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Abstract: This manuscript contains several fixed point results for αΓ-F-fuzzy contractive mappings
in the framework of orthogonal fuzzy metric spaces. The symmetric property guarantees that the
distance function is consistent and does not favour any one direction in orthogonal fuzzy metric
spaces. No matter how the points are arranged, it enables a fair assessment of the separations between
all of them. In fixed point results, the symmetry condition is preserved for several types of contractive
self-mappings. Moreover, we provide several non-trivial examples to show the validity of our main
results. Furthermore, we solve non-linear fractional differential equations, the Atangana–Baleanu
fractional integral operator and Fredholm integral equations by utilizing our main results.

Keywords: fixed point; fuzzy metric spaces; integral equations; Atangana–Baleanu fractional integral
operator

1. Introduction

Fixed point theory plays an important role in the field of mathematics and has received
popularity due to its ability to deal with a wide range of mathematical equations in a straight
forward manner. As a result, the concrete solution of such equations is taken into account
in fixed point theory. Fixed point theory is currently one of the most attractive fields in the
area of nonlinear analysis and even in mathematics in general. Its results can be applied to
an extensive set of a distinct type of equations (integral, differential, matricial, etc.) in order
to prove the existence and uniqueness of several classes of nonlinear problems.

Zadeh [1] produced the idea of fuzzy sets. Then Schweizer and Sklar [2] produced
the idea of t-norm. This increased the range of mathematics. First of all, fuzzy metric
space was introduced by Karamosil and Michlek [3]. Then many researchers worked on
it and developed many ideas to do with fuzzy metric space. So fuzzy metric space is
very famous nowadays. The validity of fixed point theorem was proved by Gregory and
Sapena [4] in a fuzzy metric space. The fuzzy distance function in a fuzzy metric space
meets a number of criteria, including the symmetric property. With the symmetric property,
any two points in the fuzzy metric space can be separated from one another regardless of
their consideration order.

The classes of fuzzy contractive conditions were defined by Trade [5], Greogre and
Sapena [4] and Mihet [6]. Hung [7] introduced F-contraction in the framework of fuzzy
metric spaces. Zhou et al. [8] introduced some fixed point results for contraction mappings
in the context of fuzzy metric space. Hezarjaribi [9] introduced the notion of an orthogonal
fuzzy metric space and proved the validity of some fixed point theorems in it. Schweizer
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and Sklar [2] introduced the concept of statistical metric space and validated several fixed
point results with applications. Panda et al. [10] introduced an extended F-metric space
and validated related fixed point results. Some fixed point results were validated with a
new type of fuzzy contractive mapping, and also the Γ function family was defined by
Patel et al. [11]. Nazam et al. [12] introduced (Ψ, Φ) orthogonal interpolative contraction
and validated fixed point results. Moreover, several related fixed point results were
validated in [13,14]. The authors in [15–17] worked on complex valued metric spaces
and complex valued fuzzy metric spaces, and utilized several generalized contraction
mappings to validate fixed point results.

Inspired by the work of [11], we introduce αΓ-F-orthogonal fuzzy contractive map-
pings and give examples to verify our main result. We divide this paper into four main
parts. In the first part, we present some basic definitions and in the second part we validate
main theorems and corollaries for fixed point results and also give an example to fulfill
the conditions of our main result. In the third part, we provide several applications of our
main results, in which we utilize the Atangana–Baleanu fractional integral operator and
Fredholm integral equations to show the validity of the main results, and we present the
conclusion in the fourth part of the paper.

2. Preliminaries

In this section, we provide several definitions that are helpful for readers with respect
to understanding the main section.

Definition 1 ([2]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a continuous t-norm (in
short, ctn) if it satisfies the following axioms:
(T1) ă ∗ ē = ē ∗ ă and ă ∗ (ē ∗ ĉ) = (ă ∗ ē) ∗ ĉ for all ă, ē, ĉ ∈ I;
(T2) ∗ is continuous;
(T3) ă ∗ 1 = ă for all ă ∈ I;
(T4) ă ∗ ē ≤ ĉ ∗ ı̃ when ă ≤ c and ē ≤ ı̃, with ă, ē, ĉ, ı̃ ∈ I.

Example 1. (i) ă ∗ ē = min{ă, ē}
(ii) ă ∗ ē = ăē
(iii) ă ∗ ē = max{0, ă + ē− 1}.

Definition 2 ([8]). A mapping σ : A×A× (0,+∞) → [0, 1] and ∗ is ctn; then (A, σ, ∗) is
called fuzzy metric space (in short, FMS) if it satisfies the following axioms for all , $, w ∈ A and
ρ, v > 0 :
C1: σ(, $, ρ) > 0;
C2: σ(, $, ρ) = 1 iff  = $;
C3: σ(, $, ρ) = σ($, , ρ);
C4: σ(, w, ρ + v) ≥ σ(, $, ρ)∗ σ($, w, v);
C5: σ(, v, .) : (0,+∞)→ [0, 1] is continuous.
If we replace (C4) by
C6: σ(, w, max{ρ, v}) ≥ σ(, $, ρ)∗ σ($, w, v),
then (A, σ, ∗) is said to be a non-Archimedean fuzzy metric space (in short, NAFMS). Note that,
Since (C6) implies (C4), each non-Archimedean fuzzy metric space is a fuzzy metric space.

Definition 3 ([9]). Suppose (A, σ, ∗) is an FMS and ⊥∈ A×A is a binary relation. Assume
that there exists 0 ∈ A s.t 0 ⊥  for all  ∈ A. Then, it is called an orthogonal fuzzy metric space
(in short OFMS). We denote that OFMS is (A, σ, ∗,⊥).

Definition 4 ([9]). Suppose (A, σ, ∗,⊥) is an OFMS. A sequence {r}r∈N is called O-sequence if
r ⊥ r+1 for all r ∈ N. Moreover, Λ : A → A is⊥-continuous in  ∈ A if for each O- sequence (in
short, OS) {r}r∈N inA if limr→+∞ σ(r, , ρ) = 1 for all ρ > 0, then limr→+∞ σ(Λr, Λ, ρ) = 1
for all ρ > 0. Furthermore, Λ is ⊥-continuous if Λ is ⊥-continuous in each  ∈ A. Moreover, we
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say that Λ is ⊥-preserving if Λ ⊥ Λ$ whence  ⊥ $. Finally, A is orthogonally complete (in brief,
OC) if every O Cauchy sequence (in short, OCS) is convergent.

Definition 5 ([11]). Suppose (A, σ, ∗,⊥) is an OFMS and F∈4F. The mapping Λ : A → A is
said to be fuzzy F-contraction if there exists τ ∈ (0, 1) such that

τ.F(σ(Λ, Λ$, ρ)) ≥ F(σ(, $, ρ)).

Definition 6 ([11]). Let Λ : A → A and α : A×A → [0,+∞) be a function. We say that Λ is
an α-admissible mapping if

, $ ∈ A, α(, $) ≥ 1 ⇒ α(Λ, Λ$) ≥ 1.

Definition 7 ([11]). Suppose Λ : A → A and two functions α, η : A×A → [0,+∞). We say
that Λ is an α-admissible mapping with respect to η if

, $ ∈ A, α(, $) ≥ η(, $) ⇒ α(Λ, Λ$) ≥ η(Λ, Λ$).

Definition 8 ([12]). The OFMS (A, σ, ∗,⊥) is called ⊥-regular if for any orthogonal sequence
{r} ⊆ A converging to , we have either r ⊥ , or  ⊥ r for all r ∈ N.

Definition 9 ([12]). Let Λ : A → P(A) and ⊥⊂ A×A be an orthogonal relation. The mapping
Λ is called ⊥-preserving if for each l ∈ A and u ∈ Λ(l) such that l ⊥ u or u ⊥ l, there is
w ∈ Λ(u) satisfying u ⊥ w or w ⊥ u.

Definition 10 ([11]). Let (A, σ, ∗,⊥) be an OFMS and a mapping Λ : A → A. Suppose two
functions α, η : A × A → [0,+∞). A Λ is called an αΓ-F-fuzzy contractive mapping, if for
, $ ∈ A and η(, Λ) ≤ α(, $) and σ(Λ, Λ$, ρ) > 0, we have

η(σ(, Λ, ρ), σ($, Λ$, ρ), σ($, Λ, ρ)).F(σ(Λ, Λ$, ρ)) ≥ F(σ(, $, ρ)),

where Γ ∈ 4Γ and F ∈ 4F.

Definition 11 ([11]). Suppose (A, σ, ∗,⊥) is an OFMS and α − η : A×A → [0,+∞) and
Λ : A → A is a function. Λ is called an α−-continuous mapping on an OFMS. If, for a given
 ∈ A and O-sequence {r}

lim
r→+∞

σ(r, , ρ)→ 1, α(r, r+1) ≥ η(r, r+1)

for all r ∈ N, then limr→+∞ σ(Λr, Λ, ρ)→ 1.

3. Fixed Point Theorems for αΓ-F-Orthogonal Fuzzy Contraction

In this section, we prove several fixed point results for contraction mappings.
The set of all the continuous function MΓ is Γ : (R+)

4 → R satisfying the following:
1. for all ρ1, ρ2, ρ3, ρ4 ∈ R+ with max(ρ1, ρ2, ρ3, ρ4) = 1, there exists τ ∈ (0, 1) such

that Γ(ρ1, ρ2, ρ3, ρ4) = τ.
We have the following examples:
1’. Γ(ρ1, ρ2, ρ3, ρ4) = τ + L. loge max(ρ1, ρ2, ρ3, ρ4), where L ∈ R+.
2’. Γ(ρ1, ρ2, ρ3, ρ4) =

τ
max(ρ1,ρ2,ρ3,ρ4)

.
3’. Γ(ρ1, ρ2, ρ3, ρ4) =

e.τ
emax(ρ1,ρ2,ρ3,ρ4)

.

Here, τ ∈ (0, 1) and then Γ ∈ 4Γ and F ∈ 4F.



Symmetry 2023, 15, 1300 4 of 16

Definition 12. Let (A, σ, ∗,⊥) be an OFMS and a mapping Λ : A → A. Furthermore, suppose
that α, η : A×A → [0,+∞). A mapping is called α − F-OF contractive mapping on A, if for
, $ ∈ A with  ⊥ $ or $ ⊥  and η(, Λ) ≤ α(, $) and σ(Λ, Λ$, ρ) > 0, we have

η(σ(, Λ, ρ), σ($, Λ$, ρ), σ($, Λ, ρ)).F(σ(Λ, Λ$, ρ)) ≥ F(σ(, $, ρ)), (1)

where Γ ∈ 4Γ and F ∈ 4F.

Definition 13. Let (A, σ, ∗,⊥) be an OFMS and α− η : A×A → [0,+∞) and Λ : A → A
be a function. We say Λ is an α−-continuous mapping on an OFMS. If, for a given  ∈ A and
sequence {r} such that r ⊥  or  ⊥ r,

lim
r→+∞

σ(r, , ρ)→ 1, α(r, r+1) ≥ η(r, r+1),

for all r ∈ N, then limr→+∞ σ(Λr, Λ, ρ)→ 1.

Lemma 1. Let (A, σ, ∗,⊥) be an OFMS and {r} be an O-sequence inA such that for each r ∈ N,
r ⊥ r+1 or r+1 ⊥ r

lim
ρ→0+

σ(r, r+1, ρ) > 0,

and for any ρ > 0,
lim

r→+∞
σ(r, r+1, ρ) = 1.

If {r} is not an OCS in A, then there exists ε ∈ (0, 1), ρ0 > 0 and two O-sequences of positive
integers {rk}, {uk}, rk > uk > k, k ∈ N, such that the following{

σ
(

uk , rk , ρ0
)}

,
{

σ
(

uk , rk+1, ρ0
)}

,
{

σ
(

uk−1, rk , ρ0
)}

,{
σ
(

uk−1, rk+1, ρ0
)}

,
{

σ
(

uk+1, rk+1, ρ0
)}

tend to 1− ε as k→ +∞.

Now, we are ready to validate our main results.

Theorem 1. Suppose (A, σ, ∗,⊥) is an OFMS. A mapping Λ : A → A satisfies the following con-
ditions:

1. Λ is an α-admissible mapping with respect to η;
2. For each 0 ∈ A, there is 1 = Λ(0) such that 1 ⊥ 0 or 0 ⊥ 1;
3. Λ is an αΓ − η − F-orthogonal fuzzy contractive mapping;
4. ∃ 0 ∈ A such that α(0, Λ0) ≥ η(0, Λ0);
5. Λ is an α−η-continuous map;
6. Λ is orthogonal preserving mapping.
Then, Λ has an FP. Moreover, Λ has a UFP whenever α(, $) ≥ η(, ) for all , $ ∈ Fix(Λ).

Proof. Suppose 0 ∈ A ∃ 1 ∈ A s.t 0 ⊥ 1 or 1 ⊥ 0 s.t α(0, Λ0) ≥ η(0, Λ0). Then
by using the ⊥-preserving nature of Λ for each 0 ∈ A, we define the OS {r} such that
r ⊥ r+1 or r+1 ⊥ r by r+1 = Λr(0) = Λr for all r ∈ N. Now, Since by (1) Λ,

α(0, 1) = α(0, Λ0) ≥ η(0, Λ0 = η(0, 1)),

by taking this process continuously, we have

η(r−1, r) ≤ α(r−1, r)

for all r ∈ N.
Furthermore, suppose r0 ∈ N such that r0 = Λr0 , then r0 is FP of Λ and there is

nothing to prove.
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Let us assume r 6= r+1 or σ(r, r+1, ρ) ∈ (0, 1) for all r ∈ N. With conditions (3)
and (1) where r ⊥ r−1 or r−1 ⊥ r, we obtain,

Γ(σ(r−1, Λr−1, ρ), σ(r, Λr, ρ), σ(r−1, Λr, ρ), σ(r, Λr−1, ρ)).

F(σ(Λr−1, Λr, ρ)) ≥ F(σ(r−1, r, ρ)),

which implies

Γ(σ(r−1, r, ρ), σ(r, r+1, ρ), σ(r−1, r+1, ρ), σ(r, r, ρ)).

F(σ(r, r+1, ρ)) ≥ F(σ(r−1, r, ρ)).

Since max(σ(r−1, r, ρ), σ(r, r+1, ρ), σ(r−1, r+1, ρ), σ(r, r, ρ)) = 1, with the Γ-function ∃
τ ∈ (0, 1) we have

Γ(σ(r−1, r, ρ), σ(r, r+1, ρ), σ(r−1, r+1, ρ), σ(r, r, ρ)) = τ.

Therefore,
τ.F(σ(r, r+1, ρ)) ≥ F(σ(r−1, r, ρ)).

We have
F(σ(r, r+1, ρ)) > τ.F(σ(r, r+1, ρ)) ≥ F(σ(r−1, r, ρ)). (2)

This is because F is a strictly increasing function (in short, SIF).

σ(r, r+1, ρ) > σ(r−1, r, ρ).

Thus, the sequence {σ(r, r+1, ρ)} (ρ > 0) is an SIF-bounded form as above, and thus
sequence {σ(r, r+1, ρ)} (ρ > 0) is convergent. Λ is orthogonal preserving mapping. So,
there exists α(ρ) ∈ I such that

lim
r→+∞

σ(r, r+1, ρ) = α(ρ), (3)

for any ρ > 0 and r ∈ N. It follows that

σ(r, r+1, ρ) < α(ρ), (4)

by (3) and (4), for any ρ > 0; we have

lim
r→+∞

F(σ(r, r+1, ρ)) = F(α(ρ)− 0). (5)

We have to show that α(ρ) = 1. Assume that α(ρ) < 1 for some ρ > 0 and r → +∞ in (2);
using (5), we obtain

F(α(ρ)− 0) ≥ τ.F(α(ρ)− 0) ≥ F(α(ρ)− 0).

This is a contradiction with F(α(ρ)− 0) > 0. Therefore,

lim
r→+∞

σ(r, r+1, ρ) = 1. (6)

Next, we have to show that {r} is an OCS. Let {r} not be an OCS. By using the Lemma 1,
∃ ε ∈ (0, 1), ρ0 > 0 and sequences

{
uk

}
and

{
rk

}
such that uk ⊥ rk or rk ⊥ uk

lim
k→+∞

σ
(

uk , rk , ρ0
)
= 1− ε. (7)

Again, in (1) we have
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Γ
(
σ
(

uk , uk+1, ρ
)
, σ
(

rk , rk+1, ρ
)
, σ
(

uk , rk+1, ρ
)
, σ
(

rk , uk+1
))

.F
(
σ
(

uk+1, rk+1, ρ
))
≥ F

(
σ
(

uk , rk , ρ
))

.

Let the limit k→ +∞; we have

limk→+∞[Γ
(
σ
(

uk , uk+1, ρ
)
, σ
(

rk , rk+1, ρ
)
, σ
(

uk , rk+1, ρ
)
, σ
(

rk , uk+1
))

.F
(
σ
(

uk+1, rk+1, ρ
))
] ≥ limk→+∞ F

(
σ
(

uk , rk , ρ
))

.
(8)

This implies

Γ
(

1, 1, lim
k→+∞

σ
(

uk , rk+1, ρ
)
, lim

k→+∞
σ
(

rk , uk+1
))

.

.F
(
σ
(

uk+1, rk , ρ
))
≥ lim

k→+∞
F
(
σ
(

uk , rk , ρ
))

.

Since max
(
1, 1, σ

(
uk , rk+1, ρ

)
, σ
(

rk , uk+1
))

= τ.
Using (7) and (8),

τ.F((1− ε)− 0) ≥ F((1− ε)− 0).

This is a contradiction with F((1− ε)− 0) > 0. Thus, The sequence {r} is an OCS in A.
Since OFMS (A, σ, ∗,⊥) is complete, there exists ∗ ∈ A such that ∗ ⊥ r or r ⊥ ∗

lim
r→+∞

r = ∗.

Suppose ∗ is an FP of Λ. With condition (5) and η(r−1, r) ≤ α(r−1, r) for all r ∈ N,
limr→+∞ σ(Λr, Λ∗, ρ) = 1 implies σ(∗, Λ∗, ρ) = 1; that is, ∗ = Λ∗.

Let , $ ∈ Fix(Λ) such that  ⊥ $ or $ ⊥ ; by (1),

Γ(σ(, , ρ), σ($, $, ρ), σ(, $, ρ), σ($, , ρ)).F(σ(, $, ρ)) ≥ F(σ(, $, ρ))

Γ(1, 1, σ(, $, ρ), σ($, , ρ)).F(σ(, $, ρ)) ≥ F(σ(, $, ρ)).

Since max(1, 1, σ(, $, ρ), σ($, , ρ)).F(σ(, $, ρ)) = 1, there exists τ ∈ (0, 1) such that
Γ(1, 1, σ(, $, ρ), σ($, , ρ)).F(σ(, $, ρ)) = τ. Hence we show that

τ.F(σ(, $, ρ)) ≥ F(σ(, $, ρ)).

This implies that
F(σ(, $, ρ)) > τ.F(σ(, $, ρ)) ≥ F(σ(, $, ρ)),

which is contradiction. Thus, Λ has a UFP.

Corollary 1. Let (A, σ, ∗,⊥) be an OCFMS. Suppose a mapping Λ : A → A which satisfies the
following conditions:

1. Λ is an α-admissible mapping with respect to ;
2. For each 0 ∈ A, there is 1 = Λ(0) such that 1 ⊥ 0 or 0 ⊥ 1;
3. For , $ ∈ A such that  ⊥ $ or $ ⊥  with α(, $) ≥ η(, Λ) and σ(Λ, Λ$, ρ) > 0, we

have
τ.F(σ(Λ, Λ$, ρ)) ≥ F(σ(, $, ρ)),

where  6= $, τ ∈ (0, 1) and F ∈ 4F;
4. There exists 0 ∈ A such that α(0, Λ0) ≥ η(0, Λ0);
5. Λ is an α−-continuous map;
6. Λ is orthogonal preserving mapping.
Then, Λ has an FP. Moreover, Λ has a UFP whenever α(, $) ≥ η(, ) for all , $ ∈ Fix(Λ).
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Example 2. Suppose A = [0,+∞) and t-norm is defined by ρ(ă, ē) = ăē for all ă, ē ∈ I. Define a
fuzzy set σ : A×A× (0, 1)→ I such that

σ(, $, ρ) = e
−|−$|

ρ

for all , $ ∈ A and for all ρ > 0.

Define the relation ⊥ ⊂ A2 as

` ⊥ w if `w ≤ {`, w}.

Thus, (A, σ, ∗,⊥) is an OCFMS.
Define Λ : A → A such that

Λ() =

{ 1
2 2,if  ∈ [0, 1],

3, if  ∈ (1,+∞).

}
Let −α: A×A → [0,+∞] defined by (, $) = 1

4 for all , $ ∈ A and

α(, $) =

{ 1
2 if , $ ∈ [0, 1]

1
9 otherwise.

}

Let F() = loge  be any SIF and consider Γ function Γ : (R+)
4 → R defined by Γ(ρ1, ρ2,ρ3, ρ4)

= τ, where τ ∈ (0, 1).
1. Let α(, $) ≥ η(, $), then , $ ∈ [0, 1]; on the other hand, Λ() ∈ [0, 1] for all

, $ ∈ [0, 1], then α(Λ, Λ$) ≥ η(Λ, Λ$) (or α(Λ, Λ$) = α
(

1
2 2, 1

2 $2
)

= 1
2 > 1

4 ). So,
condition (1) of Theorem 3.4 is satisfied.

2. ∃ 0 ∈ A, so condition (4) is also satisfied.
3. Let r = 1

r → 0, α(r, r+1) = α
(

1
r , 1

r+1

)
= 1

2 ≥ η
(

1
r , 1

r+1

)
= 1

4 for all r ∈ N. This

implies Λ(r) = Λ
(

1
r

)
→ 0 = Λ(0). Thus, condition (5) is satisfied. Similarly, all other

conditions are satisfied.
Now, let  ⊥ $; then

τ.F(σ(Λ, Λ$, ρ)) = τ.F
(

e−
(

1
2ρ |

2−$2|
))

= τ. log
{

e−
(

1
2ρ |

2−$2|
)}

= −τ.
1

2ρ
| 2 − $2 |

≥ −| − $ |
ρ

= log e−
|−$|

ρ

= F(σ(, $, ρ)).

Hence, all the conditions of Theorem 1 hold. Thus,  = 0 is an FP for the self map Λ.
Now, given  = 2, $ = 3 and τ ∈ (0, 1), the conditions of Theorem 1 are not satisfied
without orthogonality.

If we let η(, $) = 1, with respect to Theorem 1 and Corrolary 1, we have the following.

Definition 14. Suppose (A, σ, ∗,⊥) is an OFMS and a mapping Λ : A → A. Furthermore,
suppose two functions α, η : A×A → [0,+∞). Then, a mapping Λ is called αΓ−F-orthogonal
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fuzzy contractive if for , $ ∈ A with  ⊥ $ or $ ⊥  and α(, $) ≥ 1 and σ(Λ, Λ$, ρ) > 0, we
have

Γ(σ(, Λ, ρ), σ($, Λ$, ρ), σ($, Λ, ρ)).F(σ(Λ, Λ$, ρ)) ≥ F(σ(, $, ρ)), (9)

where Γ ∈ 4Γ and F ∈ 4F.

Theorem 2. Suppose (A, σ, ∗,⊥) is an OCFMS. Suppose a mapping Λ : A → A satisfies the
following conditions:

1. Λ is an α-admissible mapping with respect to ;
2. For each 0 ∈ A, there is 1 = Λ(0) such that 1 ⊥ 0 or 0 ⊥ 1;
3. Λ is an αΓ−F-orthogonal fuzzy contractive mapping;
4. ∃ 0 ∈ A such that α(0, Λ0) ≥ 1;
5. Λ is an α-continuous map;
6. Λ is orthogonal preserving mapping.
Then, Λ has an FP. Moreover, Λ has a UFP whenever α(, $) ≥ 1 for all , $ ∈ Fix(Λ).

Proof. Proceeding as in the proof of Theorem 1, we have the following.

Corollary 2. Suppose (A, σ, ∗,⊥) is an OCFMS. Suppose a mapping Λ : A → A satisfies the
following conditions:

1. Λ is an α-admissible mapping with respect to ;
2. For each 0 ∈ A, there is 1 = Λ(0) such that 1 ⊥ 0 or 0 ⊥ 1;
3. If for , $ ∈ A such that  ⊥ $ or $ ⊥  with α(, $) ≥ 1 and σ(Λ, Λ$, ρ) > 0, we have

τ.F(σ(Λ, Λ$, ρ)) ≥ F(σ(, $, ρ)),

where  6= $, τ ∈ (0, 1) and F ∈ 4F;
4. ∃ 0 ∈ A such that α(0, Λ0) ≥ 1;
5. Λ is an α-continuous map;
6. Λ is orthogonal preserving mapping.
Then, Λ has an FP. Moreover, Λ has a UFP whenever α(, $) ≥ 1 for all , $ ∈ Fix(Λ).
If we take α(, $) = 1 in Corollary 2 for all , $ ∈ A, we obtain the following result.

Corollary 3. Let (A, σ, ∗,⊥) be an OCFMS such that

lim
ρ→0+

σ(, $, ρ) > 0

for all , $ ∈ A. If Λ : A → A is a continuous OF F-contraction, then Λ has a UFP in A.

In the next theorem, if we omit condition (5) from theorem then, we have following
result.

Theorem 3. Suppose (A, σ, ∗,⊥) is an OCFMS. Suppose a mapping Λ : A → A satisfies the
following conditions:

1. Λ is an α-admissible mapping with respect to ;
2. For each 0 ∈ A, there is 1 = Λ(0) such that 1 ⊥ 0 or 0 ⊥ 1;
3. Λ is an αΓ−F-orthogonal fuzzy contractive mapping;
4. ∃ 0 ∈ A such that α(0, Λ0) ≥ η(0, Λ0);
5. If {r} is an OS in A such that r ⊥ r+1 or r+1 ⊥ r and α(r, r+1) ≥ η(r, r+1) with

r →  as r → +∞, then


(

Λr, Λ2 r
)
≤ α(Λr, ) or η

(
Λ2 r, Λ3 r

)
≤ α

(
Λ2 r, 

)
holds for all r ∈ N.

6. Λ is orthogonal preserving mapping.
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Then, Λ has an FP. Moreover, Λ has a UFP whenever α(, $) ≥ 1 for all , $ ∈ Fix(Λ).

Proof. Let 0 ∈ A ∃ 1 ∈ A such that 0 ⊥ 1 or 1 ⊥ 0 such that α(0, Λ0) ≥ (0, Λ0).
Proceeding as in the proof of Theorem 1, we conclude that

α(r, r+1) ≥ η(r, r+1) and r → ∗ as r → +∞

where, r+1 = Λr. By assumption (5), either

η
(

Λr, Λ2 r
)
≤ α(Λr, ∗) or η

(
Λ2 r, Λ3 r

)
≤ ff

(
Λ2 r, ∗

)
is satisfied for all r ∈ N. Equivalently, ∃ is a subsequence

{
rk

}
of {r} such that rk ⊥ rk+1

or rk+1 ⊥ rk ,
η
(

rk , rk+1
)
≤ α

(
rk , ∗

)
,

and by (1), we obtain

Γ
(
σ
(

rk , Λrk , ρ
)
, σ(∗, Λ∗, ρ), σ

(
rk , Λ∗, ρ

)
, σ
(

∗, Λrk , ρ
))

.F
(
σ
(
Λrk , Λ∗, ρ

))
≥ F

(
σ
(

rk , ∗, ρ
))

,

which implies for any ρ > 0,

F
(
σ
(
Λrk , Λ∗, ρ

))
> τ.F

(
σ
(
Λrk , Λ∗, ρ

))
≥ F

(
σ
(

rk , ∗, ρ
))

.

Since F is SIF,
σ
(
Λrk , Λ∗, ρ

)
> σ

(
rk , ∗, ρ

)
.

lim
k→+∞

σ
(
Λrk , Λ∗, ρ

)
> lim

k→+∞
σ
(

rk , ∗, ρ
)

then we obtain σ(∗, Λ∗, ρ) = 1, i.e, ∗ = Λ∗. The uniqueness of the FP is similar to
Theorem 1.

Corollary 4. Let (A, σ, ∗,⊥) be an OCFMS. Suppose a mapping Λ : A → A satisfies the
following conditions:

1. Λ is an α-admissible mapping with respect to ;
2. For each 0 ∈ A, there is 1 = Λ(0) such that 1 ⊥ 0 or 0 ⊥ 1;
3. If for , $ ∈ A such that  ⊥ $ or $ ⊥  with α(, $) ≥ 1 and σ(Λ, Λ$, ρ) > 0, we have

τ.F(σ(Λ, Λ$, ρ)) ≥ F(σ(, $, ρ)),

where  6= $, τ ∈ (0, 1) and F ∈ 4F;
4. ∃ 0 ∈ A such that α(0, Λ0) ≥ η(0, Λ0);
5. If {r} is an OS in A such that r ⊥ r+1 or r+1 ⊥ r and α(r, r+1) ≥ η(r, r+1) with

r →  as r → +∞, then

η
(

Λr, Λ2 r
)
≤ α(Λr, ) or η

(
Λ2 r, Λ3 r

)
≤ α

(
Λ2 r, 

)
holds for all r ∈ N.

6. Λ is orthogonal preserving mapping.
Then, Λ has an FP. Moreover, Λ has a UFP whenever α(, $) ≥ 1 for all , $ ∈ Fix(Λ).
If we take η(, $) = 1 in Theorem 3 and Corollary 4, then we obtain the following;

Theorem 4. Suppose (A, σ, ∗,⊥) is an OFCFMS. Suppose a mapping Λ : A → A satisfies the
following conditions:

1. Λ is an α-admissible mapping;
2. For each 0 ∈ A, there is 1 = Λ(0) such that 1 ⊥ 0 or 0 ⊥ 1;
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3. Λ is an αΓ−F-orthogonal fuzzy contractive mapping;
4. ∃ 0 ∈ A such that α(0, Λ0) ≥ 1;
5. If {r} is an OS in A such that r ⊥ r+1 or r+1 ⊥ r and α(r, r+1) ≥ 1 with r →  as

r → +∞, then
α(r, ) ≥ 1 or α(r+1, ) ≥ 1

holds for all r ∈ N.
6. Λ is orthogonal preserving mapping.
Then, Λ has an FP. Moreover, Λ has a UFP whenever α(, $) ≥ 1 for all , $ ∈ Fix(Λ).

Proof. Suppose 0 ∈ A ∃ 1 ∈ A s.t 0 ⊥ 1 or 1 ⊥ 0 such that α(0, Λ0) ≥ 1. Proceeding
as in the proof of theorem 1, we conclude that

α(r, r+1) ≥ 1 and r → ∗ as r → +∞

where, r+1 = Λr. By assumption 5, α(Λr, ∗) ≥ 1 holds for all r ∈ N. So, by Lemma 1
∃ a subsequence

{
rk

}
of {r} such rk ⊥ rk+1 or rk+1 ⊥ rk , by definition of αΓ−F-OF

contractive mapping; we obtain that

Γ
(
σ
(

rk , Λrk , ρ
)
, σ(∗, Λ∗, ρ), σ

(
rk , Λ∗, ρ

)
, σ
(

∗, Λrk , ρ
))

.F
(
σ
(
Λrk , Λ∗, ρ

))
≥ F

(
σ
(

rk , ∗, ρ
))

,

This implies for any ρ > 0,

F
(
σ
(
Λrk , Λ∗, ρ

))
> τ.F

(
σ
(
Λrk , Λ∗, ρ

))
≥ F

(
σ
(

rk , ∗, ρ
))

.

Since F is SIF,
σ
(
Λrk , Λ∗, ρ

)
> σ

(
rk , ∗, ρ

)
.

lim
k→+∞

σ
(
Λrk , Λ∗, ρ

)
> lim

k→+∞
σ
(

rk , ∗, ρ
)

then we obtain σ(∗, Λ∗, ρ) = 1, i.e, ∗ = Λ∗. The uniqueness of the FP is similar to
Theorem 3.

Corollary 5. Suppose (A, σ, ∗,⊥) is an OCFMS. Suppose a mapping Λ : A → A satisfies the
following conditions:

1. Λ is an α-admissible mapping;
2. For each 0 ∈ A, there is 1 = Λ(0) such that 1 ⊥ 0 or 0 ⊥ 1;
3. If for , $ ∈ A such that  ⊥ $ or $ ⊥  with α(, $) ≥ 1 and σ(Λ, Λ$, ρ) > 0, we have

τ.F(σ(Λ, Λ$, ρ)) ≥ F(σ(, $, ρ)),

where  6= $, τ ∈ (0, 1) and F ∈ 4F;
4. ∃ 0 ∈ A such that α(0, Λ0) ≥ 1;
5. If {r} is an OS in A such that r ⊥ r+1 or r+1 ⊥ r and α(r, r+1) ≥ 1 with r →  as

r → +∞, then
α(Λr, ) ≥ 1 or α

(
Λ2 r, 

)
≥ 1

holds for all r ∈ N.
6. Λ is orthogonal preserving mapping.
Then, Λ has an FP. Moreover, Λ has a UFP whenever α(, $) ≥ 1 for all , $ ∈ Fix(Λ).
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4. Applications
4.1. Application to Nonlinear Differential Equation

For the existence and uniqueness of our solution, we validate an application of the
Corollary 5 for a nonlinear differential equation.

C Hβ((ρ)) = t(ρ, (ρ)) (10)

where (0 < ρ < 1, 1 < β ≤ 2) via the integral boundary conditions

(0) = 0, (1) =
∫ 

0
(v)dv (0 <  < 1) (11)

where C Hβ denotes the Caputo fractional derivative of order β and a continous function
t : I × R → R. Here, (A, ‖ . ‖+∞). Let us consider the Banach space C(I,R) of all
continuous functions defined on a real interval I (where I = [0, 1])

‖  ‖+∞= sup
ρ∈[0,1]

| (ρ) | (12)

Suppose a complete OFMS (A, σ, ∗,⊥). The triple
(
A, σ, ∗p,⊥

)
is an OFMS where the

set σ is defined by

σ(, $, ρ) = e
−|−$|

ρ (13)

where  ⊥ $ or $ ⊥  and , $ ∈ A and ρ > 0. For a continuous function h : R+ → R,
the Caputo derivative of fractional order β is defined by

C Hβh(ρ) =
1

Γ(r− β)

∫ ρ

0

g(v)

(ρ− v)β−r−1 dv (14)

(r− 1 < β < r, r = [β] + 1), where [β] denotes the integer part of the real number β.
Now, for the continuous function g : R+ → R, the Reimann–Liouville fractional

derivative of order β is defined by

C Hβg(ρ) =
1

Γ(r− β)

dr

dρr

∫ ρ

0

g(v)

(ρ− v)β−r−1 dv (15)

r = [β] + 1; the right side is point-wise defined on (0,+∞).

Theorem 5. Let 1. ζ : R×R→ R be a function and τ ∈ (0, 1) such that

| f (ρ, a)− f (ρ, b) |≤ Γ(β + 1)
5

| a− b |
τ

(16)

for all ρ ∈ I and a, b ∈ R with ζ(a, b) > 0;
2. ∃ 0 ∈ A such that 0 ⊥ Λ0 or Λ0 ⊥ 0 and ζ(0(ρ), Λ0(ρ)) > 0 for all ρ ∈ [0, 1],

where, Λ : A → A is defined by

Λ(ρ) =
1

Γβ

∫ ρ

0
(ρ− v)β−1 f (v, (v))dv− 2ρ

(2− η2)Γβ

∫ ρ

0
(1− v)β−1 f (v, (v))dv

+
2ρ

(2− η2)Γβ

∫ 

0

(∫ v

0
(v− β)β−1 f (u, (u)du)

)
dv (ρ ∈ [0, 1]);

3. For each ρ ∈ I and , $ ∈ A such that  ⊥ $ or $ ⊥ , ζ((ρ), $(ρ)) > 0 implies
ζ(Λ(ρ), Λ$(ρ)) > 0;

4. If {r} is an orthogonal sequence in A such that r →  in A and r ⊥ r+1 or r+1 ⊥ r
and ζ(r, r+1) > 0 for all r ∈ N, then ζ(r, ) > 0 for all r ∈ N.

5. Λ is orthogonal preserving mapping.
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Then, (10) has at least one solution.

Proof. Suppose  ∈ A satisfies (10) if and only if it satisfies the equation

(ρ) =
1

Γβ

∫ ρ

0
(ρ− v)β−1 f (v, (v))dv− 2ρ

(2− η2)Γβ

∫ ρ

0
(1− v)β−1 f (v, (v))dv

+
2ρ

(2− η2)Γβ

∫ 

0

(∫ v

0
(v− β)β−1 f (u, (u)du)

)
dv

Then problem (10) is equivalent to finding ∗ ∈ A, which is an FP of Λ.
Now, let , $ ∈ A such that  ⊥ $ or $ ⊥  and ζ((ρ), $(ρ)) > 0 for all ρ ∈ I. By (1),

we find
| Λ(ρ)−Λ$(ρ) |=

| 1
Γβ

∫ ρ

0
(ρ− v)β−1 f (v, (v))dv− 2ρ

(2− η2)Γβ

∫ ρ

0
(1− v)β−1 f (v, (v))dv

+
2ρ

(2− η2)Γβ

∫ 

0

(∫ v

0
(v− u)β−1 f (u, (u)du)

)
dv

− 1
Γβ

∫ ρ

0
(ρ− v)β−1 f (v, $(v))dv +

2ρ

(2− η2)Γβ

∫ ρ

0
(1− v)β−1 f (v, $(v))dv

− 2ρ

(2− η2)Γβ

∫ 

0

(∫ v

0
(v− u)β−1 f (u, $(u)du)

)
dv | .

≤ | 1
Γβ

∫ ρ

0
| ρ− v |β−1| f (v, (v))

− f (v, $(v)) | dv− 2ρ

(2− η2)Γβ

∫ ρ

0
(1− v)β−1 | f (v, (v))

− f (v, $(v)) | dv +
2ρ

(2− η2)Γβ

∫ 

0
|
∫ v

0
(v− u)β−1( f (u, (u)du)− f (u, $(u)))du | dv.

≤| 1
Γβ

∫ ρ

0
| ρ− v |β−1 Γ(β + 1)

5
| $(v)− (v) |

τ
dv +

2ρ

(2− η2)Γβ∫ ρ

0
(1− v)β−1 Γ(β + 1)

5
| $(v)− (v) |

τ
dv +

2ρ

(2− η2)Γβ∫ 

0

(∫ v

0
(v− u)β−1 Γ(β + 1)

5
| $(u)− (u) |

τ
du
)

dv.

≤ Γ(β + 1)
5

1
τ
‖ − $ ‖+∞ sup

ρ∈(0,1)
(

1
Γβ

∫ ρ

0
(1− v)β−1dv

+
2ρ

(2− η2)Γβ

∫ ρ

0
(1− v)β−1dv +

2ρ

(2− η2)Γβ

∫ 

0

∫ v

0
| v− u |β−1 dudv).

≤ ‖ − $ ‖+∞

τ
.

Thus, for each , $ ∈ A with ζ((ρ)− $(ρ)) > 0 for all ρ ∈ [0, 1], we have

‖ Λ−Λ$ ‖+∞≤
‖ − $ ‖+∞

τ

‖ Λ−Λ$ ‖+∞

ρ
≤ ‖ − $ ‖+∞

ρ.τ

−‖ − $ ‖+∞

ρ
≤ −τ

‖ Λ−Λ$ ‖+∞

ρ
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loge e−
‖−$‖+∞

ρ ≤ loge e−τ
‖Λ−Λ$‖+∞

ρ

loge e−
‖−$‖+∞

ρ ≤ τ. loge e−
‖Λ−Λ$‖+∞

ρ .

Now, suppose F : R+ → R+ defined by F(ρ) = loge ρ for each ρ > 0 such that F ∈ F. Thus,
we obtain

F(σ(, $, ρ)) ≤ τ.F(σ(Λ, Λ$, ρ))

for all , $ ∈ A with σ(Λ, Λ$, ρ) > 0. Therefore, Λ is an αΓ−F OF contractive mapping.
Next, by assumption 3 of Theorem 5, α(, $) ≥ 1 implies ζ((ρ), $(ρ)) > 0, which im-

plies ζ(Λ(ρ), Λ$(ρ)) > 0, which implies α(Λ, Λ$) ≥ 1 for all , $ ∈ A. Hence, condition (1)
of Theorem 5 holds.

From condition (2) of Theorem 5, there exists 0 ∈ A such that 0 ⊥ Λ0 α(0, Λ0) ≥ 1.
Finally, from condition 4 of Theorem 5, if {r} is an OS in A such that r ⊥ r+1 or

r+1 ⊥ r α(r, r+1) ≥ 1 for all r ∈ N implies ζ(r, r+1) > 0 for all r ∈ N, then ζ(r, ) > 0
for all r ∈ N⇒ α(r, ) ≥ 1 for all r ∈ N. Therefore, condition 4 of Corollary 5 holds.

By this application, we satisfy the result of Corollary 5; moreover, we show the
existence of uniqueness ∗ ∈ A such that ∗ = Λ∗ which satisfies Equation (10).

4.2. Atangana–Baleanu Fractional Integral Operator

The fractional integral of Atangana–Baleanu-type order ∝ of a function z(ρ) is satis-
fied as:

AB
v Iff

ρ ζ(ρ) =
1− ∝
β(∝)

ζ(ρ) +
∝

β(∝)Γ(∝)

∫ ρ

0
ζ(p)(ρ− p)ff−1dp; (17)

where 0 <∝≤ 1, 0 < ρ < v and it is worth mentioning that β(0) and β(1) are equal to 1.
Let H = C(I,R) be the set of all continuous functions from I into R. Consider

(ρ) =
1− ∝
β(ff)

(ρ) +
∝

β(∝)Γ(∝)

∫ ρ

0
(p)(ρ− p)ff−1dp (18)

where (ρ) ∈ A.
To find the existence and uniqueness solution (18), define Λ : A → A as

Λ(ρ) =
1− ∝
β(∝)

(ρ) +
∝

β(∝)Γ(∝)

∫ ρ

0
(p)(ρ− p)ff−1dp. (19)

Define ε : A×A → R+ as

ε(((ρ), $(ρ)) = sup
ρ∈(0,1)

| (ρ)− $(ρ) | .

Now we will prove that the fractional integral of the Atangana–Baleanu type has a
unique solution.

1− α

β(α)
+

vff

β(α)Γ(α)
< u where u ∈ (0, 1)

Consider
| Λ(ρ)−Λ$(ρ) |

=|
(

1− α

β(α)
(ρ) +

α

β(α)Γ(α)

∫ ρ

0
(p)(ρ− p)ff−1dp

)
−
(

1− α

β(α)
$(ρ) +

α

β(α)Γ(α)

∫ ρ

0
$(p)(ρ− p)ff−1dp

)
| .

=| 1− α

β(α)
((ρ)− $(ρ)) +

α

β(α)Γ(α)

∫ ρ

0
((p)− $(p))(ρ− p)ff−1dp | .
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≤ 1− α

β(α)
| ((ρ)− $(ρ)) | + α

β(α)Γ(α)

∫ ρ

0
(ρ− p)ff−1dp | (p)− $(p) | .

=

(
1− α

β(α)
+

ρff

β(α)Γ(α)

)
| (p)− $(p) | .

≤ ε(, $)

τ
.

Thus, for each , $ ∈ A with ζ((ρ)− $(ρ)) > 0 for all ρ ∈ I, we have

ε(Λ(ρ), Λ$(ρ)) ≤ ε(, $)

τ
ε(Λ(ρ), Λ$(ρ))

ρ
≤ ε(, $)

τ.ρ

− ε(, $)

ρ
≤ −τ.

ε(Λ(ρ), Λ$(ρ))

ρ

loge e−−
ε(,$)

ρ ≤ loge e−τ. ε(Λ(ρ),Λ$(ρ))
ρ

loge e−−
ε(,$)

ρ ≤ τ. loge e−
ε(Λ(ρ),Λ$(ρ))

ρ

Hence, the remaining proof of application is similar to the proof of Theorem 5. Therefore,
Λ is an αΓ-F OF contractive mapping.

Hence, the conditions of Theorem 5 and Corollary 5 are satisfied, which yields that the
fractional integral of the Atangana–Baleanu type of order ∝ has a unique solution.

4.3. Existence of Lp-Type Solution Pertinent to the Fredholm Integral Equation

Let A = Lp(0,+∞), (1 < p < +∞). Define ε : A × A → R by ε((ρ), $(ρ)) =‖
(ρ) − $(ρ) ‖Lp . So, it is easy to check that A is an αΓ-F orthogonal fuzzy contractive
mapping.

We consider the Lp solutions (1 < p < +∞) of the linear Fredholm integral equation
of the second kind.

(ρ) = ψ(ρ)+ ∝
∫ +∞

0
G(p, ρ)(p)dp; (20)

where , ψ ∈ Lp(0,+∞).
For 1 < p < +∞, 1

p + 1
p′

= 1. The integral Kernal G(p, ρ) = G(ρ, p) is symmetric and

non-negative almost on (0,+∞)× (0,+∞).

Given Z ∈ Lp(0,+∞) and H ∈ Lp
′
(0,+∞), one obtains

κZ(ρ) =
∫ +∞

0
G(p, ρ)Z(p)dp; ρ ∈ (0,+∞),

and
κH(p) =

∫ +∞

0
G(p, ρ)H(p)dp; p ∈ (0,+∞),

for any ε > 0 and p > 0; we define

Gε(r, p) =
∫ +∞

0
G(p, ρ)

(
p
ρ

) 1+ε
r

dρ; r = p or p
′

and

Go(r, p) =
∫ +∞

0
G(p, ρ)

(
p
ρ

) 1
r
dρ; r = p or p

′

(c1): If G0(p) = κo(r, p),
(

r = p or p
′
)

is independent of p > 0, then κ : Lp(0,+∞)→
Lp(0,+∞) is a continuous linear operator and ‖ κ ‖Lp→Lp≤ κo(p).
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(c2): If Gε(p) = κε(r, ),
(

r = p or p
′
)

is independent of  > 0, then κε(p) = κo(p) +

o(1), (ε→ 0+) is a continuous linear operator and ‖ κ ‖Lp→Lp= κo(p).
(c3): Moreover, if the conditions in (c2) are fulfilled, for any Z ∈ Lp(0,+∞) and

‖ Z ‖Lp> 0, then ‖ κ ‖Lp<‖ κ ‖Lp→Lp‖ Z ‖Lp holds.
Define an operator ∝∈ Lp(0,+∞) as,

∝ (ρ) = ψ(ρ)+ ∝
∫ +∞

0
G(p, ρ)(p)dp.

Consider,
‖∝ (ρ)− ∝ $(ρ) ‖Lp

=‖ ψ(ρ)+ ∝
∫ +∞

0
G(p, ρ)(p)dp− ψ(ρ)− ∝

∫ +∞

0
G(p, ρ)$(p)dp ‖Lp .

=‖∝
∫ +∞

0
G(p, ρ)((p)− $(p))dp ‖Lp .

≤|∝| κo(p) ‖ (p)− $(p) ‖Lp .

=|∝| κo(p)ζ(, $).

By assuming |∝| κo(p) < 1
τ , we obtain

ζ(∝ , ∝ $) ≤|∝| κo(p)ζ(, $).

For the linear Fredholm integral Equation (20) if the Kernal of G(p, ρ) is symmetric and
almost every time (0,+∞)× (0,+∞) and it fulfils the conditions (c1), (c2) and (c3), then for
the linear Fredholm integral Equation (20) there exists a solution as long as |∝| κo(p) < 1

τ

ζ(∝ , ∝ $) ≤ 1
τ

ζ(, $)

ζ(∝ , ∝ $)

ρ
≤ 1

τ.ρ
ζ(, $)

τ.
ζ(∝ , ∝ $)

ρ
≤ 1

ρ
ζ(, $)

−1
ρ

ζ(, $) ≤ −τ.
ζ(∝ , ∝ $)

ρ

log e−
1
ρ ζ(,$) ≤ log e.

Hence, the remaining proof is similar to the above application. Therefore, Λ is an αΓ-F
orthogonal fuzzy contractive mapping.

5. Conclusions

We introduced a new contractive condition called αΓ-F orthogonal fuzzy contractive
mapping on A. We validated some fixed point results and a corollary and proved the
existence and uniqueness of our results. As an example, we validated all the conditions for
our main result and showed the existence and uniqueness of fixed points. We presented an
application of the Atangana–Baleanu fractional integral operator and the Fredholm integral
equations, in which we proved the uniqueness and existence of a solution. This work is
extendable with respect to the existing literature [15–17].

Author Contributions: S.S., F.J., D.A.K. and U.I. contributed equally in this manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Symmetry 2023, 15, 1300 16 of 16

Data Availability Statement: Data will be available on demand from corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338–353.
2. Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math 1960, 10, 313–334. [CrossRef]
3. Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344.
4. Gregori, V.; Sapena, A. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [CrossRef]
5. Pedro, T. Contraction mappings in fuzzy quasi-metric spaces and [0, 1]-fuzzy posets. Fixed Point Theory 2012, 13, 273–283.
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