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Abstract: In this work, we present multiple variations of the Multi-verse Optimizer Algorithm (MVO)
using chaotic maps, using it in the formation of new solutions. In these new variations of the MVO
algorithm, which we call the Fuzzy-Chaotic Multi-verse Optimizer (FCMVO), we use multiple chaotic
maps used in the literature to substitute some of the parameters for which the original algorithm
used a random value in the formation of new universes or solutions. To implement chaos theory on
these new variants, we also use Fuzzy Logic for dynamic parameter adaptation; the first tests are
performed only using chaotic maps, and then we merge the use of Fuzzy Logic in each of these cases
to analyze the improvement over the Fuzzy MVO. Subsequently, we use only the best-performing
chaos maps in a new set of variants for the same cases; after these results, we observe the behavior
of the algorithm in different cases. The objective of this study is to compare whether there is a
significant improvement over the MVO algorithm using some of the best-performing chaotic maps
in conjunction with Fuzzy Logic in benchmark mathematical functions prior to moving on to other
case studies.

Keywords: FCMVO; multiverse optimizer; chaotic maps; fuzzy logic; optimization; benchmark;
functions; random; Mamdani; Sugeno; dynamic adaptation

1. Introduction

As humankind evolves, the problems that we can confront are becoming more complex
and specific [1], leading to different solutions or variations, which we have to fine-tune to
achieve the solutions that we require, but the solutions are not always that easy to find.

In searching for new ways to solve problems more efficiently, there has been serious
development in different areas, such as Computational Intelligence [2], which aids in the
search for solutions to numerous problems that can be challenging from relying on only
people’s decisions. As the complexity of problems escalates, the types of solutions must
also be more precise [3] and unique but with fast responses due to the existence of changing
problems in actual society.

Computer-oriented solutions [4] are very commonly used for multiple objectives, and
since the last century, computational techniques have gained popularity such that they are
more of a necessity in the search for competing solutions. Among these techniques are
Fuzzy Logic [5–7] and metaheuristics [8,9], which in combination can obtain some of the
best solutions that an expert could find with less time and effort.

With metaheuristics, we can observe they are inspired by behaviors present in nature,
such as how insects [10] have a hierarchy of workers and elites, as well as some plant-based
behaviors, such as in fungi [11] and how they can connect by the roots to share nutrients
with other plant species.

In addition to improving some of these metaheuristics, there has been some fine-tuning
undertaken with mathematical randomization techniques, such as Levy flights [12], to
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obtain other solutions that could be better than the original inspiration for metaheuristics,
improving the overall performance of bio-inspired algorithms. As one of these metaheuris-
tics, the MVO [13] algorithm (Multi-verse Optimizer Algorithm) has been used in other
works in the literature, in which some authors have adapted and fine-tuned the algorithm
using some randomization techniques.

We have used the MVO algorithm in previous works [14–16], in which we improved
the overall performance of the algorithm by fine-tuning some of its most significant pa-
rameters using Fuzzy Logic, and then we used the algorithm in benchmark mathematical
functions and some cases of fuzzy controller design. This work can be viewed as an exten-
sion of [16], in which we originally only presented one of the variants in this work, and we
now present a more complete analysis, including our improvements. This algorithm uses
some concepts of cosmology to represent its behavior, such as wormholes, black holes, and
white holes [17,18], seeking to behave like most of the bio-inspired algorithms, adapting its
own way to crossover and mutate its solutions.

The motivation for this work comes from using other techniques to improve the MVO
algorithm, such as chaos theory [19], and observing its behavior, mainly because we are
interested in testing fuzzy controller design in cases involving noise in their behavior. The
main contribution consists of analyzing multiple variants of the MVO algorithm by imple-
menting Fuzzy Logic and chaotic maps, seeking the best set of variants in mathematical
benchmarking functions before we move to other case studies. This paper has the following
sections: Section 2 presents the state-of-the-art of MVO algorithm and its representation,
Section 3 presents our implementations of the MVO algorithm with fuzzy logic and chaotic
maps, Section 4 presents the results and comparisons with the variants that we used, and
Section 5 provides the conclusions of our work.

2. Preliminary Concepts

As time passes, society moves forward, the problems that it faces in our modern
lifestyles increase, and the previous solutions to our problems become less efficient; more-
over, we have the need for fast solutions with fewer resources. In the search for better
and more efficient solutions to these evolving problems, computational intelligence tech-
niques [20] have gained popularity over the past few years, making them part of these
new solutions.

Among computational intelligence techniques, we can observe optimization algo-
rithms [21], which have gained such popularity that newer and more efficient algorithms
appear every year, and they have found inspiration in several natural behaviors to solve
simple problems, such as how bee colonies are organized to live and expand and how
multiple flocks of birds search for food in their respective areas. The inspirations have also
evolved and have used other artificial [22] or physical behaviors, such as the coordination
of a crowd of drones or the energy and forces that occur on a planet in a galaxy; from
here, optimization algorithms have used these principles to solve problems related to their
inspiration or even to test and find better solutions to problems that are not related to
their behaviors.

The MVO algorithm, as one of many multiple metaheuristics, has behaviors based
on cosmology, using wormholes, white holes, and black holes as its main components in
searching for solutions to the problems being applied, as illustrated in Figure 1. Other
researchers [23–25] have used MVO in some specific cases applied to manufacturing
processes or in benchmark tests, as in our previous works; however, other authors have
implemented some methods to improve the algorithm, such as neural networks and Levy
flights, which aid in the search for optimal solutions for the MVO algorithm.



Symmetry 2023, 15, 1319 3 of 21Symmetry 2023, 15, x FOR PEER REVIEW 3 of 23 
 

 

 

Figure 1. Concepts of cosmology implemented in MVO algorithm. 

In previous works, we have used Fuzzy Logic [14,15] and some tuning of the main 

parameters, as we tried them in benchmark mathematical functions and fuzzy controller 

design, proving the algorithm to be competitive against other popular metaheuristics. The 

algorithm uses the term universe to represent a solution to the problem, which is mathe-

matically a matrix (1), where U are the universes, extending the population over d and n. 

U =

[
 
 
 
x1
1 x1

2 ⋯ x1
d

x2
1 x2

2 ⋯ x2
d

⋮ ⋮ ⋮ ⋮
xn
1 xn

2 ⋯ xn
d]
 
 
 

 (1) 

Another of the concepts mentioned for its inspiration is the normalized inflation rate 

or fitness of the algorithm, which is represented by 𝑁𝐼(𝑈𝑖), and it is used in (2) with 𝑥𝑖
𝑗
 

being the 𝑗th parameter of the 𝑖th universe, 𝑈𝑖 is a universe, 𝑥𝑘
𝑗
 will be a parameter of 

the universe selected by using a roulette wheel method and 𝑟1 is a random number from 

0 to 1. 

xi
j
= {

xk
j

r1 < 𝑁𝐼(Ui)

xi
j

r1 ≥ NI(Ui)
 (2) 

One of the main inspirations reside in the wormhole, white hole, and black hole, used 

in WEP and TDR, being Wormhole Existence Probability and Travel Distance Rate, re-

spectively; they are used mainly in (3), where 𝑥𝑖
𝑗
 is the 𝑗th parameter from a selected 𝑖th 

universe, 𝑥𝑏𝑒𝑠𝑡
𝑗

 is the 𝑗th parameter from the global best at the moment, 𝑙𝑏𝑗 and 𝑢𝑏𝑗 are 

the lower and upper limits of the search criteria, and 𝑟2, 𝑟3, 𝑟4 represent random numbers 

from 0 to 1. 

xi
j
= {

{
xbest
j

+ TDR(r4(ubj − lbj) + lbj) r3 < 0.5

xbest
j

− TDR(r4(ubj − lbj) + lbj) r3 ≥ 0.5
} r2 < 𝑊𝐸𝑃

xi
j

r2 ≥ WEP

 (3) 

The last equations reside over WEP and TDR represented in (4) and (5), where amin 

and amax are the minimum and maximum values for WEP, 𝑙 goes for the actual iteration, 

and 𝐿 is the maximum number of iterations; in the case of TDR, they are the same param-

eters, including 𝑝 as the precision of exploitation. In Figure 2, we illustrate a complete 

flowchart of the MVO algorithm. 

WEP = amin + l (
amax − amin

L
) (4) 

TDR = 1 −
l1 p⁄

L1 p⁄
 (5) 

Figure 1. Concepts of cosmology implemented in MVO algorithm.

In previous works, we have used Fuzzy Logic [14,15] and some tuning of the main
parameters, as we tried them in benchmark mathematical functions and fuzzy controller
design, proving the algorithm to be competitive against other popular metaheuristics.
The algorithm uses the term universe to represent a solution to the problem, which is
mathematically a matrix (1), where U are the universes, extending the population over d
and n.

U =
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Another of the concepts mentioned for its inspiration is the normalized inflation rate
or fitness of the algorithm, which is represented by NI(Ui), and it is used in (2) with xj

i

being the jth parameter of the ith universe, Ui is a universe, xj
k will be a parameter of the

universe selected by using a roulette wheel method and r1 is a random number from 0 to 1.

xj
i =

{
xj

k r1 < NI(Ui)

xj
i r1 ≥ NI(Ui)

(2)

One of the main inspirations reside in the wormhole, white hole, and black hole,
used in WEP and TDR, being Wormhole Existence Probability and Travel Distance Rate,
respectively; they are used mainly in (3), where xj

i is the jth parameter from a selected ith

universe, xj
best is the jth parameter from the global best at the moment, lbj and ubj are the

lower and upper limits of the search criteria, and r2, r3, r4 represent random numbers from
0 to 1.

xj
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)
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}
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(3)

The last equations reside over WEP and TDR represented in (4) and (5), where amin and
amax are the minimum and maximum values for WEP, l goes for the actual iteration, and L
is the maximum number of iterations; in the case of TDR, they are the same parameters,
including p as the precision of exploitation. In Figure 2, we illustrate a complete flowchart
of the MVO algorithm.

WEP = amin + l
(

amax − amin

L

)
(4)

TDR = 1 − l1/p

L1/p (5)
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3. MVO Algorithm and Chaotic Maps

The MVO algorithm has proven to be a good alternative as many of the most used
metaheuristics, like Particle Swarm Optimization [26,27] (PSO), Grey–Wolf Optimizer [28]
(GWO), and Bee Colony Optimization [29] (BCO). Multiple researchers have used it for
specific applications in engineering and research by not only using it in core mode. Instead,
they have adapted other mathematical functions to improve its searchability, to avoid
local optima stagnation and early convergence, using levy flights, quantum theory, neural
networks, or other optimization algorithms.

As we mentioned previously, we have used Fuzzy Logic to adapt some of the main
parameters for the MVO algorithm, being WEP and TDR from (4) and (5). In this work,
we used two variations of the fuzzy inference system, one Mamdani and the other Sugeno,
both type-1 fuzzy inference systems. In Figures 3 and 4, we illustrate the Mamdani fuzzy
inference systems, and in Figures 5 and 6, we can observe the Sugeno fuzzy inference
systems; the particular way in which the membership functions were distributed have a
role in the symmetry between them [30], obtaining a smoother output in each fuzzy logic
system output.
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In the case of the Mamdani Fuzzy Inference System, we use triangular membership
functions for the inputs and outputs of the WEP and TDR systems; this membership
function is represented in (6). As for the Sugeno Fuzzy Inference System, we use another
membership function, the generalized bell, represented by (7); we use another type of
membership function to generate a crisper output.

In Tables 1 and 2, we can find the parameters of the membership functions (mf) corre-
sponding to WEP and TDR Mamdani fuzzy inference systems illustrated in
Figures 3 and 4, using the centroid defuzzification method; additionally, we can find
in Tables 3 and 4, the parameters for the mf of the Sugeno fuzzy inference systems illus-
trated in Figures 5 and 6, using a weighted average of all rule outputs as defuzzification
method. The fuzzy rules of each fuzzy inference system can be observed in Table 5.

triangleMF(x; a, b, c) =


0, x ≤ a.

x−a
b−a , a ≤ x ≤ b.
c−x
c−b , b ≤ x ≤ c.
0, c ≤ x.

(6)

GbellMF(x; a, b, c) =
1

1 +
∣∣ x−c

a

∣∣2b (7)

Table 1. Membership function parameters for WEP Mamdani fuzzy inference system.

Linguistic Variable Linguistic Value a b c

Light-years
Low −0.5 0.1 0.45

Medium 0.08 0.5 0.92
High 0.55 0.9 1.5

WEP
Low −0.15 0 0.16

Medium 0.33 0.5 0.66
High 0.82 1 1.17
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Table 2. Membership function parameters for TDR Mamdani fuzzy inference system.

Linguistic Variable Linguistic Value a b c

Light-years
Low −0.369 −0.0312 0.0619

Medium −0.0143 0.265 0.9466
High 0.159 0.9804 1.32

TDR
Low −0.2268 0.002633 0.2262

Medium −0.03122 0.0915 0.337
High 0.832 1.052 1.34

Table 3. Membership function parameters for WEP Sugeno fuzzy inference system.

Linguistic Variable Linguistic Value a b c

Light-years
in1mf1 0.25 2 0
in1mf2 0.25 2 0.5
in1mf3 0.25 2 1

Table 4. Membership function parameters for the TDR Sugeno fuzzy inference system.

Linguistic Variable Linguistic Value a b c

Light-years

in1mf1 0.005371 2.001 −0.006169
in1mf2 0.03512 2 0.03649
in1mf3 0.04512 2 0.1143
in1mf4 0.0352 2 0.1845
in1mf5 0.03214 2 0.2493
in1mf6 0.03147 2 0.3124
in1mf7 0.03131 2 0.375
in1mf8 0.03127 2 0.4375
in1mf9 0.03126 2 0.5
in1mf10 0.03125 2 0.5625
in1mf11 0.03125 2 0.625
in1mf12 0.03125 2 0.6875
in1mf13 0.03125 2 0.75
in1mf14 0.03125 2 0.8125
in1mf15 0.03125 2 0.875
in1mf16 0.03125 2 0.9375
in1mf17 0.03125 2 1

Additionally, in this work, we are using chaos theory to improve the algorithm further
alongside Fuzzy Logic by adapting chaotic maps in some of the parameters of MVO,
particularly in some random numbers, and here we made several variants of the algorithm.
We used 10 of the most used chaotic maps in the literature over several algorithms, and
then we made several variants to test which ones work better with the MVO algorithm; in
Figure 7, we illustrate a flowchart of the places that we adapted the chaotic maps in the
process for selection of universes, and also, we can observe in (2) and (3) the parameters
that we replace in r1, r2, r4, the highlighted text represents the sections of the algorithm that
have adaptations of chaotic maps.

Additionally, in this work, we are using chaos theory to improve the algorithm further
alongside Fuzzy Logic by adapting chaotic maps in some of the parameters of MVO,
particularly in some random numbers, and here we made several variants of the algorithm.
We used 10 of the most used chaotic maps in the literature over several algorithms, and
then we made several variants to test which ones work better with the MVO algorithm; in
Figure 7, we illustrate a flowchart of the places that we adapted the chaotic maps in the
process for selection of universes, and also, we can observe in (2) and (3) the parameters
that we replace in r1, r2, r4, the highlighted text represents the sections of the algorithm that
have adaptations of chaotic maps.
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Table 5. Fuzzy rules set for the fuzzy inference systems.

System Fuzzy Rules

Mamdani WEP
1. If Light-years is Low, then WEP is Low
2. If Light-years is Medium, then WEP is Medium
3. If Light-years is High, then WEP is High

Mamdani TDR
1. If Lightyears is Low, then TDR is High
2. If Lightyears is Medium then, TDR is Medium
3. If Lightyears is High then, TDR is Low

Sugeno WEP
1. If input1 is in1mf1, then output is out1mf1
2. If input1 is in1mf2, then output is out1mf2
3. If input1 is in1mf3, then output is out1mf3

Sugeno TDR

1. If input1 is in1mf1, then output is out1mf1
2. If input1 is in1mf2, then output is out1mf2
3. If input1 is in1mf3, then output is out1mf3
4. If input1 is in1mf4, then output is out1mf4
5. If input1 is in1mf5, then output is out1mf5
6. If input1 is in1mf6, then output is out1mf6
7. If input1 is in1mf7, then output is out1mf7
8. If input1 is in1mf8, then output is out1mf8
9. If input1 is in1mf9, then output is out1mf9
10. If input1 is in1mf10, then output is out1mf10
11. If input1 is in1mf11, then output is out1mf11
12. If input1 is in1mf12, then output is out1mf12
13. If input1 is in1mf13, then output is out1mf13
14. If input1 is in1mf14, then output is out1mf14
15. If input1 is in1mf15, then output is out1mf15
16. If input1 is in1mf16, then output is out1mf16
17. If input1 is in1mf17, then output is out1mf17
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Table 6. Chaotic maps of the literature [19], using seed p = 0.7.

Name Equation Parameters

Chebyshev [31] xi+1 =
cos(icos−1(xi))

2 + 1 + p
Logistic [32] xi+1 = axi(1 − xi) + p a = 4

Sinusoidal [33] xi+1 = ax2
i sin(πxi) + p a = 2.3

Circle [34] xi+1 = mod
(
xi + b −

( a
2π
)

sin(2πxi), 1
)
+ p a = 0.5

b = 0.2

Gauss/mouse [35] xi+1 =

{
1 xi = 0

1
mod(xi, 1) + p otherwise

Iterative [32] xi+1 = sin
(

aπ
xi

)
+ p a = 0.7

Piecewise [36] xi+1 =


xi
P + p 0 ≤ xi < P

xi−P
0.5−P + p P ≤ xi < 0.5

1−P−xi
0.5−P + p 0.5 ≤ xi < 1 − P
1−xi

P + p 1 − P ≤ xi < 1

P = 0.4

Sine [37] xi+1 = a
4 sin(πxi) + p a = 4

Singer [38] xi+1 = µ
(
7.86xi − 23.31x2

i + 28.75x3
i − 13.302875x4

i
)
+ p µ = 1.07

Tent [39] xi+1 =

{ xi
0.7 + p xi < 0.7

10
3 (1 − xi) + p xi ≥ 0.7
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Table 7. Chaotic variants of MVO algorithm.

Variant Name r1 r2 r4

R1 Chaotic map [0,1] Random [0,1] Random [0,1]
R2 Random [0,1] Chaotic map [0,1] Random [0,1]
R4 Random [0,1] Random [0,1] Chaotic map [0,1]
RT Chaotic map [0,1] Chaotic map [0,1] Chaotic map [0,1]

As we can observe from Table 7, some of the variants of the algorithm use chaotic
maps in specific parameters in (2) and (3), resulting in the adaptation of Chaos Theory to the
MVO algorithm. In the next section, we analyze the results obtained from the first variants
of the algorithm, comparing them with the fuzzy variants and the improved versions using
chaotic maps. Our simulations used MATLAB 2019 in a Windows 10 operating system,
with an Intel i5 8th generation processor and 8 GB of RAM.

4. Test and Results

For our tests, we use 13 traditional benchmark mathematical functions used in other
works, performing 30 tests in 5 dimensions, 50 dimensions, and 100 dimensions, with
50 solutions or universes and 500 iterations; the statistical test is done with a 95% of confi-
dence, comparing that our variants are better than the original algorithm using Z-test.

The main results presented in this paper are an extension of our previous work in [16],
and we are focusing on 50 dimensions; in Tables 8–11, we can observe the results comparing
the CMVO (Chaotic Multi-verse Optimizer) variants mentioned in Table 7; in the case of
R1 we are only presenting the Circle, Sinusoidal and Gauss Chaotic Maps, that they were
the best-performing maps in this category; for the R2 variant we can observe the Iterative,
Sinusoidal, and Gauss maps as the best performers in this variant; the case of R4 which had
a better impact on the algorithm, we focused on Circle, Sinusoidal and Piecewise maps;
and in the last variant, called RT, we used Circle, Gauss, and Tent maps.
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Table 8. Results comparing MVO with R1 CMVO in 50 dimensions.

Variant MVO CMVO Circle CMVO Sinusoidal CMVO Gauss

Function Average SD Average SD Z Average SD Z Average SD Z

F1 1.04 × 101 2.12 × 100 6.05 × 100 1.32 × 100 −9.55 6.18 × 100 1.16 × 100 −9.57 8.80 × 100 2.23 × 100 −2.85
F2 4.29 × 102 1.40 × 103 1.43 × 102 9.27 × 101 −1.11 8.24 × 101 7.40 × 101 −1.35 3.41 × 100 1.20 × 100 −1.66
F3 5.87 × 103 1.42 × 103 6.62 × 102 2.02 × 103 1.68 6.50 × 103 1.70 × 103 1.57 5.01 × 103 1.66 × 103 −2.15
F4 1.66 × 101 6.53 × 100 3.14 × 101 7.54 × 100 8.13 2.14 × 101 5.14 × 100 3.12 9.23 × 100 2.06 × 100 −5.93
F5 6.64 × 102 6.96 × 102 1.14 × 103 9.97 × 102 2.14 1.08 × 103 8.07 × 102 2.12 1.01 × 103 1.05 × 103 1.49
F6 1.06 × 101 2.71 × 100 5.86 × 100 1.57 × 100 −8.23 6.39 × 100 1.37 × 100 −7.54 9.76 × 100 3.06 × 100 −1.09
F7 1.19 × 10−1 4.03 × 10−2 1.08 × 10−1 3.39 × 10−2 −1.20 1.12 × 10−1 3.64 × 10−2 −0.67 9.64 × 10−2 2.91 × 10−2 −2.51
F8 1.25 × 104 8.00 × 102 1.22 × 104 8.37 × 102 −1.37 1.22 × 104 9.58 × 102 −1.11 1.28 × 104 1.01 × 103 1.43
F9 2.54 × 102 4.94 × 101 2.34 × 102 4.61 × 101 −1.58 2.04 × 102 3.70 × 101 −4.42 2.33 × 102 4.87 × 101 −1.68
F10 3.49 × 100 3.08 × 100 3.04 × 100 4.60 × 10−1 −0.80 2.43 × 100 4.22 × 10−1 −1.86 3.15 × 100 5.99 × 10−1 −0.59
F11 1.09 × 100 1.82 × 10−2 1.05 × 100 1.38 × 10−2 −8.70 1.05 × 100 1.39 × 10−2 −9.12 1.09 × 100 2.07 × 10−2 −0.05
F12 6.57 × 100 2.64 × 100 7.90 × 100 2.78 × 100 1.89 4.91 × 100 2.50 × 100 −2.49 4.93 × 100 2.34 × 100 −2.54
F13 9.08 × 100 1.34 × 101 6.56 × 100 7.21 × 100 −0.91 4.61 × 100 6.30 × 100 −1.66 2.90 × 100 2.61 × 100 −2.48

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 9. Results comparing MVO with R2 CMVO in 50 dimensions.

Variant MVO CMVO Iterative CMVO Sinusoidal CMVO Gauss

Function Average SD Average SD Z Average SD Z Average SD Z

F1 1.04 × 101 2.12 × 100 9.44 × 100 2.31 × 100 −1.67 1.03 × 101 2.00 × 100 −0.28 1.13 × 101 2.85 × 100 1.42
F2 4.29 × 102 1.40 × 103 2.16 × 104 1.18 × 105 0.99 1.87 × 107 7.84 × 107 1.31 5.52 × 1010 3.01 × 1011 1
F3 5.87 × 103 1.42 × 103 6.98 × 103 1.85 × 103 2.62 8.23 × 103 1.76 × 103 5.72 5.94 × 103 1.39 × 103 0.21
F4 1.66 × 101 6.53 × 100 1.99 × 101 6.39 × 100 1.96 3.24 × 101 6.94 × 100 9.04 1.67 × 101 5.15 × 100 0.02
F5 6.64 × 102 6.96 × 102 1.32 × 103 1.18 × 103 2.64 9.31 × 102 1.32 × 103 0.98 1.13 × 103 1.72 × 103 1.37
F6 1.06 × 101 2.71 × 100 1.04 × 101 1.89 × 100 −0.3 1.01 × 101 2.34 × 100 −0.68 9.66 × 100 2.33 × 100 −1.4
F7 1.19 × 10−1 4.03 × 10−2 1.09 × 10−1 2.96 × 10−2 −1.16 1.24 × 10−1 4.16 × 10−2 0.44 1.17 × 10−1 2.82 × 10−2 −0.25
F8 1.25 × 104 8.00 × 102 1.21 × 104 8.04 × 102 −1.86 1.27 × 104 1.08 × 103 1.13 1.24 × 104 6.57 × 102 −0.32
F9 2.54 × 102 4.94 × 101 2.62 × 102 3.96 × 101 0.67 2.16 × 102 3.26 × 101 −3.47 2.74 × 102 4.99 × 101 1.59
F10 3.49 × 100 3.08 × 100 3.54 × 100 3.01 × 100 0.06 7.02 × 100 6.82 × 100 2.58 3.50 × 100 3.17 × 100 0.02
F11 1.09 × 100 1.82 × 10−2 1.10 × 100 2.05 × 10−2 1.24 1.09 × 100 1.79 × 10−2 0.11 1.09 × 100 1.63 × 10−2 0.03
F12 6.57 × 100 2.64 × 100 7.45 × 100 3.16 × 100 1.16 8.47 × 100 2.33 × 100 2.95 5.99 × 100 1.67 × 100 −1.02
F13 9.08 × 100 1.34 × 101 1.58 × 101 1.68 × 101 1.72 1.19 × 101 1.23 × 101 0.84 8.22 × 100 1.09 × 101 −0.27

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 10. Results comparing MVO with R4 CMVO in 50 dimensions.

Variant MVO CMVO Circle CMVO Sinusoidal CMVO Piecewise

Function Average SD Average SD Z Average SD Z Average SD Z

F1 1.04 × 101 2.12 × 100 6.05 × 100 1.32 × 100 −9.55 8.43 × 100 2.33 × 100 −3.44 6.18 × 100 1.16 × 100 −9.57
F2 4.29 × 102 1.40 × 103 1.43 × 102 9.27 × 101 −1.11 2.08 × 102 4.29 × 102 −0.83 8.24 × 101 7.40 × 101 −1.35
F3 5.87 × 103 1.42 × 103 6.62 × 103 2.02 × 103 1.68 6.84 × 103 2.01 × 103 2.17 6.50 × 103 1.70 × 103 1.57
F4 1.66 × 101 6.53 × 100 3.14 × 101 7.54 × 100 8.13 3.16 × 101 7.33 × 100 8.36 2.14 × 101 5.14 × 100 3.12
F5 6.64 × 102 6.96 × 102 1.14 × 103 9.97 × 102 2.14 8.82 × 102 6.63 × 102 1.24 1.08 × 103 8.07 × 102 2.12
F6 1.06 × 101 2.71 × 100 5.86 × 100 1.57 × 100 −8.23 8.62 × 100 1.71 × 100 −3.35 6.39 × 100 1.37 × 100 −7.54
F7 1.19 × 10−1 4.03 × 10−2 1.08 × 10−1 3.39 × 10−2 −1.2 1.19 × 10−1 3.35 × 10−2 −0.05 1.12 × 10−1 3.64 × 10−2 −0.67
F8 1.25 × 104 8.00 × 102 1.22 × 104 8.37 × 102 −1.37 1.19 × 104 8.61 × 102 −2.68 1.22 × 104 9.58 × 102 −1.11
F9 2.54 × 102 4.94 × 101 2.34 × 102 4.61 × 101 −1.58 2.51 × 102 4.43 × 101 −0.26 2.04 × 102 3.70 × 101 −4.42
F10 3.49 × 100 3.08 × 100 3.04 × 100 4.60 × 10−1 −0.8 3.86 × 100 3.04 × 100 0.47 2.43 × 100 4.22 × 10−1 −1.86
F11 1.09 × 100 1.82 × 10−2 1.05 × 100 1.38 × 10−2 −8.7 1.08 × 100 1.35 × 10−2 −2.58 1.05 × 100 1.39 × 10−2 −9.12
F12 6.57 × 100 2.64 × 100 7.90 × 100 2.78 × 100 1.89 8.71 × 100 3.25 × 100 2.8 4.91 × 100 2.50 × 100 −2.49
F13 9.08 × 100 1.34 × 101 6.56 × 100 7.21 × 100 −0.91 1.13 × 101 1.09 × 101 0.69 4.61 × 100 6.30 × 100 −1.66

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

These first results pointed out that one of the most significant variants are R1 and R4
at the moment. In Tables 12–15, we can find some of the results for the FCMVO (Fuzzy-
Chaotic Multi-verse Optimizer) in comparison with the original MVO and FMVO (Fuzzy
Multi-verse Optimizer) for the R1 variant using the Circle and Gauss maps, the results are
very similar, but one of the fuzzy inference systems use the Mamdani variant and the other
one the Sugeno variant. Comparing Mamdani and Sugeno, they are very similar in results
for the initial tests in the R1 variant.
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Table 11. Results comparing MVO with RT CMVO in 50 dimensions.

Variant MVO CMVO Circle CMVO Gauss CMVO Tent

Function Average SD Average SD Z Average SD Z Average SD Z

F1 1.04 × 101 2.12 × 100 8.31 × 100 2.01 × 100 −3.92 6.47 × 100 1.72 × 100 −7.9 9.44 × 100 1.71 × 100 −1.93
F2 4.29 × 102 1.40 × 103 6.61 × 1011 3.62 × 1012 1 1.23 × 1011 6.32 × 1011 1.07 2.11 × 1012 8.93 × 1012 1.29
F3 5.87 × 103 1.42 × 103 1.05 × 104 1.98 × 103 10.35 8.46 × 103 2.12 × 103 5.57 1.17 × 104 2.18 × 103 12.31
F4 1.66 × 101 6.53 × 100 5.54 × 101 8.87 × 100 19.29 6.47 × 101 7.69 × 100 26.08 6.14 × 101 6.85 × 100 25.9
F5 6.64 × 102 6.96 × 102 3.31 × 103 5.28 × 103 2.72 1.04 × 103 1.17 × 103 1.5 2.60 × 103 4.29 × 103 2.44
F6 1.06 × 101 2.71 × 100 8.57 × 100 2.18 × 100 −3.16 6.93 × 100 1.31 × 100 −6.63 9.37 × 100 1.64 × 100 −2.08
F7 1.19 × 10−1 4.03 × 10−2 2.09 × 10−1 5.78 × 10−2 6.99 1.71 × 10−1 6.97 × 10−2 3.53 2.22 × 10−1 6.97 × 10−2 7
F8 1.25 × 104 8.00 × 102 1.17 × 104 7.49 × 102 −3.59 1.17 × 104 8.21 × 102 −3.63 1.19 × 104 9.46 × 102 −2.42
F9 2.54 × 102 4.94 × 101 1.89 × 102 3.19 × 101 −6.05 1.73 × 102 2.17 × 101 −8.21 2.23 × 102 2.92 × 101 −2.96
F10 3.49 × 100 3.08 × 100 4.88 × 100 4.78 × 10−1 2.44 4.67 × 100 5.58 × 10−1 2.05 5.68 × 100 2.65 × 100 2.95
F11 1.09 × 100 1.82 × 10−2 1.08 × 100 1.61 × 10−2 −2.3 1.06 × 100 1.82 × 10−2 −6.42 1.08 × 100 1.46 × 10−2 −1.94
F12 6.57 × 100 2.64 × 100 1.89 × 101 6.33 × 100 9.81 2.48 × 101 1.15 × 101 8.47 2.56 × 101 9.02 × 100 11.11
F13 9.08 × 100 1.34 × 101 7.07 × 101 3.39 × 101 9.26 7.30 × 101 3.52 × 101 9.3 8.32 × 101 3.73 × 101 10.25

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 12. Results comparing MVO with R1 FCMVO Mamdani using a Circle map in 50 dimensions.

Variant FCMVO Mamdani MVO MVO Circle FMVO Mamdani

Function Average SD Average SD Z Average SD Z Average SD Z

F1 4.18 × 100 1.50 × 100 1.04 × 101 2.12 × 100 −13.12 1.06 × 101 2.37 × 100 −12.46 4.22 × 100 1.54 × 100 −0.1
F2 2.13 × 103 1.09 × 104 4.29 × 102 1.40 × 103 0.85 4.65 × 102 1.28 × 103 0.83 1.84 × 102 3.50 × 102 0.98
F3 4.69 × 103 1.27 × 103 5.87 × 103 1.42 × 103 −3.38 6.29 × 103 1.89 × 103 −3.85 4.46 × 103 1.32 × 103 0.68
F4 2.43 × 101 6.58 × 100 1.66 × 101 6.53 × 100 4.52 1.86 × 101 5.21 × 100 3.71 1.69 × 101 7.05 × 100 4.21
F5 6.58 × 102 7.15 × 102 6.64 × 102 6.96 × 102 −0.03 6.41 × 102 5.19 × 102 0.11 5.02 × 102 5.32 × 102 0.96
F6 3.94 × 100 1.65 × 100 1.06 × 101 2.71 × 100 −11.45 1.03 × 101 2.52 × 100 −11.5 4.05 × 100 1.38 × 100 −0.3
F7 8.77 × 10−2 2.57 × 10−2 1.19 × 10−1 4.03 × 10−2 −3.61 1.24 × 10−1 4.27 × 10−2 −4.05 7.71 × 10−2 2.46 × 10−2 1.62
F8 1.19 × 104 9.07 × 102 1.25 × 104 8.00 × 102 −2.38 1.24 × 104 1.20 × 103 −1.88 1.26 × 104 9.34 × 102 −3.01
F9 2.96 × 102 4.31 × 101 2.54 × 102 4.94 × 101 3.56 2.67 × 102 4.90 × 101 2.49 2.91 × 102 4.74 × 101 0.45
F10 1.14 × 101 8.52 × 100 3.49 × 100 3.08 × 100 4.81 4.16 × 100 4.19 × 100 4.2 8.15 × 100 8.24 × 100 1.52
F11 9.73 × 10−1 7.78 × 10−2 1.09 × 100 1.82 × 10−2 −8.02 1.09 × 100 2.29 × 10−2 −8.15 1.00 × 100 6.84 × 10−2 −1.59
F12 4.60 × 100 2.04 × 100 6.57 × 100 2.64 × 100 −3.23 5.91 × 100 2.24 × 100 −2.37 4.77 × 100 1.64 × 100 −0.37
F13 3.10 × 100 4.89 × 100 9.08 × 100 1.34 × 101 −2.3 9.02 × 100 1.47 × 101 −2.1 1.95 × 100 2.01 × 100 1.19

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 13. Results comparing MVO with R1 FCMVO Sugeno using a Circle map in 50 dimensions.

Variant FCMVO Sugeno MVO MVO Circle FMVO Sugeno

Function Average SD Average SD Z Average SD Z Average SD Z

F1 1.33 × 100 2.89 × 10−1 1.04 × 101 2.12 × 100 −23.25 1.06 × 101 2.37 × 100 −21.19 1.41 × 100 2.26 × 10−1 −1.13
F2 2.55 × 102 8.45 × 102 4.29 × 102 1.40 × 103 −0.58 4.65 × 102 1.28 × 103 −0.75 5.23 × 103 1.91 × 104 −1.43
F3 2.54 × 103 7.53 × 102 5.87 × 103 1.42 × 103 −11.34 6.29 × 103 1.89 × 103 −10.09 2.26 × 103 4.86 × 102 1.77
F4 2.40 × 101 7.02 × 100 1.66 × 101 6.53 × 100 4.22 1.86 × 101 5.21 × 100 3.4 1.94 × 101 6.19 × 100 2.74
F5 1.64 × 102 1.63 × 102 6.64 × 102 6.96 × 102 −3.83 6.41 × 102 5.19 × 102 −4.8 5.20 × 102 7.26 × 102 −2.62
F6 1.44 × 100 3.01 × 10−1 1.06 × 101 2.71 × 100 −18.35 1.03 × 101 2.52 × 100 −19.06 1.44 × 100 2.77 × 10−1 0.04
F7 6.95 × 10−2 2.57 × 10−2 1.19 × 10−1 4.03 × 10−2 −5.69 1.24 × 10−1 4.27 × 10−2 −6.04 6.70 × 10−2 2.47 × 10−2 0.39
F8 1.21 × 104 8.70 × 102 1.25 × 104 8.00 × 102 −1.68 1.24 × 104 1.20 × 103 −1.3 1.24 × 104 9.12 × 102 −1.13
F9 3.07 × 102 4.64 × 101 2.54 × 102 4.94 × 101 4.3 2.67 × 102 4.90 × 101 3.27 2.83 × 102 5.49 × 101 1.87
F10 1.02 × 101 8.31 × 100 3.49 × 100 3.08 × 100 4.17 4.16 × 100 4.19 × 100 3.57 4.83 × 100 6.50 × 100 2.8
F11 8.24 × 10−1 5.41 × 10−2 1.09 × 100 1.82 × 10−2 −25.56 1.09 × 100 2.29 × 10−2 −25.18 8.01 × 10−1 5.89 × 10−2 1.57
F12 5.46 × 100 1.41 × 100 6.57 × 100 2.64 × 100 −2.03 5.91 × 100 2.24 × 100 −0.93 5.21 × 100 1.73 × 100 0.6
F13 4.29 × 10−1 4.84 × 10−1 9.08 × 100 1.34 × 101 −3.53 9.02 × 100 1.47 × 101 −3.21 3.67 × 10−1 1.65 × 10−1 0.66

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.
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Table 14. Results comparing MVO with R1 FCMVO Mamdani using Gauss map in 50 dimensions.

Variant FCMVO Mamdani MVO MVO Gauss FMVO Mamdani

Function Average SD Average SD Z Average SD Z Average SD Z

F1 4.04 × 100 1.57 × 100 1.04 × 101 2.12 × 100 −13.12 8.80 × 100 2.23 × 100 −12.46 4.22 × 100 1.54 × 100 −0.1
F2 3.16 × 100 1.77 × 100 4.29 × 102 1.40 × 103 0.85 3.41 × 100 1.20 × 100 0.83 1.84 × 102 3.50 × 102 0.98
F3 3.09 × 103 6.82 × 102 5.87 × 103 1.42 × 103 −3.38 5.01 × 103 1.66 × 103 −3.85 4.46 × 103 1.32 × 103 0.68
F4 1.21 × 101 4.13 × 100 1.66 × 101 6.53 × 100 4.52 9.23 × 100 2.06 × 100 3.71 1.69 × 101 7.05 × 100 4.21
F5 4.93 × 102 5.30 × 102 6.64 × 102 6.96 × 102 −0.03 1.01 × 103 1.05 × 103 0.11 5.02 × 102 5.32 × 102 0.96
F6 3.81 × 100 1.74 × 100 1.06 × 101 2.71 × 100 −11.45 9.76 × 100 3.06 × 100 −11.5 4.05 × 100 1.38 × 100 −0.3
F7 7.51 × 10−2 1.93 × 10−2 1.19 × 10−1 4.03 × 10−2 −3.61 9.64 × 10−2 2.91 × 10−2 −4.05 7.71 × 10−2 2.46 × 10−2 1.62
F8 1.25 × 104 9.38 × 102 1.25 × 104 8.00 × 102 −2.38 1.28 × 104 1.01 × 103 −1.88 1.26 × 104 9.34 × 102 −3.01
F9 2.44 × 102 3.64 × 101 2.54 × 102 4.94 × 101 3.56 2.33 × 102 4.87 × 101 2.49 2.91 × 102 4.74 × 101 0.45
F10 5.79 × 100 6.95 × 100 3.49 × 100 3.08 × 100 4.81 3.15 × 100 5.99 × 10−1 4.2 8.15 × 100 8.24 × 100 1.52
F11 9.75 × 10−1 1.00 × 10−1 1.09 × 100 1.82 × 10−2 −8.02 1.09 × 100 2.07 × 10−2 −8.15 1.00 × 100 6.84 × 10−2 −1.59
F12 3.80 × 100 1.48 × 100 6.57 × 100 2.64 × 100 −3.23 4.93 × 100 2.34 × 100 −2.37 4.77 × 100 1.64 × 100 −0.37
F13 1.13 × 100 5.09 × 10−1 9.08 × 100 1.34 × 101 −2.3 2.90 × 100 2.61 × 100 −2.1 1.95 × 100 2.01 × 100 1.19

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 15. Results comparing MVO with R1 FCMVO Sugeno using Gauss map in 50 dimensions.

Variant FCMVO Sugeno MVO MVO Gauss FMVO Sugeno

Function Average SD Average SD Z Average SD Z Average SD Z

F1 1.39 × 100 2.73 × 10−1 1.04 × 101 2.12 × 100 −23.25 8.80 × 100 2.23 × 100 −21.19 1.41 × 100 2.26 × 10−1 −1.13
F2 2.32 × 100 2.21 × 100 4.29 × 102 1.40 × 103 −0.58 3.41 × 100 1.20 × 100 −0.75 5.23 × 103 1.91 × 104 −1.43
F3 1.80 × 103 4.57 × 102 5.87 × 103 1.42 × 103 −11.34 5.01 × 103 1.66 × 103 −10.09 2.26 × 103 4.86 × 102 1.77
F4 1.44 × 101 6.35 × 100 1.66 × 101 6.53 × 100 4.22 9.23 × 100 2.06 × 100 3.4 1.94 × 101 6.19 × 100 2.74
F5 3.62 × 102 4.34 × 102 6.64 × 102 6.96 × 102 −3.83 1.01 × 103 1.05 × 103 −4.8 5.20 × 102 7.26 × 102 −2.62
F6 1.45 × 100 3.36 × 10−1 1.06 × 101 2.71 × 100 −18.35 9.76 × 100 3.06 × 100 −19.06 1.44 × 100 2.77 × 10−1 0.04
F7 6.17 × 10−2 1.81 × 10−2 1.19 × 10−1 4.03 × 10−2 −5.69 9.64 × 10−2 2.91 × 10−2 −6.04 6.70 × 10−2 2.47 × 10−2 0.39
F8 1.22 × 104 8.51 × 102 1.25 × 104 8.00 × 102 −1.68 1.28 × 104 1.01 × 103 −1.3 1.24 × 104 9.12 × 102 −1.13
F9 2.95 × 102 4.50 × 101 2.54 × 102 4.94 × 101 4.3 2.33 × 102 4.87 × 101 3.27 2.83 × 102 5.49 × 101 1.87
F10 1.04 × 101 8.61 × 100 3.49 × 100 3.08 × 100 4.17 3.15 × 100 5.99 × 10−1 3.57 4.83 × 100 6.50 × 100 2.8
F11 7.94 × 10−1 6.88 × 10−2 1.09 × 100 1.82 × 10−2 −25.56 1.09 × 100 2.07 × 10−2 −25.18 8.01 × 10−1 5.89 × 10−2 1.57
F12 3.72 × 100 1.16 × 100 6.57 × 100 2.64 × 100 −2.03 4.93 × 100 2.34 × 100 −0.93 5.21 × 100 1.73 × 100 0.6
F13 4.34 × 10−1 3.40 × 10−1 9.08 × 100 1.34 × 101 −3.53 2.90 × 100 2.61 × 100 −3.21 3.67 × 10−1 1.65 × 10−1 0.66

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

For the next variant, we are presenting some of the results of the R2 FCMVO variant;
we can find these results in Tables 16–19; we reduced the information presented in the
tables, focusing only on the Z values in comparison with each case, and delimiting to the
Singer and Iterative chaotic maps, that present the most notorious results for the variant.

Table 16. Results comparing MVO with R2 FCMVO Mamdani using Iterative map in 50 dimensions.

Variant FCMVO Mamdani Iterative MVO MVO
Iterative

FMVO
Mamdani

Function Average SD Z Z Z

F1 4.33 × 100 1.72 × 100 −12.17 −9.73 0.26
F2 1.21 × 104 6.21 × 104 1.03 −0.39 1.05
F3 4.70 × 103 1.24 × 103 −3.38 −5.6 0.73
F4 2.16 × 101 6.73 × 100 2.91 1 2.65
F5 6.21 × 102 6.74 × 102 −0.25 −2.84 0.76
F6 3.70 × 100 1.54 × 100 −12.09 −15.07 −0.94
F7 8.94 × 10−2 2.97 × 10−2 −3.26 −2.51 1.74
F8 1.25 × 104 9.82 × 102 0.28 1.94 −0.51
F9 2.73 × 102 5.55 × 101 1.42 0.92 −1.36
F10 5.93 × 100 6.47 × 100 1.87 1.84 −1.16
F11 1.01 × 100 6.11 × 10−2 −7.15 −7.6 0.21
F12 5.93 × 100 1.84 × 100 −1.08 −2.26 2.58
F13 3.33 × 100 4.44 × 100 −2.23 −3.94 1.55

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.
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Table 17. Results comparing MVO with R2 FCMVO Sugeno using Iterative map in 50 dimensions.

Variant FCMVO Sugeno Iterative MVO MVO
Iterative

FMVO
Sugeno

Function Average SD Z Z Z

F1 1.52 × 100 3.88 × 10−1 −22.59 −18.54 1.41
F2 1.06 × 103 4.98 × 103 0.67 −0.96 −1.16
F3 3.18 × 103 1.02 × 103 −8.4 −9.82 4.48
F4 2.52 × 101 6.19 × 100 5.21 3.25 3.66
F5 5.15 × 102 7.55 × 102 −0.8 −3.17 −0.03
F6 1.50 × 100 4.07 × 10−1 −18.12 −25.23 0.76
F7 8.02 × 10−2 2.72 × 10−2 −4.4 −3.87 1.97
F8 1.25 × 104 7.96 × 102 0.2 2.06 0.64
F9 2.81 × 102 3.50 × 101 2.45 2.01 −0.13

F10 8.13 × 100 8.22 × 100 2.89 2.87 1.72
F11 8.20 × 10−1 5.95 × 10−2 −23.77 −24.04 1.25
F12 6.47 × 100 2.88 × 100 −0.14 −1.25 2.05
F13 3.60 × 10−1 1.99 × 10−1 −3.56 −5.05 −0.15

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 18. Results comparing MVO with R2 FCMVO Mamdani using Singer map in 50 dimensions.

Variant FCMVO Mamdani Singer MVO MVO Singer FMVO
Mamdani

Function Average SD Z Z Z

F1 4.14 × 100 1.54 × 100 −13.11 −11.61 −0.21
F2 1.30 × 104 7.05 × 104 0.98 1 1
F3 4.98 × 103 1.23 × 103 −2.6 −5.48 1.56
F4 2.34 × 101 6.69 × 100 3.94 1.68 3.65
F5 5.99 × 102 6.28 × 102 −0.38 −2.4 0.64
F6 3.67 × 100 1.03 × 100 −13.03 −15.41 −1.21
F7 8.51 × 10−2 3.23 × 10−2 −3.61 −3.49 1.08
F8 1.23 × 104 7.78 × 102 −0.69 −0.84 −1.49
F9 2.46 × 102 3.16 × 101 −0.77 2.21 −4.38
F10 3.68 × 100 3.91 × 100 0.2 0.84 −2.69
F11 1.01 × 100 4.24 × 10−2 −9.08 −9.4 0.7
F12 6.60 × 100 2.51 × 100 0.04 −1.33 3.33
F13 3.67 × 100 7.74 × 100 −1.92 −2.69 1.18

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 19. Results comparing MVO with R2 FCMVO Sugeno using Singer map in 50 dimensions.

Variant FCMVO Sugeno Singer MVO MVO Singer FMVO
Sugeno

Function Average SD Z Z Z

F1 1.49 × 100 3.68 × 10−1 −22.72 −18.86 0.99
F2 2.03 × 102 1.83 × 102 −0.87 2.89 −1.44
F3 3.75 × 103 1.01 × 103 −6.68 −9.62 7.3
F4 2.78 × 101 7.30 × 100 6.22 4.05 4.82
F5 7.58 × 102 9.18 × 102 0.45 −1.34 1.11
F6 1.53 × 100 3.31 × 10−1 −18.15 −21.31 1.14
F7 7.59 × 10−2 2.25 × 10−2 −5.13 −5.33 1.47
F8 1.28 × 104 9.32 × 102 1.36 1.12 1.7
F9 2.47 × 102 3.97 × 101 −0.56 2.15 −2.84
F10 6.03 × 100 7.08 × 100 1.8 2.29 0.68
F11 8.14 × 10−1 8.15 × 10−2 −18.11 −18.26 0.72
F12 7.22 × 100 1.78 × 100 1.12 −0.4 4.43
F13 9.81 × 10−1 2.65 × 100 −3.25 −4.84 1.26

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.
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In Tables 20–23, we can find the results based on the R4 variants of the FCMVO
algorithm, concentrating the results only in Singer and Piecewise chaotic maps; in this
variant of the FCMVO algorithm, the impact of the chaotic maps is more evident than R2,
reflecting this in the comparison between the original MVO algorithm and the FMVO.

Table 20. Results comparing MVO with R4 FCMVO Mamdani using a Piecewise map in
50 dimensions.

Variant FCMVO Mamdani
Piecewise MVO MVO

Piecewise
FMVO

Mamdani

Function Average SD Z Z Z

F1 6.85 × 100 2.47 × 100 −5.97 −2.54 4.95
F2 1.34 × 103 6.54 × 103 0.75 0.95 0.97
F3 5.36 × 103 1.17 × 103 −1.51 −3.49 2.79
F4 3.42 × 101 7.49 × 100 9.69 1.35 9.23
F5 7.34 × 102 6.61 × 102 0.4 −0.87 1.5
F6 6.01 × 100 1.71 × 100 −7.8 −5.91 4.87
F7 8.42 × 10−2 2.86 × 10−2 −3.88 −4.3 1.02
F8 1.21 × 104 8.40 × 102 −1.67 1.01 −2.38
F9 2.98 × 102 4.63 × 101 3.54 4 0.53
F10 6.94 × 100 7.39 × 100 2.36 2.11 −0.6
F11 1.05 × 100 1.27 × 10−2 −9.72 −8.49 3.73
F12 9.15 × 100 2.88 × 100 3.62 0.56 7.25
F13 1.97 × 100 1.15 × 100 −2.9 −4.65 0.06

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 21. Results comparing MVO with R4 FCMVO Sugeno using a Piecewise map in 50 dimensions.

Variant FCMVO Sugeno Piecewise MVO MVO
Piecewise

FMVO
Sugeno

Function Average SD Z Z Z

F1 1.24 × 100 3.11 × 10−1 −23.46 −16.79 −2.47
F2 1.27 × 102 7.18 × 101 −1.18 −1.02 −1.46
F3 3.44 × 103 9.08 × 102 −7.91 −8.46 6.28
F4 3.54 × 101 7.17 × 100 10.59 2.01 9.28
F5 5.54 × 102 7.26 × 102 −0.6 −1.83 0.18
F6 1.32 × 100 2.81 × 10−1 −18.6 −23.09 −1.61
F7 7.90 × 10−2 2.76 × 10−2 −4.5 −5.01 1.79
F8 1.23 × 104 7.34 × 102 −0.76 2.06 −0.23
F9 2.81 × 102 4.15 × 101 2.34 2.76 −0.09
F10 4.69 × 100 5.72 × 100 1.01 0.7 −0.09
F11 7.92 × 10−1 5.89 × 10−2 −26.53 −26.1 −0.6
F12 7.83 × 100 2.37 × 100 1.94 −1.19 4.88
F13 6.51 × 10−1 3.55 × 10−1 −3.45 −5.34 3.96

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Our last case is found in Tables 24–27, where the results focus on the FCMVO variant
using the Gauss and Sine chaotic maps; in this case, the maps are used in the three different
positions of the algorithm with the same map, only changing the seed of the chaotic map to
avoid using the same value obtained in each place of the algorithm.
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Table 22. Results comparing MVO with R4 FCMVO Mamdani using Singer map in 50 dimensions.

Variant FCMVO Mamdani Singer MVO MVO Singer FMVO
Mamdani

Function Average SD Z Z Z

F1 2.99 × 100 1.02 × 100 −17.27 −12.66 −3.64
F2 1.62 × 104 8.72 × 104 0.99 0.97 1.01
F3 5.53 × 103 1.34 × 103 −0.93 −3.91 3.13
F4 3.04 × 101 6.81 × 100 7.97 1.86 7.54
F5 8.51 × 102 1.47 × 103 0.63 −1.99 1.22
F6 3.16 × 100 1.24 × 100 −13.62 −13.45 −2.63
F7 1.01 × 10−1 3.04 × 10−2 −1.97 −2.2 3.35
F8 1.22 × 104 9.02 × 102 −0.97 −0.23 −1.71
F9 3.00 × 102 4.99 × 101 3.62 8.22 0.72
F10 5.10 × 100 5.85 × 100 1.33 1.7 −1.65
F11 9.75 × 10−1 6.07 × 10−2 −9.97 −9.18 −1.72
F12 7.55 × 100 3.42 × 100 1.24 −0.26 4.01
F13 8.59 × 100 1.39 × 101 −0.14 −3.13 2.59

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 23. Results comparing MVO with R4 FCMVO Sugeno using Singer map in 50 dimensions.

Variant FCMVO Sugeno Singer MVO MVO Singer FMVO
Sugeno

Function Average SD Z Z Z

F1 1.26 × 100 3.20 × 10−1 −23.39 −18.66 −2.1
F2 2.51 × 104 1.37 × 105 0.99 0.98 0.79
F3 3.37 × 103 7.19 × 102 −8.61 −11.26 7.01
F4 2.91 × 101 5.74 × 100 7.85 1.2 6.33
F5 5.25 × 102 7.61 × 102 −0.74 −3.83 0.02
F6 1.30 × 100 3.84 × 10−1 −18.55 −21.04 −1.57
F7 7.56 × 10−2 2.24 × 10−2 −5.18 −5.8 1.42
F8 1.21 × 104 8.71 × 102 −1.88 −1.11 −1.33
F9 2.64 × 102 4.95 × 101 0.76 5.07 −1.41
F10 3.46 × 100 4.15 × 100 −0.03 0.25 −0.97
F11 7.65 × 10−1 7.36 × 10−2 −23.51 −22.63 −2.09
F12 6.39 × 100 2.61 × 100 −0.26 −1.9 2.06
F13 8.41 × 10−1 6.06 × 10−1 −3.37 −6.09 4.14

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 24. Results comparing MVO with RT FCMVO Mamdani using Gauss map in 50 dimensions.

Variant FCMVO Mamdani Gauss MVO MVO Gauss FMVO
Mamdani

Function Average SD Z Z Z

F1 1.80 × 100 7.24 × 10−1 −21.06 −13.73 −7.81
F2 5.15 × 1012 2.82 × 1013 1 0.98 1
F3 5.69 × 103 1.57 × 103 −0.45 −5.74 3.29
F4 6.25 × 101 7.34 × 100 25.59 −1.09 24.58
F5 9.39 × 102 1.07 × 103 1.18 −0.34 2.01
F6 2.04 × 100 7.85 × 10−1 −16.57 −17.53 −6.97
F7 1.27 × 10−1 4.80 × 10−2 0.7 −2.84 5.07
F8 1.19 × 104 8.55 × 102 −2.6 0.94 −3.23
F9 2.88 × 102 3.79 × 101 2.98 14.4 −0.31
F10 1.10 × 101 6.67 × 100 5.58 5.17 1.46
F11 8.32 × 10−1 1.22 × 10−1 −11.42 −10.08 −6.69
F12 2.50 × 101 8.44 × 100 11.4 0.07 12.87
F13 5.63 × 101 2.72 × 101 8.53 −2.05 10.91

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.
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Table 25. Results comparing MVO with R4 FCMVO Sugeno using Gauss map in 50 dimensions.

Variant FCMVO Sugeno Gauss MVO MVO Gauss FMVO
Sugeno

Function Average SD Z Z Z

F1 9.55 × 10−1 2.00 × 10−1 −24.33 −17.46 −8.22
F2 1.87 × 1013 9.87 × 1013 1.04 1.03 1.04
F3 3.59 × 103 1.09 × 103 −6.97 −11.2 6.1
F4 6.36 × 101 6.62 × 100 27.65 −0.58 26.74
F5 8.08 × 102 8.76 × 102 0.7 −0.86 1.38
F6 1.02 × 100 2.79 × 10−1 −19.21 −24.17 −5.86
F7 1.00 × 10−1 3.92 × 10−2 −1.82 −4.83 3.96
F8 1.15 × 104 6.91 × 102 −5.21 −1.26 −4.33
F9 2.26 × 102 2.65 × 101 −2.74 8.45 −5.09
F10 4.00 × 100 6.22 × 10−1 0.88 −4.37 −0.7
F11 7.52 × 10−1 5.91 × 10−2 −29.91 −27.23 −3.18
F12 2.27 × 101 8.04 × 100 10.47 −0.8 11.67
F13 3.61 × 101 3.15 × 101 4.33 −4.27 6.23

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 26. Results comparing MVO with RT FCMVO Mamdani using Sine map in 50 dimensions.

Variant FCMVO Mamdani Sine MVO MVO Sine FMVO
Mamdani

Function Average SD Z Z Z

F1 1.67 × 101 2.75 × 100 9.98 −10.55 21.75
F2 3.29 × 1011 1.29 × 1012 1.39 −1 1.39
F3 9.83 × 103 2.11 × 103 8.54 −5.49 11.82
F4 6.14 × 101 9.05 × 100 21.96 −1.48 21.25
F5 2.72 × 103 3.74 × 103 2.96 −1.36 3.21
F6 1.58 × 101 4.50 × 100 5.43 −16.27 13.65
F7 1.67 × 10−1 5.18 × 10−2 4.03 −4.04 8.62
F8 1.20 × 104 9.48 × 102 −2.15 1.45 −2.79
F9 3.37 × 102 4.62 × 101 6.72 15.02 3.78
F10 4.59 × 100 7.73 × 10−1 1.9 −2.81 −2.35
F11 1.13 × 100 4.07 × 10−2 5.46 −11.6 9.03
F12 2.25 × 101 8.97 × 100 9.31 −2.35 10.63
F13 6.34 × 101 2.42 × 101 10.75 −3.16 13.85

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Table 27. Results comparing MVO with RT FCMVO Sugeno using Sine map in 50 dimensions.

Variant FCMVO Sugeno Sine MVO MVO Sine FMVO
Sugeno

Function Average SD Z Z Z

F1 5.20 × 100 8.70 × 10−1 −12.45 −18.53 23.1
F2 5.45 × 1017 2.98 × 1018 1 0.99 1
F3 8.53 × 103 1.53 × 103 6.99 −8.74 21.38
F4 6.23 × 101 9.10 × 100 22.32 −1.11 21.37
F5 1.08 × 103 1.09 × 103 1.76 −2.78 2.34
F6 5.29 × 100 1.30 × 100 −9.63 −31.08 15.89
F7 1.26 × 10−1 3.27 × 10−2 0.77 −7.45 7.95
F8 1.18 × 104 9.91 × 102 −2.67 0.88 −2.12
F9 3.63 × 102 4.43 × 101 9 18.24 6.24
F10 7.63 × 100 5.30 × 100 3.69 2.44 1.82
F11 1.04 × 100 2.02 × 10−2 −10.02 −19.13 21.09
F12 1.60 × 101 4.70 × 100 9.57 −5.2 11.78
F13 4.51 × 101 2.99 × 101 6.01 −5.43 8.18

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.
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In the results that we found in each variant of the FCMVO algorithm, in most of the
cases, the FMVO variant was improved by the chaotic maps, but this could be observed
in some of the maps that we presented the test results, such as the case of FCMVO R1
variant with the Gauss map, and since the original algorithm surpassed in most of the
cases compared with other metaheuristics in Table 28, such as GSA and GA, and our
variants surpass the original algorithm, then it can be proven to be competitive against
other algorithms in the literature.
Table 28. Results comparing MVO other metaheuristics in 50 dimensions.

Variant MVO [13] GSA [40] GWO [28] GA [41]

Function Average SD Average SD Z Average SD Z Average SD Z

F1 1.38 × 100 2.92 × 10−1 1.81 × 102 1.48 × 102 −6.64 7.93 × 10−20 8.66 × 10−20 25.94 3.47 × 104 4.41 × 103 −43.05
F2 2.20 × 104 1.19 × 105 1.51 × 100 1.54 × 100 1.01 2.66 × 10−12 1.43 × 10−12 1.01 9.53 × 101 8.20 × 100 1.01
F3 2.52 × 103 8.38 × 102 3.31 × 103 7.07 × 102 −3.95 3.92 × 10−1 7.57 × 10−1 16.47 9.12 × 104 1.11 × 104 −43.73
F4 1.87 × 101 6.61 × 100 1.25 × 101 2.00 × 100 4.96 3.98 × 10−4 2.77 × 10−4 15.50 6.44 × 101 2.37 × 100 −35.65
F5 5.79 × 102 8.95 × 102 2.19 × 103 3.05 × 103 −2.78 4.74 × 101 8.65 × 10−1 3.25 5.83 × 107 1.08 × 107 −29.45
F6 1.41 × 100 2.90 × 10−1 2.42 × 102 1.63 × 102 −8.06 2.68 × 100 5.39 × 10−1 −11.40 3.55 × 104 4.67 × 103 −41.69
F7 7.19 × 10−2 2.99 × 10−2 3.48 × 10−1 1.47 × 10−1 −10.06 3.20 × 10−3 1.50 × 10−3 12.56 4.26 × 101 8.13 × 100 −28.66
F8 1.24 × 104 7.77 × 102 3.34 × 103 6.70 × 102 48.40 8.98 × 103 1.88 × 103 9.24 1.10 × 104 6.05 × 102 7.56
F9 2.88 × 102 4.55 × 101 5.97 × 101 1.13 × 101 26.71 4.11 × 100 5.25 × 100 33.99 3.86 × 102 1.96 × 101 −10.83

F10 2.65 × 100 3.19 × 100 1.48 × 100 5.40 × 10−1 1.99 3.77 × 10−11 1.45 × 10−11 4.56 1.80 × 101 3.77 × 10−1 −26.21
F11 8.08 × 10−1 7.45 × 10−2 1.33 × 102 1.50 × 101 −48.04 4.58 × 10−3 7.96 × 10−3 58.72 3.29 × 102 3.52 × 101 −50.92
F12 4.71 × 100 1.66 × 100 4.15 × 100 1.68 × 100 1.29 9.63 × 10−2 2.99 × 10−2 15.24 5.19 × 107 1.63 × 107 −17.42
F13 5.54 × 10−1 7.06 × 10−1 5.17 × 101 1.46 × 101 −19.22 2.14 × 100 2.88 × 10−1 −11.38 1.77 × 108 5.19 × 107 −18.73

Note: Bold and Underline denotes that the variant has passed the statistical test in that function.

Additionally, we have included some tests done with the FCMVO R1 variant in
the CEC 2017 [42] Single Objective Real-Parameter Numerical Optimization using the
Wilcoxon non-parametric test with two samples of 25 experiments presented in Table 29. In
Table 30, a real-world case of a Welded-beam design [24] compares the variants against the
original algorithm.

Table 29. Wilcoxon test for FCMVO R1 Gauss in 50 dimensions for CEC 2017.

Variant FCMVO R1 Gauss MVO

Function Average SD Average SD W+ W- p-Value Result

F1 1.28 × 104 1.10 × 104 3.67 × 104 1.30 × 104 7.00 318.00 0.000014 Pass
F2 2.36 × 108 9.01 × 108 4.76 × 1012 1.72 × 1013 5.00 320.00 0.000011 Pass
F3 3.00 × 102 1.02 × 10−1 3.03 × 102 8.17 × 10−1 0.00 325.00 0.000006 Pass
F4 4.81 × 102 3.01 × 101 5.31 × 102 3.61 × 101 9.00 316.00 0.000018 Pass
F5 7.12 × 102 3.90 × 101 6.85 × 102 3.60 × 101 248.00 77.00 0.010709 Fail
F6 6.15 × 102 4.79 × 100 6.19 × 102 1.18 × 101 126.00 199.00 0.163025 Fail
F7 9.30 × 102 2.36 × 101 9.79 × 102 7.04 × 101 50.00 275.00 0.001235 Pass
F8 1.06 × 103 2.61 × 101 1.01 × 103 3.12 × 101 278.00 47.00 0.000943 Fail
F9 1.37 × 104 2.10 × 103 1.22 × 104 4.35 × 103 215.00 110.00 0.078885 Fail
F10 5.97 × 103 4.90 × 102 7.22 × 103 5.26 × 102 5.00 320.00 0.000011 Pass
F11 1.35 × 103 6.78 × 101 1.40 × 103 8.01 × 101 73.00 252.00 0.008016 Pass
F12 1.61 × 107 7.82 × 106 3.12 × 107 2.00 × 107 36.00 289.00 0.000332 Pass
F13 8.77 × 103 4.75 × 103 1.83 × 105 1.08 × 105 0.00 325.00 0.000006 Pass
F14 2.31 × 104 7.88 × 103 5.29 × 104 3.48 × 104 48.00 277.00 0.001032 Pass
F15 5.47 × 103 2.98 × 103 6.94 × 104 3.36 × 104 0.00 325.00 0.000006 Pass
F16 3.23 × 103 2.53 × 102 3.17 × 103 2.15 × 102 209.00 116.00 0.105436 Fail
F17 2.84 × 103 2.09 × 102 3.18 × 103 1.88 × 102 33.00 292.00 0.000247 Pass
F18 1.77 × 105 4.01 × 104 4.12 × 105 2.25 × 105 13.00 312.00 0.000029 Pass
F19 4.86 × 103 1.67 × 103 1.25 × 106 7.94 × 105 0.00 325.00 0.000006 Pass
F20 3.02 × 103 1.56 × 102 3.11 × 103 2.41 × 102 149.00 176.00 0.358212 Fail
F21 2.53 × 103 2.92 × 101 2.47 × 103 2.91 × 101 316.00 9.00 0.000018 Fail
F22 7.83 × 103 4.95 × 102 8.83 × 103 4.51 × 102 14.00 311.00 0.000032 Pass
F23 2.98 × 103 3.41 × 101 2.91 × 103 3.99 × 101 320.00 5.00 0.000011 Fail
F24 3.19 × 103 4.22 × 101 3.06 × 103 3.69 × 101 324.00 1.00 0.000007 Fail
F25 2.99 × 103 1.91 × 101 3.03 × 103 1.86 × 101 10.00 315.00 0.000020 Pass
F26 6.13 × 103 3.17 × 102 5.70 × 103 4.46 × 102 274.00 51.00 0.001349 Fail
F27 3.35 × 103 4.46 × 101 3.30 × 103 5.49 × 101 262.00 63.00 0.003712 Fail
F28 3.26 × 103 3.44 × 100 3.31 × 103 1.05 × 101 0.00 325.00 0.000006 Pass
F29 4.21 × 103 1.88 × 102 4.68 × 103 3.41 × 102 18.00 307.00 0.000051 Pass
F30 2.27 × 106 7.21 × 105 2.80 × 107 7.69 × 106 0.00 325.00 0.000006 Pass

Note: Bold and Underline denotes that the variant has passed the statistical test for 0.05 in that function.
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Table 30. Wilcoxon Test for FCMVO R1 Gauss for welded-beam problem.

Variant FCMVO R1 Gauss MVO

Problem Average SD Average SD W+ W- p-Value Result

Welded-beam 1.98 × 10−3 2.11 × 10−3 4.07 × 10−3 3.89 × 10−3 73.00 252.00 0.009015 Pass

Note: Bold and Underline denotes that the variant has passed the statistical test for 0.05 in that function.

5. Conclusions

As we observed in the results found in the Tables, this new set of variants of the
MVO algorithm using chaos theory and Fuzzy Logic contain significant results, surpassing
in cases like Table 27, where the variant surpasses 13 cases of the comparison, by the
fact that several results are improved by the chaotic version of the algorithm comparing
with the non-fuzzy version surpassed in 7 cases, and also in comparison with the fuzzy
version, there is some improvement with some of the chaotic maps such as illustrated in
Tables 24 and 25.

We analyzed how the parameters affected by the chaotic maps improved the results in
some cases; in the R1 variant, the Gauss/mouse map was the best of all cases, surpassing
in seven cases the original algorithm without fuzzy logic and improving even more with
the aid of fuzzy logic, in the R2 variant the best maps where Iterative and Singer, and for
R4 the best maps where Circle, Sinusoidal, and Tent. In the case of the RT variant, we only
used it as a reference to analyze the behavior in the algorithm in the same chaotic map for
all the parameters.

Some of the observations, by implementing chaotic maps, where the generation of
chaotic maps and their implementation on the variants, where the symmetric relation of
some of the maps had an impact on the results, and was more evident on higher dimensions.
This work, as mentioned, is an extension of [16] by presenting the other variants of the
algorithm and comparing them against the original MVO algorithm.

One of the main things we observed in the results is that in some of the most difficult
mathematical functions, the variants could achieve better results in most cases, such as the
ones observed in Tables 24–27, but most of the variants had nearly the same results. Even
though in our results we did not have a definitive best variant of the FCMVO algorithm, we
could analyze how in different mathematical functions, these new variants can overcome
the original MVO and the FMVO variant used in previous works [14,15], giving us a start
point to test in other cases that could have a chaotic or erratic behavior, such as controllers
in high noise environments, and a sample of this is the application of the welded-beam
case. For future work, we are considering some of the variants obtained as the best ones to
test them in a more complete comparison with the CEC 2017 benchmark suite, and also,
we are looking forward to considering real-world applications, such as the ones in CEC
2020 [43,44] real-world application suite.
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