perfect matching M of $L T Q_{n}$. Hence, we can write $L T Q_{n}=G\left(L T Q_{n-1}^{0}, L T Q_{n-1}^{1}, M\right)$. In [18], Yang et al. also provided a non-recursive definition of $L T Q_{n}$.

Definition 2 ([18]). Let $\mu=x_{n} x_{n-1} \cdots x_{1}$ and $v=y_{n} y_{n-1} \cdots y_{1}$ be any two distinct vertices of $L T Q_{n}$ for $n \geq 2 . \mu$ and v are connected if and only if one of the following conditions is satisfied:

1. There is an integer $3 \leq k \leq n$ such that
(a) $x_{k}=\bar{y}_{k}$;
(b) $x_{k-1}=y_{k-1}+x_{1}\left({ }^{\prime}+{ }^{\prime}\right.$ represents modulo 2 addition $)$;
(c) all the remaining bits of μ and v are the same.
2. There is an integer $1 \leq k \leq 2$ such that μ and v only differ in the k th bit.

Let $\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} x_{1}$ be any vertex of $L T Q_{n}$. By Definition 2, all the n neighbors of μ are listed as follows:

$$
\begin{aligned}
& \mu_{1}=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} \bar{x}_{1} ; \\
& \mu_{2}=x_{n} x_{n-1} x_{n-2} \ldots x_{3} \bar{x}_{2} x_{1} ; \\
& \mu_{3}=x_{n} x_{n-1} x_{n-2} \ldots \bar{x}_{3}\left(x_{2}+x_{1}\right) x_{1} ; \\
& \ldots \\
& \mu_{n-1}=x_{n} \bar{x}_{n-1}\left(x_{n-2}+x_{1}\right) x_{n-3} \ldots x_{2} x_{1} ; \\
& \mu_{n}=\bar{x}_{n}\left(x_{n-1}+x_{1}\right) x_{n-2} \ldots x_{3} x_{2} x_{1} .
\end{aligned}
$$

We call μ_{i} the i th dimensional neighbor of μ for $1 \leq i \leq n$.

(a) $L T Q_{3}$

(b) $L T Q_{4}$

Figure 1. (a) The three-dimensional locally twisted cube $L T Q_{3} ;$ (b) the four-dimensional locally twisted cube $L T Q_{4}$.

Definition 3 ([27]). For any integer $n \geq 2$, an n-dimensional folded locally twisted cube, denoted by $F L T Q_{n}$, is a graph constructed based on $L T Q_{n}$ by adding all complementary edges. Each vertex $x=x_{n} x_{n-1} \ldots x_{1}$ in LTQ Q_{n} is incident to another vertex $\bar{x}=\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{1}$ through a complementary edge, where $\bar{x}_{i}=1-x_{i}$.

We call the added complementary edges c-links. $F L T Q_{n}$ has $2^{n-1} c$-links, and each vertex $\mu=x_{n} x_{n-1} \ldots x_{1}$ is connected to a complementary vertex $\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{1}$ by a c-link. The set of complementary edges between $L T Q_{n-1}^{0}$ and $L T Q_{n-1}^{1}$ is a perfect matching C of $F L T Q_{n}$. Hence, we can write $F L T Q_{n}=G\left(L T Q_{n-1}^{0}, L T Q_{n-1}^{1}, M, C\right)$ or $G\left(L T Q_{n}, C\right)$. Each node $\mu \in V\left(F L T Q_{n}\right)$ in $L T Q_{n-1}^{0}$ (or, respectively, $L T Q_{n-1}^{1}$) has two neighbors, μ_{n} and μ_{c}, in $L T Q_{n-1}^{1}$ (or $L T Q_{n-1}^{0}$) for $n \geq 3$. Compared with $L T Q_{n}$, each vertex in $F L T Q_{n}$ has one more neighbor. Then, the node degree of $F L T Q_{n}$ is $n+1$ and $\kappa\left(F L T Q_{n}\right)=n+1$ [27]. Figure 2 demonstrates $F L T Q_{3}$ and $F L T Q_{4}$, respectively, and Figure 3 demonstrates $F L T Q_{5}$.

Figure 2. (a) The three-dimensional folded locally twisted cube $F L T Q_{3} ;$ (b) the four-dimensional folded locally twisted cube $F_{L T} Q_{4}$.

Figure 3. The five-dimensional folded locally twisted cube $F L T Q_{5}$.

3. Super Connectivity of $F L T Q_{n}$

In this section, we study the super connectivity of $F L T Q_{n}$ for any integer $n \geq 6$. Since $F L T Q_{n}$ is composed of $L T Q_{n}$ and the complementary edge set C, we can use some properties of $L T Q_{n}$ to prove the super-connectivity property of $F L T Q_{n}$.

Lemma 1 ([18]). For $n \geq 2, \kappa\left(L T Q_{n}\right)=\lambda\left(L T Q_{n}\right)=n$.

Lemma 2 ([28]). For any two vertices $\mu, v \in V\left(L T Q_{n}\right)(n \geq 2)$, we have $\left|N_{L T Q_{n}}(\mu) \cap N_{L T Q_{n}}(v)\right| \leq 2$.
Lemma 3 ([28]). Let μ and v be any two distinct vertices in $L T Q_{n}(n \geq 4)$ such that $\mid N_{L T Q_{n}}(\mu) \cap$ $N_{L T Q_{n}}(v) \mid=2$.
(1) If $\mu \in V\left(L T Q_{n-1}^{0}\right)$ and $v \in V\left(L T Q_{n-1}^{1}\right)$, then the one common neighbor is in $L T Q_{n-1}^{0}$, and the other one is in $L T Q_{n-1}^{1}$.
(2) If $\mu, v \in V\left(L T Q_{n-1}^{0}\right)$ or $V\left(L T Q_{n-1}^{1}\right)$, then the two common neighbors are in $L T Q_{n-1}^{0}$ or $L T Q_{n-1}^{1}$.

Lemma 4. Let μ and v be any two distinct vertices in the same $L T Q_{n-1}^{i}$ for $0 \leq i \leq 1$ and $n \geq 6$. If $\mu_{n}=v_{c}$ or $\mu_{c}=v_{n}$, then $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right|=1$.

Proof. Without loss of generality, we suppose that $\mu, v \in V\left(L T Q_{n-1}^{0}\right)$, and $\mu_{n}=v_{c}$. Then, μ_{n} is the common neighbor for μ and v. Let $\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} x_{1}$ and $X=F L T Q_{n} \backslash\left\{\mu_{n}\right\}$. Next, we consider the neighbors of μ and v in X according to different values of the first part x_{1} of μ.

Case 1. $x_{1}=0$.
$\mu_{n}=\bar{x}_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0=v_{c}$ and $v=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$. We list $N_{X}(\mu)$ and $N_{X}(v)$ separately in Table 1.

Table 1. The neighbors of μ and v in X, where $x_{1}=0$.

$N_{X}(\boldsymbol{\mu})$	$N_{X}(\boldsymbol{v})$
$\mu_{1}=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 1$	$v_{1}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$
$\mu_{2}=x_{n} x_{n-1} x_{n-2} \ldots x_{3} \bar{x}_{2} 0$	$v_{2}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} x_{2} 1$
$\mu_{3}=x_{n} x_{n-1} x_{n-2} \ldots \bar{x}_{3} x_{2} 0$	$v_{3}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots x_{3} x_{2} 1$
\ldots	\ldots
$\mu_{n-1}=x_{n} \bar{x}_{n-1} x_{n-2} \ldots x_{3} x_{2} 0$	$v_{n-1}=x_{n} x_{n-1} x_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$
$\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$	$v_{n}=\bar{x}_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$

It is obvious that $\left|N_{X}(\mu) \cap N_{X}(v)\right|=0$.
Case 2. $x_{1}=1$.
$\mu_{n}=\bar{x}_{n} \bar{x}_{n-1} x_{n-2} \ldots x_{3} x_{2} 1=v_{c}$ and $v=x_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$. We list $N_{X}(\mu)$ and $N_{X}(v)$ separately in Table 2.

Table 2. The neighbors of μ and v in X, where $x_{1}=1$.

$N_{X}(\mu)$	$N_{X}(\nu)$
$\mu_{1}=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0$	$v_{1}=x_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$
$\mu_{2}=x_{n} x_{n-1} x_{n-2} \ldots x_{3} \bar{x}_{2} 1$	$v_{2}=x_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} x_{2} 0$
$\mu_{3}=x_{n} x_{n-1} x_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$	$v_{3}=x_{n} x_{n-1} \bar{x}_{n-2} \ldots x_{3} \bar{x}_{2} 0$
\ldots	\ldots
$\mu_{n-1}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots x_{3} x_{2} 1$	$v_{n-1}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$
$\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$	$v_{n}=\bar{x}_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$

It is obvious that $\left|N_{X}(\mu) \cap N_{X}(v)\right|=0$.
Hence, μ and v have only one common neighbor in $F L T Q_{n}$ and $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right|=1$.

Lemma 5. Let μ be any node in FLTQ Q_{n}, where $n \geq 6$ and $X=F L T Q_{n} \backslash\{\mu\}$. Then, $\mid N_{X}\left(\mu_{n}\right) \cap$ $N_{X}\left(\mu_{c}\right) \mid=0$.

Proof. Let $\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} x_{1}$. We consider the different values of the first part x_{1} of μ.

Case 1. $x_{1}=0$.
Let $\alpha=\mu_{n}=\bar{x}_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0$ and $\beta=\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$. All the neighbors of α and β in X are listed separately in Table 3.

Table 3. The neighbors of α and β in X, where $x_{1}=0$.

$N_{\boldsymbol{X}}(\boldsymbol{\alpha})$	$N_{\boldsymbol{X}}(\boldsymbol{\beta})$
$\alpha_{1}=\bar{x}_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 1$	$\beta_{1}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$
$\alpha_{2}=\bar{x}_{n} x_{n-1} x_{n-2} \ldots x_{3} \bar{x}_{2} 0$	$\beta_{2}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} x_{2} 1$
$\alpha_{3}=\bar{x}_{n} x_{n-1} x_{n-2} \ldots \bar{x}_{3} x_{2} 0$	$\beta_{3}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots x_{3} x_{2} 1$
\ldots	\ldots
$\alpha_{n-1}=\bar{x}_{n} \bar{x}_{n-1} x_{n-2} \ldots x_{3} x_{2} 0$	$\beta_{n-1}=\bar{x}_{n} x_{n-1} x_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$
$\alpha_{c}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$	$\beta_{n}=x_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$

It is obvious that $N_{X}(\alpha) \cap N_{X}(\beta)=\varnothing$.
Case 2. $x_{1}=1$.
Let $\alpha=\mu_{n}=\bar{x}_{n} \bar{x}_{n-1} x_{n-2} \ldots x_{3} x_{2} 1$ and $\beta=\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$. All the neighbors of α and β in X are listed separately in Table 4.

Table 4. The neighbors of α and β in X, where $x_{1}=1$.

$\boldsymbol{N}_{\boldsymbol{X}}(\boldsymbol{\alpha})$	$\boldsymbol{N}_{\boldsymbol{X}}(\boldsymbol{\beta})$
$\alpha_{1}=\bar{x}_{n} \bar{x}_{n-1} x_{n-2} \ldots x_{3} x_{2} 0$	$\beta_{1}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$
$\alpha_{2}=\bar{x}_{n} \bar{x}_{n-1} x_{n-2} \ldots x_{3} \bar{x}_{2} 1$	$\beta_{2}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} x_{2} 0$
$\alpha_{3}=\bar{x}_{n} \bar{x}_{n-1} x_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$	$\beta_{3}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots x_{3} \bar{x}_{2} 0$
\ldots	\ldots
$\alpha_{n-1}=\bar{x}_{n} x_{n-1} \bar{x}_{n-2} \ldots x_{3} x_{2} 1$	$\beta_{n-1}=\bar{x}_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$
$\alpha_{c}=x_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$	$\beta_{n}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$

It is obvious that $N_{X}(\alpha) \cap N_{X}(\beta)=\varnothing$.
Hence, $\left|N_{X}\left(\mu_{n}\right) \cap N_{X}\left(\mu_{c}\right)\right|=0$.
Lemma 6. Let $\mu, v \in V\left(F L T Q_{n}\right)$ where $n \geq 6$. Then $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right| \leq 2$.
Proof. Since $F L T Q_{n}$ is constructed from $L T Q_{n}$ by adding the complementary edge set C, we can study this lemma based on $L T Q_{n}$.

Case 1. μ, v are in the same $L T Q_{n-1}^{i}$ for $0 \leq i \leq 1$.
Without loss of generality, we suppose that $\mu, v \in V\left(L T Q_{n-1}^{0}\right)$. According to Lemmas 2 and $3,\left|N_{L T Q_{n}}(\mu) \cap N_{L T Q_{n}}(v)\right| \leq 2$ for $n \geq 6$, and the two common neighbors are in $L T Q_{n-1}^{0}$. According to the definition of $F L T Q_{n}$, we have $N_{L T Q_{n-1}^{1}}(\mu)=\left\{\mu_{n}, \mu_{c}\right\}$, $N_{L T Q_{n-1}^{1}}(v)=\left\{v_{n}, v_{c}\right\}, \mu_{n} \neq v_{n}$, and $\mu_{c} \neq v_{c}$. If $\mu_{c} \neq v_{n}$ and $\mu_{n} \neq v_{c}$, then μ and v do not have the same neighbors in $L T Q_{n-1}^{1}$. Hence, $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right| \leq 2$. According to Lemma 4, if $\mu_{c}=v_{n}$ or $\mu_{n}=v_{c}$, then μ and v have only one common neighbor in FLTQ Q_{n} and $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right|=1 \leq 2$.

Case 2. μ and v are in a different $L T Q_{n-1}^{i}$ for $0 \leq i \leq 1$.
Without loss of generality, we suppose that $\mu \in V\left(L T Q_{n-1}^{0}\right)$ and $v \in V\left(L T Q_{n-1}^{1}\right)$. According to Lemma 2, $\left|N_{L T Q_{n}}(\mu) \cap N_{L T Q_{n}}(v)\right| \leq 2$. Based on the definition of FLTQ Q_{n}, we have $N_{L T Q_{n-1}^{1}}(u)=\left\{u_{n}, u_{c}\right\}$ and $N_{L T Q_{n-1}^{0}}(v)=\left\{v_{n}, v_{c}\right\}$. According to Lemma 5, $\left|N_{F L T Q_{n} \backslash\{\mu\}}\left(\mu_{n}\right) \cap N_{F L T Q_{n} \backslash\{\mu\}}\left(\mu_{c}\right)\right|=0$ and $\left|N_{F L T Q_{n} \backslash\{v\}}\left(v_{n}\right) \cap N_{F L T Q_{n} \backslash\{v\}}\left(v_{c}\right)\right|=0$. Hence, we cannot find a vertex $\mu^{\prime} \in V\left(L T Q_{n-1}^{1}\right)$, where μ^{\prime} and $\mu \in V\left(L T Q_{n-1}^{0}\right)$ have two common neighbors, nor can we find a vertex $v^{\prime} \in V\left(L T Q_{n-1}^{0}\right)$, where v^{\prime} and $v \in V\left(L T Q_{n-1}^{1}\right)$ have two common neighbors. Then, u and v cannot have three or four common neighbors in $F L T Q_{n}$. Hence, $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right| \leq 2$.

Lemma 7 ([28]). If μ and v are two vertices of $L T Q_{n}$ and $(\mu, v) \in E\left(L T Q_{n}\right)$, where $n \geq 2$, then $\left|N_{L T Q_{n}}(\mu) \cap N_{L T Q_{n}}(v)\right|=0$.

Lemma 8. If μ and v are two vertices of $F L T Q_{n}$ and $(\mu, v) \in E\left(F L T Q_{n}\right)$, where $n \geq 3$, then $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right|=0$.

Proof. According to the position of μ and v, we consider two cases.
Case 1. μ and v are in the same $L T Q_{n-1}^{i}$ for $0 \leq i \leq 1$.
Without loss of generality, we assume that $\mu, v \in V\left(L T Q_{n-1}^{0}\right)$. According to Lemma 7, $\left|N_{L T Q_{n-1}^{0}}(\mu) \cap N_{L T Q_{n-1}^{0}}(v)\right|=0$. We have $N_{L T Q_{n-1}^{1}}(\mu)=\left\{\mu_{n}, \mu_{c}\right\}$ and $N_{L T Q_{n-1}^{1}}(v)=\left\{v_{n}, v_{c}\right\}$. If $N_{L T Q_{n-1}^{1}}(\mu) \cap N_{L T Q_{n-1}^{1}}(v)=\varnothing$, then $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right|=0$. Otherwise, if $\mu_{n}=v_{c}$ or $\mu_{c}=v_{n}$, then we let $\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} x_{1}$. All the possible values of μ and v are listed in Table 5.

Table 5. The possible values of μ and v.
$\left.\begin{array}{ccc}\hline & \mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0 & \\ \mu_{n}=v_{c} & \mu_{n}=\bar{x}_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0=v_{c} \\ v=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1\end{array}\right] x_{1}=0$

It is obvious that $(\mu, v) \notin E\left(F L T Q_{n}\right)$; then, we reach a contradiction, and all these values of μ and v are impossible. Hence, $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right|=0$.

Case 2. μ and v are in a different $L T Q_{n-1}^{i}$ for $0 \leq i \leq 1$.
Without loss of generality, we assume that $\mu \in V\left(L T Q_{n-1}^{0}\right)$ and $v \in V\left(L T Q_{n-1}^{1}\right)$. Since $(\mu, v) \in E\left(F L T Q_{n}\right), v$ should be μ_{n} or μ_{c}. If $\mu_{n}=v$, let $K=\left\{\mu, v, \mu_{c}, v_{c}\right\}$. Otherwise, If $\mu_{c}=v$, let $K=\left\{\mu, v, \mu_{n}, v_{n}\right\}$. Let $\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} x_{1}$. All the possible values of K are listed in Table 6.

Since $\left(\mu_{c}, v\right),\left(\mu, v_{c}\right) \notin E\left(F L T Q_{n}\right)$ when $\mu_{n}=v$ and $\left(\mu_{n}, v\right),\left(\mu, v_{n}\right) \notin E\left(F L T Q_{n}\right)$, when $\mu_{c}=v, \mu$ and v do not have common neighbors. Hence, $\left|N_{F L T Q_{n}}(\mu) \cap N_{F L T Q_{n}}(v)\right|=0$.

Lemma 9. Let μ be any node in $L T Q_{n}$ for any integer $n \geq 3$. Then, $L T Q_{n} \backslash N_{L T Q_{n}}[\mu]$ is connected.
Proof. We use mathematical induction on n to prove this lemma. According to Lemma 1, we know that this lemma obviously holds when $n=3$. Suppose that this lemma holds for $n \leq k(k \geq 3)$. Let μ be any node in $L T Q_{k+1}$. Without loss of generality, we suppose that $\mu \in V\left(L T Q_{k}^{0}\right)$. Then, by the induction hypothesis, $L T Q_{k}^{0} \backslash N_{L T Q_{k}^{0}}[\mu]$ is connected. Since $N_{L T Q_{k}^{1}}(\mu)=\left\{\mu_{k+1}\right\}$, according to Lemma $1, L T Q_{k}^{1} \backslash\left\{\mu_{k+1}\right\}$ is connected. Since each node in $L T Q_{k}^{0}$ is connected to a node in $L T Q_{k}^{1}, L T Q_{k}^{0} \backslash N_{L T Q_{k}^{0}}[\mu]$ is connected to $L T Q_{k}^{1} \backslash\left\{\mu_{k+1}\right\}$. Then, $L T Q_{k+1} \backslash N_{L T Q_{k+1}}[\mu]$ is connected. Hence, this lemma holds.

Table 6. The possible values of K.

	$\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0=v_{n}$	
$\mu_{n}=v \bar{x}_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0=v$	$x_{1}=0$	
$v_{c}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$		
$\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$		
$\mu_{n}=v$	$\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 1=v_{n}$	
	$\mu_{n}=\bar{x}_{n} \bar{x}_{n-1} x_{n-2} \ldots x_{3} x_{2} 1=v$	$x_{1}=1$
$v_{c}=x_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$		
$\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$		
$\mu_{c}=v$	$\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0=v_{c}$	$x_{1}=0$
	$\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1=v$	
$v_{n}=x_{n} x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 1$		
$\mu_{n}=\bar{x}_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 0$	$x_{1}=1$	
	$\mu=x_{n} x_{n-1} x_{n-2} \ldots x_{3} x_{2} 1=v_{c}$	
$\mu_{c}=v$	$\mu_{c}=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0=v$	
	$v_{n}=x_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{3} \bar{x}_{2} 0$	
	$\mu_{n}=\bar{x}_{n} \bar{x}_{n-1} x_{n-2} \ldots x_{3} x_{2} 1$	

Since $\kappa^{(1)}\left(F L T Q_{n}\right)$ is the minimum cardinality of all super vertex cuts in $F L T Q_{n}$, to obtain the upper bound of $\kappa^{(1)}\left(F L T Q_{n}\right)$, we just need to find a super vertex cut F. Then, we have $\kappa^{(1)}\left(F L T Q_{n}\right) \leq|F|$. If we can prove that $F L T Q_{n}$ is connected after removing $|F|-1$ vertices, then we have the lower bound $\kappa^{(1)}\left(F L T Q_{n}\right) \geq|F|$. With these two results, we can obtain $\kappa^{(1)}\left(F L T Q_{n}\right)=|F|$. In the following, we will present two important lemmas to prove the upper bound and lower bound of $\kappa^{(1)}\left(F L T Q_{n}\right)$.

Lemma 10. $\kappa^{(1)}\left(F L T Q_{n}\right) \leq 2 n$ for any integer $n \geq 6$.
Proof. Consider an edge $(x, y) \in E\left(F L T Q_{n}\right)$. Let $F=\{x, y\}$. Then, $F L T Q_{n}-N_{F L T Q_{n}}(F)$ is disconnected, and the edge (x, y) is one component of $F L T Q_{n}-N_{F L T Q_{n}}(F)$. According to Lemma 8, $\left|N_{F L T Q_{n}}(F)\right|=(n+1)+(n+1)-2=2 n$. Let $K=F L T Q_{n}-N_{F L T Q_{n}}[F]$. To prove that $N_{F L T Q_{n}}(F)$ is a super vertex cut, we need to show that each vertex $\alpha \in V(K)$ has at least one neighbor. According to Lemma 6, $\left|N_{F L T Q_{n}}(\alpha) \cap N_{F L T Q_{n}}(x)\right| \leq 2$ and $\left|N_{F L T Q_{n}}(\alpha) \cap N_{F L T Q_{n}}(y)\right| \leq 2$. Since $\kappa\left(F L T Q_{n}\right)=n+1$ and $n+1-2-2 \geq 1$ for $n \geq 6, \alpha$ has at least one neighbor in K. Hence, $N_{F L T Q_{n}}(F)$ is a super vertex cut and $\kappa^{(1)}\left(F L T Q_{n}\right) \leq 2 n$ for $n \geq 6$.

Lemma 11. $\kappa^{(1)}\left(F L T Q_{n}\right) \geq 2 n$ for $n \geq 6$.
Proof. Suppose that F is a super vertex cut of $F L T Q_{n}$. Then, $F L T Q_{n} \backslash F$ is disconnected, and each vertex in $F L T Q_{n} \backslash F$ has at least one neighbor. To prove $\kappa^{(1)}\left(F L T Q_{n}\right) \geq 2 n$, we will show that $F L T Q_{n} \backslash F$ is connected when $|F| \leq 2 n-1$. Let $F_{i}=F \cap L T Q_{n-1}^{i}$ for $0 \leq i \leq 1$, $K_{0}=L T Q_{n-1}^{0} \backslash F_{0}$, and $K_{1}=L T Q_{n-1}^{1} \backslash F_{1}$. Without loss of generality, we suppose that $\left|F_{0}\right| \geq\left|F_{1}\right|$. Then, $\left|F_{1}\right| \leq n-1$.

Case 1. K_{1} is connected.
Let α be any node in K_{0}. We have $N_{L T Q_{n-1}^{1}}(\alpha)=\left\{\alpha_{n}, \alpha_{c}\right\}$. If $\left|N_{L T Q_{n-1}^{1}}(\alpha) \cap F_{1}\right| \leq 1$, then α is connected to K_{1}. Since K_{1} is connected, then $K_{0} \cup K_{1}$ is connected, which means that $F L T Q_{n} \backslash F$ is connected. Otherwise, since each vertex in $F L T Q_{n} \backslash F$ has at least one neighbor, there must be a vertex $\beta \in K_{0}$ such that $(\alpha, \beta) \in E\left(K_{0}\right)$. We have $N_{L T Q_{n-1}^{1}}(\beta)=\left\{\beta_{n}, \beta_{c}\right\}$. If $\left|N_{L T Q_{n-1}^{1}}(\beta) \cap F_{1}\right| \leq 1$, then α can be connected to K_{1} through vertex β, and $F L T Q_{n} \backslash F$ is connected. Otherwise, we have $\left\{\alpha_{n}, \alpha_{c}, \beta_{n}, \beta_{c}\right\} \in F_{1},\left|F_{1}\right| \geq 4$, and $\left|F_{0}\right| \leq 2 n-5$. Let $Y=N_{L T Q_{n-1}^{0}}(\alpha) \cup N_{L T Q_{n-1}^{0}}(\beta) \backslash\{\alpha, \beta\}$. According to Lemma 8,
$|Y|=(n-1)+(n-1)-2=2 n-4$. Since $\left|F_{0}\right| \leq 2 n-5$, we can find at least one vertex $\gamma \in Y$ such that α and β are connected to K_{1} through γ. Hence, $F L T Q_{n} \backslash F$ is connected.

Case 2. K_{1} is disconnected.
According to Lemma 1, we have $\kappa\left(L T Q_{n-1}\right)=n-1$. Since K_{1} is disconnected, then $\left|F_{1}\right|=n-1$ and $\left|F_{0}\right|=n$. There should be an isolated vertex ω in K_{1} and $F_{1}=N_{L T Q_{n-1}^{1}}(\omega)$. According to Lemma 9, $L T Q_{n-1}^{1} \backslash N_{L T Q_{n-1}^{1}}[\omega]$ is connected. For any vertex α in K_{0} where $(\alpha, \omega) \in E\left(F L T Q_{n}\right)$, based on Lemma $8, \alpha$ and ω do not have common neighbors. Then, there exists a neighbor α^{\prime} of α in $L T Q_{n}^{1}$ such that $\alpha^{\prime} \notin N_{L T Q_{n-1}^{1}}[\omega]$. Hence, α is connected to $L T Q_{n-1}^{1} \backslash N_{L T Q_{n-1}^{1}}[\omega]$ through α^{\prime}. For any vertex α in K_{0} where $(\alpha, \omega) \notin E\left(F L T Q_{n}\right)$, there must exist a neighbor β in K_{0}. Let $Y=N_{L T Q_{n-1}^{0}}(\alpha) \cup N_{L T Q_{n-1}^{0}}(\beta)$. According to Lemma 8, $|Y|=(n-1)+(n-1)=2 n-2$. Since $\left|F_{0}\right|=n$, we can find at least $n-2$ vertices in Y connected to $L T Q_{n-1}^{1}$. Since there exist two neighbors in $L T Q_{n-1}^{1}$ for each vertex in Y and $2 n-4>n-1$ when $n \geq 6$, we can find a vertex γ in Y such that α and β are connected to $L T Q_{n-1}^{1} \backslash N_{L T Q_{n-1}^{1}}[\omega]$ through γ. Hence, $F L T Q_{n}-F$ is connected.

Thus, $F L T Q_{n} \backslash F$ is connected when $|F| \leq 2 n-1$ and $\kappa^{(1)}\left(F L T Q_{n}\right) \geq 2 n$ for any integer $n \geq 6$.

According to Lemmas 10 and 11, we obtain the following result:
Theorem 1. $\kappa^{(1)}\left(F L T Q_{n}\right)=2 n$ for $n \geq 6$.

4. Conclusions

The folded locally twisted cube $F L T Q_{n}$ was introduced based on the locally twisted cube $L T Q_{n}$ and the folded hypercube $F Q_{n}$. In this paper, we studied the super-connectivity of folded locally twisted cubes, which is an important indicator to measure the fault tolerance and reliability of a network. The main contribution of this work was that we addressed the super-connectivity of $F L T Q_{n}$. We proved that $\kappa^{(1)}\left(F L T Q_{n}\right)=2 n$ for any integer $n \geq 6$. Independent spanning trees and mesh embedding could be considered as future research directions. Independent spanning trees could be applied to reliable communication protocols, reliable broadcasting, and so on [29]. Meshes are fundamental guest graphs on which many algorithms, such as linear algebra algorithms and combinatorial algorithms, can be efficiently performed [30]. The results of independent spanning trees and mesh embedding for $F L T Q_{n}$ could be compared with the results of $L T Q_{n}[31,32]$.

Author Contributions: Conceptualization, L.Y.; methodology, Y.H.; investigation, J.J.; writingoriginal draft preparation, L.Y. and J.J.; writing-review and editing, Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Project of Suzhou Industrial Park Institute of Services Outsourcing (No. SISO-ZD202202) and sponsored by the Qing Lan Project.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. West, D.B. Introduction to Graph Theory; Prentice Hall Publishers: Hoboken, NJ, USA , 2001.
2. Esfahanian, A.H.; Hakimi, S.L. On computing a conditional edge-connectivity of a graph. Inf. Process. Lett. 1988, 27, 195-199. [CrossRef]
3. $\mathrm{Xu}, \mathrm{J} .-\mathrm{M} . ; \mathrm{Xu}, \mathrm{M} . ; \mathrm{Zhu}, \mathrm{Q}$. The super connectivity of shuffle-cubes. Inf. Process. Lett. 2005, 96, 123-127. [CrossRef]
4. Zhu, Q.; Xu, J.-M.; Hou, X.; Xu, M. On reliability of the folded hypercubes. Inf. Sci. 2007, 177, 1782-1788. [CrossRef]
5. Guo, L.; Qin, C.; Guo, X. Super connectivity of Kronecker products of graphs. Inf. Process. Lett. 2010, 110, 659-661. [CrossRef]
6. Chang, J.-M.; Chen, X.-R.; Yang, J.-S.; Wu, R.-Y. Locally exchanged twisted cubes: Connectivity and super connectivity. Inf. Process. Lett. 2016, 116, 460-466. [CrossRef]
7. Cai, X.; Vumar, E. The super connectivity of folded crossed cubes. Inf. Process. Lett. 2019, 142, 52-56. [CrossRef]
8. Wang, S.; Ma, X. Super connectivity and diagnosability of crossed cubes. J. Internet Technol. 2019, 20, 1287-1296.
9. Cai, X.; Ma, L. The super connectivity of exchanged folded hypercube. J. Anhui Norm. Univ. Nat. Sci. 2020, 43, 216-222.
10. Ning, W. Connectivity and super connectivity of the divide-and-swap cube. Theor. Comput. Sci. 2020, 842, 1-5. [CrossRef]
11. Guo, L.; Ekinci, G.B. Super connectivity of folded twisted crossed cubes. Discret. Appl. Math. 2021, 305, 56-63. [CrossRef]
12. Gu, M.; Chang, J.-M. A note on super connectivity of the bouwer graph. J. Interconnect. Netw. 2021, 21, 2142009. [CrossRef]
13. Ekinci, G.B.; Gauci, J.B. The super-connectivity of odd graphs and of their kronecker double cover. Rairo-Oper. Res. 2021, 55, S699-S704. [CrossRef]
14. Soliemany, F.; Ghasemi, M.; Varmazyar, R. On the super connectivity of direct product of graphs. Rairo-Oper. Res. 2022, 56, 2767-2773. [CrossRef]
15. Ning, W.; Guo, L. Connectivity and super connectivity of the exchanged 3-ary n-cube. Theor. Comput. Sci. 2022, 923, 160-166. [CrossRef]
16. Zhao, S.-L.; Chang, J.-M. Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes. Inf. Process. Lett. 2023, 182, 106377. [CrossRef]
17. Efe, K. The crossed cube architecture for parallel computation. IEEE Trans. Parallel Distrib. Syst. 1992, 3, 513-524. [CrossRef]
18. Yang, X.; Evans, D.J.; Megson, G.M. The locally twisted cubes. Int. J. Comput. Math. 2005, 82, 401-413. [CrossRef]
19. Zhou, W.; Fan, J.; Jia, X.; Zhang, S. The spined cube: A new hypercube variant with smaller diameter. Inf. Process. Lett. 2011, 111, 561-567. [CrossRef]
20. Han, Y.; Fan, J.; Zhang, S. Changing the diameter of the locally twisted cube. Int. J. Comput. Math. 2013, 90, 497-510. [CrossRef]
21. Liu, Z.; Fan, J.; Zhou, J.; Cheng, B.; Jia, X. Fault-tolerant embedding of complete binary trees in locally twisted cubes. J. Parallel. Distrib. Comput. 2017, 101, 69-78. [CrossRef]
22. Wang, S.; Ren, Y. The h-extra connectivity and diagnosability of locally twisted cubes. IEEE Access 2019, 7, 102113-102118. [CrossRef]
23. Han, Y.; You, L.; Lin, C.-K.; Fan, J. Communication performance evaluation of the locally twisted cube. Int. J. Found. Comput. Sci. 2020, 31, 233-252. [CrossRef]
24. Shang, H.; Sabir, E.; Meng, J.; Guo, L. Characterizations of optimal component cuts of locally twisted cubes. Bull. Malays. Math. Sci. Soc. 2020, 43, 2087-2103. [CrossRef]
25. Chang, X.; Ma, J.; Yang, D. Symmetric property and reliability of locally twisted cubes. Discret. Appl. Math. 2021, 288, 257-269. [CrossRef]
26. El-Amawy, A.; Latifi, S. Properties and performance of folded hyper-cubes. IEEE Trans. Parallel Distrib. Syst. 1991, 2, 31-42. [CrossRef]
27. Peng, S.; Guo, C.; Yang, B. Topological properties of folded locally twisted cubes. J. Comput. Inf. Syst. 2015, 11, 7667-7676. [CrossRef]
28. Guo, L.; Su, G.; Lin, W.; Chen, J. Fault tolerance of locally twisted cubes. Appl. Math. Comput. 2018, 334, 401-406. [CrossRef]
29. Cheng, B.; Fan, J.; Jia, X.; Zhang, S.; Chen, B. Constructive Algorithm of Independent Spanning Trees on Mobius Cubes. Comput. J. 2013, 56, 1347-1362. [CrossRef]
30. Wang, X.; Fan, J.; Jia, X.; Zhang, S.; Yu, J. Embedding meshes into twisted-cubes. Inf. Sci. 2011, 181, 3085-3099.
31. Liu, Y.; Lan, J.K.; Chou, W.Y.; Chen, C. Constructing independent spanning trees for locally twisted cubes. Theor. Comput. Sci. 2011, 412, 2237-2252. [CrossRef]
32. You, L.; Han, Y. An algorithm to embed a family of node-disjoint 3D meshes into locally twisted cubes. In Proceedings of the Algorithms and Architectures for Parallel Processing 14th International Conference, Dalian, China, 24-27 August 2014; pp. 219-230. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

