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Abstract: For given positive integers a1, a2, . . . , ak with gcd(a1, a2, . . . , ak) = 1, the denumerant
d(n) = d(n; a1, a2, . . . , ak) is the number of nonnegative solutions (x1, x2, . . . , xk) of the linear equa-
tion a1x1 + a2x2 + · · · + akxk = n for a positive integer n. For a given nonnegative integer p, let
Sp = Sp(a1, a2, . . . , ak) be the set of all nonnegative integer n’s such that d(n) > p. In this paper, by
introducing the p-numerical semigroup, where the set N0\Sp is finite, we give explicit formulas of
the p-Frobenius number, which is the maximum of the set N0\Sp, and related values for the triple of
arithmetic progressions. The main aim is to determine the elements of the p-Apéry set.
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1. Introduction

For integer k ≥ 2, consider a set of positive integers A = {a1, . . . , ak}. Denote by
d(n) = d(n; a1, . . . , ak) the number of nonnegative solutions (x1, x2, . . . , xk) of the linear
equation a1x1 + a2x2 + · · ·+ akxk = n for a positive integer n. Recently, the concept of
p-numerical semigroups was introduced together with their symmetric characteristics [1].
d(n) is often called the denumerant. For a given nonnegative integer p, let Sp = Sp(A)
be the set of all nonnegative integer n’s such that d(n) > p. For the set of nonnegative
integers N0, the set N0\Sp is finite if and only if gcd(a1, . . . , ak) = 1. Then, there exists the
largest element gp(A) in N0\Sp, which is called the p-Frobenius number, and each element is
called the gap. For the so-called p-numerical semigroup Sp(A), the cardinality np(A) and the
sum sp(A) of N0\Sp are called the p-Sylvester number (or the p-genus) and the p-Sylvester
sum, respectively. When p = 0, S = S0(A) is the original numerical semigroup, and the
0-Frobenius number g0(A) is the original Frobenius number g(A). Finding the Frobenius
and related values is the well-known linear Diophantine problem, posed by Sylvester [2]
but known as the Frobenius problem, is the problem to determine the Frobenius number
g(A). The Frobenius problem has been also known as the coin exchange problem (or postage
stamp problem/chicken McNugget problem), which has a long history and is one of the
problems that has attracted many people as well as experts. The genus g(A) = g0(A) is
often fundamental in the study of algebraic curves and commutative algebra.

For two variables A = {a, b}, it is shown that [2,3]

g(a, b) = (a− 1)(b− 1)− 1 and n(a, b) =
(a− 1)(b− 1)

2
. (1)

An explicit expression of the Sylvester sum s(A) = s0(A) is given by Brown and
Shiue [4] for two variables A = {a, b} as

s(a, b) =
1
12

(a− 1)(b− 1)(2ab− a− b− 1) . (2)
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This result is extended in [5] for the power sum of the set of gaps s(µ)(A), defined by

s(µ)(A) = ∑
n∈N0\Sp(A)

nµ

in the case of A = {a, b}. However, for three or more variables, it is very complicated to
find a general explicit formula for the Frobenius number, Sylvester number, and Sylvester
sum. Only for some special cases have explicit formulas been found, including arithmetic,
geometric-like, Fibonacci, Mersenne, and triangular (see, e.g., [6] and references therein).
The study of semigroups of natural numbers generated by three elements and its applica-
tions to algebraic geometry can be seen in [7]. Some inexplicit formulas for the Frobenius
number in three variables can be seen in [8].

When p > 0, the situation becomes even more difficult. For two variables, it is still
easy to find explicit formulas of gp(a, b), np(a, b), and sp(a, b). However, for three or
more variables, no explicit formula had been found, but finally, in 2022, we succeeded
in obtaining closed formulas for some special cases, including the triplets of triangular
numbers [9], repunits [10], Fibonacci [11], and Jacobsthal numbers [12,13].

We are interested in finding any explicit closed formula for p ≥ 0. In this paper, we
give explicit formulas for the triples forming arithmetic progressions A = {a, a + d, a + 2d},
where a and d are positive integers with gcd(a, d) = 1. The main result is given as follows
(Theorem 1). For 0 ≤ p ≤ ba/2c,

gp(a, a + d, a + 2d) = (a + 2d)p +

⌊
a− 2

2

⌋
a + (a− 1)d ,

np(a, a + d, a + 2d)

=

{
(2a + 2d− 1− p)p + (a−1)(a+2d−1)

4 if a is odd;

(2a + 2d− 1− p)p + (a−1)(a+2d−1)+1
4 if a is even .

We also show their explicit closed formulas for the power sum s(µ)p (a, a + d, a + 2d)

(Theorem 2) and the weighted sum s(µ)λ,p(a, a + d, a + 2d), defined by (Theorem 3)

s(µ)λ,p(a1, . . . , ak) := ∑
n∈N0\Sp(a1,...,ak)

λnnµ.

By exploiting the theory developed in this paper, it may be possible to find values in
p-numerical semigroups for other special triplets and sequences. Several new advanced
results when p = 0 have been achieved, e.g., in [14–25]. Some applications to Pell sequences
can be found in [26,27].

2. Preliminaries

We introduce an extension of the Apéry set (see [28]) in order to obtain the formulas
for gp(A), np(A), and sp(A). Without loss of generality, we assume that a1 = min(A).

Definition 1. Let p be a nonnegative integer. For a set of positive integers A = {a1, a2, . . . , ak}
with gcd(A) = 1 and a1 = min(A) we denote it as

App(A) = App(a1, a2, . . . , ak) = {m
(p)
0 , m(p)

1 , . . . , m(p)
a1−1} ,

the p-Apéry set of A, where each m(p)
i (1 ≤ i ≤ a1) satisfied the conditions:

(i)m(p)
i ≡ i (mod a1), (ii)m(p)

i ∈ Sp(A), (iii)m(p)
i − a1 6∈ Sp(A) .

Note that m(0)
0 is defined to be 0.
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It follows that for each p, the set App(A) is a complete residue system modulo a1.
That is,

App(A) ≡ {0, 1, . . . , a1 − 1} (mod a1) .

By using the elements in App(A), the power sum of the elements in N0\Sp(A) can be
given [29] (see also [30]).

Proposition 1. Let k, p, and µ be integers with k ≥ 2, p ≥ 0, and µ ≥ 0. Assume that
gcd(A) = 1. We have

s(µ)p (A) := ∑
n∈N0\Sp(A)

nµ

=
1

µ + 1

µ

∑
κ=0

(
µ + 1

κ

)
Bκaκ−1

1

a1−1

∑
i=0

(
m(p)

i
)µ+1−κ

+
Bµ+1

µ + 1
(aµ+1

1 − 1) ,

where Bn are Bernoulli numbers defined by

x
ex − 1

=
∞

∑
n=0

Bn
xn

n!
.

When µ = 0, 1 in Proposition 1, together with gp(A), we have formulas for the
p-Frobenius number, the p-Sylvester number, and the p-Sylvester sum.

Lemma 1. Let k and p be integers with k ≥ 2 and p ≥ 0. Assume that gcd(a1, a2, . . . , ak) = 1.
We have

gp(A) =

(
max

0≤j≤a1−1
m(p)

j

)
− a1 , (3)

np(A) =
1
a1

a1−1

∑
j=0

m(p)
j −

a1 − 1
2

, (4)

sp(A) =
1

2a1

a1−1

∑
j=0

(
m(p)

j
)2 − 1

2

a1−1

∑
j=0

m(p)
j +

a2
1 − 1
12

. (5)

Remark 1. When p = 0, Formulas (3)–(5) reduce to the formulas by Brauer and Shockley [31],
Selmer [32], and Tripathi [33], respectively:

g(A) =

(
max

1≤j≤a1−1
mj

)
− a1 ,

n(A) =
1
a1

a1−1

∑
j=0

mj −
a1 − 1

2
,

s(A) =
1

2a1

a1−1

∑
j=0

(mj)
2 − 1

2

a1−1

∑
j=0

mj +
a2

1 − 1
12

,

where mj = m(0)
j (1 ≤ j ≤ a1 − 1) with m0 = m(0)

0 = 0.

3. The Main Result

In this section, we shall show the main result and give its proof.
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Theorem 1. Let a and d be integers with a ≥ 3, d > 0, and gcd(a, d) = 1. Then, for
0 ≤ p ≤ ba/2c,

gp(a, a + d, a + 2d) = (a + 2d)p +

⌊
a− 2

2

⌋
a + (a− 1)d ,

np(a, a + d, a + 2d)

=

{
(2a + 2d− 1− p)p + (a−1)(a+2d−1)

4 if a is odd;

(2a + 2d− 1− p)p + (a−1)(a+2d−1)+1
4 if a is even .

Remark 2. When p = 0, the formulas reduce to

g0(a, a + d, a + 2d) =
⌊

a− 2
2

⌋
a + (a− 1)d

and

n0(a, a + d, a + 2d) =

{
(a−1)(a+2d−1)

4 if a is odd;
(a−1)(a+2d−1)+1

4 if a is even .

respectively, which are [32] ((3.9) and (3.10)) when k = 3.

Let rx2,x3 = (a + d)x2 + (a + 2d)x3 for nonnegative integers x2 and x3. In the following
tables, this is denoted by (x2, x3) for simplicity.

When a is odd, as seen in [32] (3.6), Ap0(A3) (A3 = {a, a + d, a + 2d}) as the complete
residue system (minimal system) modulo a is given by Table 1.

Table 1. Complete residue system Ap0(A3) for odd a.

(0, 0) (1, 0)
(0, 1) (1, 1)

...
...

(0, a−3
2 ) (1, a−3

2 )
(0, a−1

2 )

Concerning the complete residue system Ap1(A3), each congruent value modulo a
moves up one line to the upper right block. However, only the two values in the top row
move to fill the gap below the first block (see Table 2). Namely, for x2 ≥ 1

r0,x2 ≡ r2,x2−1, r1,x2 ≡ r3,x2−1 (mod a)

and
r0,0 ≡ r1, a−1

2
, r1,0 ≡ r0, a+1

2
(mod a) .

Since

3(a + d) + (a + 2d)x3 = a + (a + d) + (a + 2d)(x3 + 1) ,

2(a + d) + (a + 2d)x3 = a + (a + 2d)(x3 + 1) (x3 ≥ 0) ,

(a + d) +
a− 1

2
(a + 2d) =

(
a + 1

2
+ d
)

a ,

a + 1
2

(a + 2d) =
(

a− 1
2

+ d
)

a + (a + d) ,
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we can know that each element in Ap1(A3) has exactly two expressions in terms of
(a, a + d, a + 2d). Note that each element minus a has only one expression which is yielded
from the right-hand side, that is,

(a + d) + (a + 2d)(x3 + 1), (a + 2d)(x3 + 1) (x3 ≥ 0),(
a− 1

2
+ d
)

a,
(

a− 3
2

+ d
)

a + (a + d) .

Considering the maximal value, it is clear that

r0, a+1
2

> r1, a−1
2

> r2, a−3
2

> r3, a−5
2

.

Table 2. Complete residue system Ap1(A3) from Ap0(A3) for odd a.

(0, 0) (1, 0) (2, 0) (3, 0)
(0, 1) (1, 1) (2, 1) (3, 1)

...
...

...
...

(0, a−5
2 ) (1, a−5

2 ) (2, a−5
2 ) (3, a−5

2 )
(0, a−3

2 ) (1, a−3
2 ) (2, a−3

2 )
(0, a−1

2 ) (1, a−1
2 )

(0, a+1
2 )

Concerning the complete residue system Ap2(A3), each congruent value modulo a
moves up one line to the upper right block (the third block). However, only the two values
in the top row in the second block move to fill the gap below the first block (see Table 3).
Namely, for x2 ≥ 1

r2,x2 ≡ r4,x2−1, r3,x2 ≡ r5,x2−1 (mod a)

and
r2,0 ≡ r1, a+1

2
, r3,0 ≡ r0, a+3

2
(mod a) .

Since

5(a + d) + (a + 2d)x3 = a + 3(a + d) + (a + 2d)(x3 + 1)

= 2a + (a + d) + (a + 2d)(x3 + 2) ,

4(a + d) + (a + 2d)x3 = a + 2(a + d) + (a + 2d)(x3 + 1)

= 2a + (a + 2d)(x3 + 2) (x3 ≥ 0) ,

3(a + d) +
a− 3

2
(a + 2d) = a + (a + d) +

a− 1
2

(a + 2d)

=

(
a + 3

2
+ d
)

a ,

2(a + d) +
a− 1

2
(a + 2d) = a +

a + 1
2

(a + 2d)

=

(
a + 1

2
+ d
)

a + (a + d) ,

(a + d) +
a + 1

2
(a + 2d) =

(
a− 1

2
+ d
)

a + 2(a + d)

=

(
a + 1

2
+ d
)

a + (a + 2d) ,

a + 3
2

(a + 2d) =
(

a− 3
2

+ d
)

a + 3(a + d)

=

(
a− 1

2
+ d
)

a + (a + d) + (a + 2d) ,
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we can know that each element in Ap1(A3) has exactly three expressions in terms of
(a, a + d, a + 2d). Note that each element minus a has two expressions which are yielded
from the right-hand side, that is,

3(a + d) + (a + 2d)(x3 + 1) = a + (a + d) + (a + 2d)(x3 + 2) ,

2(a + d) + (a + 2d)(x3 + 1) = a + (a + 2d)(x3 + 2) (x3 ≥ 0) ,

(a + d) +
a− 1

2
(a + 2d) =

(
a + 1

2
+ d
)

a ,

a + 1
2

(a + 2d) =
(

a− 1
2

+ d
)

a + (a + d) ,(
a− 3

2
+ d
)

a + 2(a + d) =
(

a− 1
2

+ d
)

a + (a + 2d) ,(
a− 3

2
+ d− 1

)
a + 3(a + d) =

(
a− 3

2
+ d
)

a + (a + d) + (a + 2d) .

Considering the maximal value, it is clear that

r0, a+3
2

> r1, a+1
2

> r2, a−1
2

> r3, a−3
2

> r4, a−5
2

> r5, a−7
2

.

Table 3. Complete residue system Ap2(A3) from Ap1(A3) for odd a.

(2, 0) (3, 0) (4, 0) (5, 0)
(2, 1) (3, 1) (4, 1) (5, 1)

...
...

...
...

...
... (4, a−7

2 ) (5, a−7
2 )

(2, a−5
2 ) (3, a−5

2 ) (4, a−5
2 )

(2, a−3
2 ) (3, a−3

2 )
(1, a−1

2 ) (2, a−1
2 )

(0, a+1
2 ) (1, a+1

2 )
(0, a+3

2 )

If this process is continued for p = 3, 4, . . . , when p = (a − 1)/2, the state shown
in Table 4 is reached. Here, the shaded cell parts show the elements of Ap a−1

2
(A3). El-

ements with the same residues modulo a move in the following positions according to
p = 0, 1, 2, . . . , (a− 3)/2, (a− 1)/2.

(0, 0)→ (1,
a− 1

2
)→ (3,

a− 3
2

)→ · · · → (a− 4, 2)→ (a− 2, 1)

(1, 0)→ (0,
a + 1

2
)→ (2,

a− 1
2

)→ · · · → (a− 5, 3)→ (a− 3, 2)

(0, 1)→ (2, 0)→ (1,
a + 1

2
)→ · · · → (a− 6, 4)→ (a− 4, 3)

(1, 1)→ (3, 0)→ (0,
a + 3

2
)→ · · · → (a− 7, 5)→ (a− 5, 4)

· · ·

(0,
a− 3

2
)→ (2,

a− 5
2

)→ (4,
a− 7

2
)→ · · · → (a− 3, 0)→ (1, a− 2)

(1,
a− 3

2
)→ (3,

a− 5
2

)→ (5,
a− 7

2
)→ · · · → (a− 2, 0)→ (0, a− 1)

(0,
a− 1

2
)→ (2,

a− 3
2

)→ (4,
a− 5

2
)→ · · · → (a− 3, 1)→ (a− 1, 0)
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Table 4. Complete residue system App(A3) for odd a.

(0, 0) (1, 0) (2, 0) (3, 0) · · · · · · (a− 3, 0) (a− 2, 0) (a− 1, 0)
(0, 1) (1, 1) (2, 1) (3, 1) (a− 3, 1) (a− 2, 1)

...
...

...
... (a− 3, 2)

...
...

...
...

(0, a−3
2 ) (1, a−3

2 ) (2, a−3
2 ) (3, a−3

2 )
(0, a−1

2 ) (1, a−1
2 ) (2, a−1

2 )
(0, a+1

2 ) (1, a+1
2 )

(0, a+3
2 ) (3, a− 4)

... (2, a− 3)

... (1, a− 2)
(0, a− 1)

Indeed, each element m( a−1
2 )

j in Ap a−1
2
(A3) has exactly (a + 1)/2 expressions because

(a− 1)(a + 2d) = (d + i)a + (a− 2i)(a + d) + (i− 1)(a + 2d)

(1 ≤ i ≤ a− 1
2

) ,

(a + d) + (a− 2)(a + 2d) = (d + i + 1)a + (a− 2i− 1)(a + d)

+ (i− 1)(a + 2d) (1 ≤ i ≤ a− 1
2

) ,

2(a + d) + (a− 3)(a + 2d) = a + (a− 2)(a + 2d)

= (d + i + 2)a + (a− 2i− 2)(a + d)

+ (i− 1)(a + 2d) (1 ≤ i ≤ a− 3
2

) ,

3(a + d) + (a− 4)(a + 2d) = a + (a + d) + (a− 3)(a + 2d)

= (d + i + 3)a + (a− 2i− 3)(a + d)

+ (i− 1)(a + 2d) (1 ≤ i ≤ a− 3
2

) ,

· · ·
(a− 3)(a + d) + 2(a + 2d) = ia + (a− 2i− 3)(a + d) + (i + 2)(a + 2d)

(1 ≤ i ≤ a− 3
2

)

= (a + d− 2)a + (a + d) ,

(a− 2)(a + d) + (a + 2d) = ia + (a− 2i− 2)(a + d) + (i + 1)(a + 2d)

(1 ≤ i ≤ a− 3
2

)

= (a + d− 1)a ,

(a− 1)(a + d) = ia + (a− 2i− 1)(a + d) + i(a + 2d)

(1 ≤ i ≤ a− 1
2

) .

But any element m( a−1
2 )

j − a has (a− 1)/2 expressions.
Considering the maximal value, it is clear that

r0,a−1 > r1,a−2 > r2,a−3 > r3,a−4 > · · · > ra−3,2 > ra−2,1 > ra−1,0 .

However, such a process cannot be continued further than 0 ≤ p ≤ (a− 1)/2. When
p = (a + 1)/2, the same residue of ra−1,0 modulo a comes to the position (1, a− 1) and
no element comes to the bottom left position (0, a). Thus, after that, the pattern shifts
and is complicated, so it becomes difficult to determine where the maximum element of
App(A3) is.
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Therefore, when a is odd, for 0 ≤ p ≤ (a− 1)/2,

gp(a, a + d, a + 2d) =
(

a− 1
2

+ p
)
(a + 2d)− a

= (a + 2d)p +
a(a− 3) + 2(a− 1)d

2
.

Concerning the number of representations, we need the summation of the elements in
App(A3). The elements in the staircase are

(
0,

a− 1
2

+ p
)

,
(

1,
a− 1

2
+ p− 1

)
, . . . ,(
2p− 2,

a− 1
2
− p + 2

)
,
(

2p− 1,
a− 1

2
− p + 1

)
,

and the elements in the large block are

(2p, 0), . . . ,
(

2p,
a− 1

2
− p

)
, (2p + 1, 0), . . . ,

(
2p + 1,

a− 1
2
− p− 1

)
.

Hence,

a−1

∑
j=0

m(p)
j

=
(
0 + 1 + · · ·+ (2p− 1)

)
(a + d)

+

((
a− 1

2
− p + 1

)
+

(
a− 1

2
− p + 2

)
+ · · ·+

(
a− 1

2
+ p

))
(a + 2d)

+ 2p
(

a + 1
2
− p

)
(a + d) +

(
0 + 1 + · · ·+

(
a− 1

2
− p

))
(a + 2d)

+ (2p + 1)
(

a + 1
2
− p− 1

)
(a + d)

+

(
0 + 1 + · · ·+

(
a− 1

2
− p− 1

))
(a + 2d)

=
(2p− 1)(2p)

2
(a + d)

+

(
(a− 1 + 2p)(a + 1 + 2p)

8
− (a− 1− 2p)(a + 1− 2p)

8

)
(a + 2d)

+ p(a + 1− 2p)(a + d) +
(a− 1− 2p)(a + 1− 2p)

8
(a + 2d)

+
2p + 1

2
(a− 2p− 1)(a + d) +

(a− 3− 2p)(a− 1− 2p)
8

(a + 2d)

=
a
4
(
(a + d)2 − (d + 1)2 − 4p2 + 4(2a + 2d− 1)p

)
. (6)

Hence, by Lemma 1 (4)

np(a, a + d, a + 2d)

=
1
4
(
(a + d)2 − (d + 1)2 − 4p2 + 4(2a + 2d− 1)p

)
− a− 1

2

=
(a− 1)(a + 2d− 1)

4
− p2 + (2a + 2d− 1)p .

When a is even, Ap0(A3) (A3 = {a, a + d, a + 2d}) is given by Table 5.
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Table 5. Complete residue system Ap0(A3) for even a.

(0, 0) (1, 0)
(0, 1) (1, 1)

...
...

(0, a
2 − 1) (1, a

2 − 1)

Each congruent value modulo a moves up one line to the upper right block. However,
only the two values in the top row move to fill the gap below the first block. Namely,
for x2 ≥ 1

r0,x2 ≡ r2,x2−1, r1,x2 ≡ r3,x2−1 (mod a)

and
r0,0 ≡ r0, a

2
, r1,0 ≡ r1, a

2
(mod a) .

When the process is continued for p = 1, 2, . . . , a/2, the state shown in Table 6 is
reached. Here, the shaded cell parts show the elements of Ap a

2
(A3). Elements with the same

residues modulo a move in the following positions according to p = 0, 1, 2, . . . , a/2− 1, a/2.

(0, 0)→ (1,
a
2
)→ (2,

a
2
− 1)→ · · · → (a− 4, 2)→ (a− 2, 1)

(1, 0)→ (1,
a
2
)→ (3,

a
2
− 1)→ · · · → (a− 3, 2)→ (a− 1, 1)

(0, 1)→ (2, 0)→ (0,
a
2
+ 1)→ · · · → (a− 6, 4)→ (a− 4, 3)

(1, 1)→ (3, 0)→ (1,
a
2
+ 1)→ · · · → (a− 5, 4)→ (a− 3, 3)

· · ·

(0,
a
2
− 1)→ (2,

a
2
− 2)→ (4,

a
2
− 3)→ · · · → (a− 2, 0)→ (0, a− 1)

(1,
a
2
− 1)→ (3,

a
2
− 2)→ (5,

a
2
− 3)→ · · · → (a− 1, 0)→ (1, a− 1)

Each element m( a
2 )

j in Ap a
2
(A3) has exactly a/2 + 1 expressions because

(a− 1)(a + 2d) = (d + i)a + (a− 2i)(a + d) + (i− 1)(a + 2d)

(1 ≤ i ≤ a
2
) ,

(a + d) + (a− 1)(a + 2d) = (d + i)a + (a− 2i + 1)(a + d)

+ (i− 1)(a + 2d) (1 ≤ i ≤ a
2
) ,

2(a + d) + (a− 3)(a + 2d) = a + (a− 2)(a + 2d)

= (d + i + 2)a + (a− 2i− 2)(a + d)

+ (i− 1)(a + 2d) (1 ≤ i ≤ a
2
− 1) ,

3(a + d) + (a− 3)(a + 2d) = a + (a + d) + (a− 2)(a + 2d)

= (d + i + 2)a + (a− 2i− 1)(a + d)

+ (i− 1)(a + 2d) (1 ≤ i ≤ a
2
− 1) ,

4(a + d) + (a− 5)(a + 2d) = a + 2(a + d) + (a− 4)(a + 2d)

= 2a + (a− 3)(a + 2d)

= (d + i + 4)a + (a− 2i− 4)(a + d)

+ (i− 1)(a + 2d) (1 ≤ i ≤ a
2
− 2) ,

5(a + d) + (a− 5)(a + 2d) = a + 3(a + d) + (a− 4)(a + 2d)
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= 2a + (a + d) + (a− 3)(a + 2d)

= (d + i + 4)a + (a− 2i− 3)(a + d)

+ (i− 1)(a + 2d) (1 ≤ i ≤ a
2
− 2) ,

· · ·
(a− 2)(a + d) + (a + 2d) = ia + (a− 2i− 2)(a + d) + (i + 1)(a + 2d)

(1 ≤ i ≤ a
2
− 1)

= (a + d− 1)a ,

(a− 1)(a + d) + (a + 2d) = ia + (a− 2i− 1)(a + d) + (i + 1)(a + 2d)

(1 ≤ i ≤ a− 1
2

)

= (a + d− 1)a + (a + d) .

But any element m( a
2 )

j − a has a/2 expressions.

Table 6. Complete residue system Ap a
2
(A3) for even a.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) · · · · · · (a− 4, 0) (a− 3, 0) (a− 2, 0) (a− 1, 0)
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (a− 4, 1) (a− 3, 1) (a− 2, 1) (a− 1, 1)

...
...

... (a− 4, 2) (a− 3, 2)
... (2, a

2 − 3) (3, a
2 − 3) (4, a

2 − 3) (5, a
2 − 3) (a− 4, 3) (a− 3, 3)

(0, a
2 − 2) (1, a

2 − 2) (2, a
2 − 2) (3, a

2 − 2)
(0, a

2 − 1) (1, a
2 − 1) (2, a

2 − 1) (3, a
2 − 1)

(0, a
2 ) (1, a

2 )
(0, a

2 + 1) (1, a
2 + 1)

...

... (2, a− 5) (3, a− 5) (4, a− 5) (5, a− 5)

... (2, a− 4) (3, a− 4)
(0, a− 3) (1, a− 3) (2, a− 3) (3, a− 3)
(0, a− 2) (1, a− 2)
(0, a− 1) (1, a− 1)

Since the maximal value in App(A3) is at the position (1, a/2− 1 + p), when a is even,
for 0 ≤ p ≤ a/2,

gp(a, a + d, a + 2d) = (a + d) +
( a

2
− 1 + p

)
(a + 2d)− a

= (a + 2d)p +
a(a− 2) + 2(a− 1)d

2
.

However, when p = a/2 + 1, no element comes to the position (0, a) or (1, a) because
there is no element of Ap a

2
(A3) in the top row. Hence, after p = a/2 + 1, the pattern is

shifted and the situation becomes irregular and complicated.
Concerning the number of representations, the elements in the staircase are(

0,
a
2
+ p− 1

)
,
(

1,
a
2
+ p− 1

)
,(

2,
a
2
+ p− 3

)
,
(

3,
a
2
+ p− 3

)
,

· · ·(
2p− 4,

a
2
− p + 3

)
,
(

2p− 3,
a
2
− p + 3

)
,(

2p− 2,
a
2
− p + 1

)
,
(

2p− 1,
a
2
− p + 1

)
,

and the elements in the large block are

(2p, 0), (2p, 1), . . . ,
(

2p,
a
2
− p− 1

)
,

(2p + 1, 0), (2p + 1, 1), . . . ,
(

2p + 1,
a
2
− p− 1

)
.
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Hence,

a−1

∑
j=0

m(p)
j

=
(
0 + 2 + · · ·+ (2p− 2)

)
(a + d) +

(
1 + 3 + · · ·+ (2p− 1)

)
(a + d)

+ 2
(( a

2
− p + 1

)
+
( a

2
− p + 3

)
+ · · ·+

( a
2
+ p− 1

))
(a + 2d)

+
( a

2
− p

)
(2p)(a + d) +

( a
2
− p

)
(2p + 1)(a + d)

+ 2
(

0 + 1 + · · ·+
( a

2
− p− 1

))
(a + 2d)

= (2p− 1)p(a + d) + ap(a + 2d)

+
( a

2
− p

)
(4p + 1)(a + d) +

( a
2
− p− 1

)( a
2
− p

)
(a + 2d)

=
a
4
(
(a + d)2 − (d + 1)2 + 1− 4p2 + 4(2a + 2d− 1)p

)
. (7)

Hence, by Lemma 1 (4)

np(a, a + d, a + 2d)

=
1
4
(
(a + d)2 − (d + 1)2 + 1− 4p2 + 4(2a + 2d− 1)p

)
− a− 1

2

=
(a− 1)(a + 2d− 1) + 1

4
− p2 + (2a + 2d− 1)p .

In [32] (3.9),

g
(
a, a + d, . . . , a + (k− 1)d

)
=

⌊
a− 2
k− 1

⌋
a + (a− 1)d ,

In [32] (3.10),

n
(
a, a + d, . . . , a + (k− 1)d

)
=

(a− 1)(q + d) + r(q + 1)
2

,

where integers q and r are determined as

a− 1 = q(k− 1) + r, 0 ≤ r < k− 1 .

4. Power Sums

More generally, we can show a formula for the p-Sylvester power sum

s(µ)p (a1, a2, . . . , ak) = ∑
d(n)≤p

nµ (µ ≥ 1) ,

so that sp(a1, a2, . . . , ak) = s(1)p (a1, a2, . . . , ak) and np(a1, a2, . . . , ak) = s(0)p (a1, a2, . . . , ak).
Once we know the exact structure of every element in App(A), by applying Proposition 1,

we can obtain the formula. Namely, we need to calculate (m(p)
i
)ν for ν ≥ 0. From the

previous section, when n is odd,

(m(p)
i
)ν

=
ν

∑
j=0

(
ν

j

) 2p−1

∑
k=0

kν−j
(

a− 1
2

+ p− k
)j

(a + d)ν−j(a + 2d)j

+
ν

∑
j=0

(
ν

j

)
(2p)ν−j

a−1
2 −p

∑
k=0

kj(a + d)ν−j(a + 2d)j
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+
ν

∑
j=0

(
ν

j

)
(2p + 1)ν−j

a−1
2 −p−1

∑
k=0

kj(a + d)ν−j(a + 2d)j

=
ν

∑
j=0

(
ν

j

)(2p−1

∑
k=0

kν−j
(

a− 1
2

+ p− k
)j

+ (2p)ν−j
a−1

2 −p

∑
k=0

kj + (2p + 1)ν−j
a−1

2 −p−1

∑
k=0

kj

)
(a + d)ν−j(a + 2d)j .

When n is even

(m(p)
i
)ν

=
ν

∑
j=0

(
ν

j

) p

∑
k=1

(
(2k− 2)ν−j + (2k− 1)ν−j)( a

2
+ p− 2k + 1

)j

× (a + d)ν−j(a + 2d)j

+
ν

∑
j=0

(
ν

j

)
(2p)ν−j

a
2−p−1

∑
k=0

kj(a + d)ν−j(a + 2d)j

+
ν

∑
j=0

(
ν

j

)
(2p + 1)ν−j

a
2−p−1

∑
k=0

kj(a + d)ν−j(a + 2d)j

=
ν

∑
j=0

(
ν

j

)( p

∑
k=1

(
(2k− 2)ν−j + (2k− 1)ν−j)( a

2
+ p− 2k + 1

)j

+
(
(2p)ν−j + (2p + 1)ν−j) a

2−p−1

∑
k=0

kj

)
(a + d)ν−j(a + 2d)j .

Hence, by Proposition 1, we obtain the generalized Sylvester power sum for (a, a +
d, a + 2d).

Theorem 2. Let a, d, p, and µ be integers with a ≥ 3, d > 0, p ≥ 0, µ ≥ 1, and gcd(a, d) = 1.
Then, when a is odd, we have

s(µ)p (a, a + d, a + 2d)

=
1

µ + 1

µ

∑
κ=0

(
µ + 1

κ

)
Bκaκ−1

a−1

∑
i=0

µ+1−κ

∑
j=0

(
µ + 1− κ

j

)

×
(

2p−1

∑
k=0

kµ+1−κ−j
(

a− 1
2

+ p− k
)j

+ (2p)µ+1−κ−j
a−1

2 −p

∑
k=0

kj + (2p + 1)µ+1−κ−j
a−1

2 −p−1

∑
k=0

kj

)
× (a + d)µ+1−κ−j(a + 2d)j

+
Bµ+1

µ + 1
(aµ+1 − 1) .

When a is even, we have

s(µ)p (a, a + d, a + 2d)

=
1

µ + 1

µ

∑
κ=0

(
µ + 1

κ

)
Bκaκ−1

a−1

∑
i=0

µ+1−κ

∑
j=0

(
µ + 1− κ

j

)
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×
(

p

∑
k=1

(
(2k− 2)µ+1−κ−j + (2k− 1)µ+1−κ−j)( a

2
+ p− 2k + 1

)j

+
(
(2p)µ+1−κ−j + (2p + 1)µ+1−κ−j) a

2−p−1

∑
k=0

kj

)
× (a + d)µ+1−κ−j(a + 2d)j

+
Bµ+1

µ + 1
(aµ+1 − 1).

In particular, when µ = 2, Theorem 2 reduces the formula of the p-Sylvester sum of
the triple forming an arithmetic progression.

Corollary 1. Let a and d be integers with a ≥ 3, d > 0 and gcd(a, d) = 1. Then, for
0 ≤ p ≤ ba/2c, when a is odd, we have

sp(a, a + d, a + 2d) =
(a− 1)(a + 2d− 1)(a2 + 2ad− a− d− 2)

24

+
3a3 + 9a2(d− 1) + 2a(3d2 − 9d + 1)− 6d2 + 2d

6
p

+
3a2 + a(6d− 1) + 4d2 − d

2
p2 − 3(a + d)

2
p3 .

When a is even, we have

sp(a, a + d, a + 2d) =
(a− 1)(a + 2d− 1)(a2 + 2ad− a− d− 2) + 3(a2 + 2ad− d)

24

+
3a3 + 9a2(d− 1) + a(6d2 − 18d + 5)− 6d2 + 5d

6
p

+
3a2 + a(6d− 1) + 4d2 − d

2
p2 − 3(a + d)

2
p3 .

5. Weighted Sums

In this section, we consider the weighted sums whose numbers of representations are
less than or equal to p [34,35]:

s(µ)λ,p(a1, . . . , ak) := ∑
n∈App(a1,...,ak)

λnnµ ,

where λ 6= 1 and µ is a positive integer.
Here, Eulerian numbers

〈 n
m
〉

appear in the generating function

∞

∑
k=0

knxk =
1

(1− x)n+1

n−1

∑
m=0

〈 n
m

〉
xm+1 (n ≥ 1) (8)

with 00 = 1 and
〈

0
0

〉
= 1, and have an explicit formula

〈 n
m

〉
=

m

∑
k=0

(−1)k
(

n + 1
k

)
(m− k + 1)n .

Then, an explicit formula of the p-weighted sum is given in terms of the elements in
App(a1, . . . , ak) [29] (see also [30]).
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Lemma 2. Assume that λ 6= 1 and λa1 6= 1. Then, for a positive integer µ,

s(µ)λ,p(a1, . . . , ak)

=
µ

∑
n=0

(−a1)
n

(λa1 − 1)n+1

(
µ

n

) n

∑
j=0

〈
n

n− j

〉
λja1

a1−1

∑
i=0

(
m(p)

i
)µ−n

λm(p)
i

+
(−1)µ+1

(λ− 1)µ+1

µ

∑
j=0

〈
µ

µ− j

〉
λj .

In order to obtain the formula for the p-Sylvester weighted power sum, we need to

calculate (m(p)
i
)ν

λm(p)
i for ν ≥ 0, λa 6= 1 and λd 6= 1. We use the formula

aνxa =
ν

∑
i=0

{ν

i

}
xi di

dxi xa ,

where
{ n

m
}

denote the Stirling numbers of the second kind, calculated as

{ n
m

}
=

1
m!

m

∑
i=0

(−1)i
(

m
i

)
(m− i)n .

From the previous section, when n is odd,

(m(p)
i
)ν

λm(p)
i

=
ν

∑
i=0

{ν

i

}
λi

[
di

dxi

(
2p−1

∑
l=0

xl(a+d)+( a−1
2 +p−l)(a+2d)

+

a−1
2 −p

∑
l=0

x2p(a+d)+l(a+2d) +

a−1
2 −p−1

∑
l=0

x(2p+1)(a+d)+l(a+2d)


x=λ

=
ν

∑
i=0

{ν

i

}
λi

[
di

dxi

(
xa( a−1

2 +d+p)(x2dp − 1)
xd − 1

+
x2p(a+d)(x(a+2d)( a+1

2 −p) − 1)
xa+2d − 1

+
x(2p+1)(a+d)(x(a+2d)( a−1

2 −p) − 1)
xa+2d − 1

)]
x=λ

.

When n is even,

(m(p)
i
)ν

λm(p)
i

=
ν

∑
i=0

{ν

i

}
λi

[
di

dxi

(
p−1

∑
l=0

x2l(a+d)+( a
2+p−2l−1)(a+2d)

+
p−1

∑
l=0

x(2l+1)(a+d)+( a
2+p−2l−1)(a+2d)

+

a
2−p−1

∑
l=0

x2p(a+d)+l(a+2d) +

a
2−p−1

∑
l=0

x(2p+1)(a+d)+l(a+2d)


x=λ

=
ν

∑
i=0

{ν

i

}
λi

[
di

dxi

(
x

a
2 (a+2d−2+2p)(xa+d + 1)(x2dp − 1)

x2d − 1

+
x2(a+d)p(xa+d + 1)(x(a+2d)( a

2−p) − 1)
xa+2d − 1

)]
x=λ

.
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Hence, by Lemma 2, we obtain the generalized Sylvester weighted power sum for
(a, a + d, a + 2d).

Theorem 3. Let a, d, p, λ, and µ be integers with a ≥ 3, d > 0, p ≥ 0, λ 6= 1, λd 6= 1, µ ≥ 1,
and gcd(a, d) = 1. Then, when a is odd, we have

s(µ)λ,p(a, a + d, a + 2d)

=
µ

∑
n=0

n

∑
j=0

ν

∑
i=0

(−a)n

(λa − 1)n+1

(
µ

n

)〈
n

n− j

〉{ν

i

}
λja+i

×
[

di

dxi

(
xa( a−1

2 +d+p)(x2dp − 1)
xd − 1

+
x2p(a+d)(x(a+2d)( a+1

2 −p) − 1)
xa+2d − 1

+
x(2p+1)(a+d)(x(a+2d)( a−1

2 −p) − 1)
xa+2d − 1

)]
x=λ

+
(−1)µ+1

(λ− 1)µ+1

µ

∑
j=0

〈
µ

µ− j

〉
λj .

When a is even, we have

s(µ)λ,p(a, a + d, a + 2d)

=
µ

∑
n=0

n

∑
j=0

ν

∑
i=0

(−a)n

(λa − 1)n+1

(
µ

n

)〈
n

n− j

〉{ν

i

}
λja+i

×
[

di

dxi

(
x

a
2 (a+2d−2+2p)(xa+d + 1)(x2dp − 1)

x2d − 1

+
x2(a+d)p(xa+d + 1)(x(a+2d)( a

2−p) − 1)
xa+2d − 1

)]
x=λ

+
(−1)µ+1

(λ− 1)µ+1

µ

∑
j=0

〈
µ

µ− j

〉
λj .

Remark 3. The case λ = 1 is not included in Theorem 3, but in Theorem 2.

6. Examples

For (11, 15, 19), that is, a = 11 and d = 4, when q = 5, by Theorem 1, Corollary 1,
Theorems 2, and 3, we have

g5(11, 15, 19) = 179 ,

n5(11, 15, 19) = 165 ,

s5(11, 15, 19) = 13605 ,

s(3)5 (11, 15, 19) = 189158535 (µ = 3) ,

s(3)2,5 (11, 15, 19) = 46691295420476497563538523364517263

55433630648909109181546522 (λ = 2) .

For (6, 11, 16), that is, a = 6 and d = 5, when q = 3, we have

g3(6, 11, 16) = 85 ,

n3(6, 11, 16) = 73 ,

s3(6, 11, 16) = 2675 ,
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s(3)3 (6, 11, 16) = 7652009 (µ = 3) ,

s(3)2,3 (6, 11, 16) = 24083450837052351738334815453210 (λ = 2) .

In fact, the integers whose representations in terms of (6, 11, 16) are less than or equal
to 3 are

0, 1, 2, . . . , 59︸ ︷︷ ︸
59

, 61, 62, 63, 64, 65, 67, 68, 69, 73, 74, 75, 79, 85 .

Hence, for example,

s(3)2,3 (6, 11, 16) = 20 · 03 + 21 · 13 + 22 · 23 + · · ·+ 259 · 593 + 261 · 613

+ 262 · 623 + 263 · 633 + 264 · 643 + 265 · 653

+ 267 · 673 + 268 · 683 + 269 · 693 + 273 · 733

+ 274 · 743 + 275 · 753 + 279 · 793 + 285 · 853

= 24083450837052351738334815453210 .

7. Final Comments

It should not be thought that a similar repetitive process to [KLP,KP,KY] is simply
going on in any triple. For example, it is known that some triples of Pell sequences do not
follow a similar process but the formation of the elements of 0-Apéry set is different (in
preparation).

In addition, it is still very difficult to find any explicit formula for four or more
variables in the sequence of arithmetic progressions too. For the moment, only in the case
of repunits [10], for p ≥ 0 explicit formulas about four and five repunits are obtained,
though the structures are even more complicated than for three variables. One of the
reasons for the difficulties lies in the following. In the case of three variables, for any j
(j = 0, 1, . . . , a− 1), m(0)

j < m(1)
j < . . . . However, in the case of four and more variables,

for some j’s, m(p)
j = m(p+1)

j . This means that some elements in App(A) and in App+1(A)

are overlapped.
Selmer [32] found a formula of the Frobenius number for almost arithmetic sequences

by generalizing the previous result (Roberts [36] for h = 1; Brauer [37] for h = d = 1). For a
positive integer h,

g0(a, ha + d, . . . , ha + (k− 1)d) =
(

h
⌊

a− 2
k− 1

⌋
+ h− 1

)
a + (a− 1)d .

Selmer also gave an explicit formula for the Sylvester number n0(a, ha + d, . . . , ha +
(k − 1)d). Some formulas for the Sylvester sum s0(a, ha + d, . . . , ha + (k − 1)d) and its
variations are given in [38]. However, it is known that even when d = 2 (the sequence of
consecutive odd numbers), we have not found any explicit form of gp(a, a + 2, . . . , ha +
2(k− 1)) for general p > 0.

Another problem is whether we can find any convenient formula when p > ba/2c.
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