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Abstract: This paper investigates the effects of support friction on mixed-mode I/II fracture behavior
of compacted clay using notched deep beam (NDB) specimens under symmetric fixed support.
Numerical models of 330 NDB specimens were established considering the crack inclination angle,
crack length, support span, and support friction coefficient, and the normalized fracture parameters
(YI, YII, and T*) of NDB specimens were calibrated. The numerical results showed that the values of YI,
YII, and T* decreased at different degrees after considering the support friction. Notably, the support
friction coefficient could significantly change the loading pattern at the crack tip. To verify this
phenomenon, 12 compacted clay NDB specimens were prepared, and a mixed-mode I/II fracture test
was performed under fixed support conditions; the phenomenon of asymmetric crack propagation
was studied. The test data were processed using the numerical calibration results of YI, YII, and T*
with and without consideration of friction. Afterward, the test data were compared and analyzed by
combining the generalized maximum tangential stress (GMTS) and the maximum tangential stress
(MTS) criteria. The analysis indicated that the real fracture characteristics of compacted clay NDB
specimens could not be reflected when conducting mixed-mode I/II fracture tests under symmetric
fixed support conditions if the test results were analyzed by YI, YII, and T* without considering
support friction, as in previous studies.

Keywords: compacted clay; mixed-mode I/II fracture; fracture toughness; notched deep beam;
support friction

1. Introduction

Cracks are a common hazard and one of the main causes of damage to all types of
geotechnical structures [1,2]. For rockfill dams with clay core walls in water conservancy
projects, cracks are a significant threat to the safety of the dam [3]. Due to the difference in
the deformation modulus between the clay of the core wall and the stone material of the
dam shell, the clay core wall can easily produce transverse or longitudinal cracks because
of uneven deformation and dry shrinkage. Under complex stress conditions, the core wall
cracks are at risk of further cracking, resulting in the hydraulic splitting of the core wall
and threatening the safety of the dam [4].

Since Skempton et al. [5] suggested explaining the destabilization process of fracture-
containing hard clay slopes using the fracture mechanics theory, more studies have been
conducted on the fracture properties of clay materials. In terms of mode I fracture proper-
ties, Lakshmikantha et al. [6] and Lee et al. [7] investigated the mode I fracture toughness
of compacted clay using compact tension (CT) specimens. CT specimens were inspired by
a method recommended by the American Society for Testing and Materials (ASTM) [8] for
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metallic materials, which required holes to be drilled in the specimen for fixture attachment.
The specimen preparation and test preparation were complicated, and the fracture was
likely to occur at the fixture due to the low tensile strength of the clay material. Zhang
et al. [9] followed the idea of direct tensile loading, and uniaxial tensile tests were conducted
using unilateral open-joint rectangular clay specimens. The test operation was relatively
simple, but it was easy to fracture at the end of the specimen when using epoxy vinyl to
bond the end of the specimen. For compacted clay, the bending loading method is more
convenient and widely used. Most scholars used single-edge notched beam (SENB) speci-
mens [10–14] recommended by the ASTM [8] to carry out mode I fracture tests of compacted
clay. Some scholars used semi-circular bend (SCB) specimens [15,16] recommended by the
ISRM [17] to test the mode I fracture toughness of compacted clay. However, the mode I/II
fracture properties of the clay were barely studied. Only Wang et al. [18] used a four-point
bending method to perform a mixed-mode I/II fracture test on the SENB specimens of
compacted clay. Aliha et al. [19] investigated the mixed-mode I/II fracture properties of
air-dried compacted clay using asymmetric semi-circular bend (ASCB) specimens [20].
Since most cracks in the core walls of rockfill dams are under mixed stress, studying the
mixed-mode I/II fracture in compacted clay is of great engineering importance [21,22].

Considering the convenience of preparing fracture specimens of compacted clay,
scholars usually use non-circular SENB specimens for clay fracture tests. However, there is
a large length-to-width ratio (greater than 4.5) for the SENB specimens recommended by
the ASTM [8]. For compacted clay with low tensile strength, slight disturbance during the
demolding and transfer of the specimen may damage the SENB specimen of the compacted
clay [12,16]. The single-sided notched deep beam (NDB) specimen (i.e., SENB specimen
with a length-to-width ratio of 2:1) proposed by Luo et al. [23] can effectively reduce the
clay specimen disturbance before the test and save the test material [24].

In the past decades, researchers employed the three mentioned support types of I, II,
and III for conducting three-point bending fracture tests on different materials and test
specimens. According to Bahrami et al. [25], the types of support for loading in bending
tests can be classified into three categories (type I, II, and III): roller support, roller in groove,
and fixed support, respectively. The impact of supports on the fracture results has often
not been considered, and there is very little research in the literature studying the effect
of support friction. In recent years, some scholars have found that the supports used in
three-point bending fracture tests can affect the cracking behavior of materials significantly.
Bahrami et al. [25,26] investigated the effect of support type on the fracture toughness
of polymethyl methacrylate and rock materials in SCB tests. Qin et al. [27] investigated
the influence of friction on the determination of rock mode I fracture toughness using
an SCB specimen. Pirmohammad et al. [28,29] discussed the effect of support type on
the fracture toughness of asphalt concrete using SCB specimen at various temperatures.
Bakhshizadeh et al. [30] provided an investigation of the impact of support type on the
fracture mode of loading using an SCB specimen. Ayatollahi et al. [31] evaluated the effects
of support friction on the mode I stress intensity factor and the fracture toughness values
determined from SENB testing. It should be noted that the mentioned investigations have
been considered under pure mode I and pure mode II, and no studies have been carried out
so far concerning the effect of supports on mixed mode I/II fracture behavior in NDB tests.

Among the three mentioned support types, only type I has no friction between the
support and the specimen [31]. However, this type of support is disadvantaged by the
inconvenient fixation for clay fracture specimens with small peak loads [16], thus the fixed
support was mostly used in previous clay fracture tests. The fracture parameters derived
using the normalized stress intensity factor (SIF) without considering the support friction
cannot reflect the real fracture properties of compacted clay [32].

Therefore, the current study considers the impact of support friction on the mixed
mode I/II fracture behavior of compacted clay using the NDB specimen under symmet-
ric fixed support. First, the frictional effect between the support and the specimen was
considered, and the normalized KI, KII, and T-stress at the crack tip of the NDB specimen
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were numerically calibrated using the finite element method. Their variation in the crack
inclination angle under different support friction coefficients was analyzed, demonstrat-
ing the effect of the support friction coefficient on the normalized KI, KII, and T-stress.
Then, the mixed-mode I/II fracture test was performed on compacted clay using NDB
specimens. The differences in the fracture properties of the compacted clay, with and
without the consideration of support friction, were analyzed. With the generalized maxi-
mum tangential stress (GMTS) criterion [33], the differences between the mixed-mode I/II
fracture properties of compacted clay under the two conditions and the theoretical values
were discussed.

2. Numerical Model for NDB Specimens
2.1. Loading Principle of NDB Specimens

The elastic stress field at the crack tip can be expressed as a set of expansions of an
infinite series, as shown in Equation (1) [34]:

σθ = 1√
2πr

cos θ
2

(
KI cos2 θ

2 −
3
2 KII sin θ

)
+ T sin2 θ + O(r1/2)

σr =
1√
2πr

cos θ
2

[
KI

(
1 + sin2 θ

2

)
+ KII

(
3
2 sin θ − 2 tan θ

2

)]
+ T cos2 θ + O(r1/2)

τrθ = 1
2
√

2πr
cos θ

2 [KI sin θ + KII(3 cos θ − 1)]− T sin θ cos θ + O(r1/2)

(1)

where r and θ are the crack tip coordinates; the first term is the singular term (the r−0.5 term);
the second term is the non-singular term (the r0 term); and O(r1/2) is the higher-order term,
which is usually not considered because O(r1/2) is much smaller than the first two terms.

The SIF can reflect the strength of the stress field around the crack tip. Although
the non-singular stress term (T-stress) is relatively small, it has a certain influence on the
initiation and development of the crack [33,35]. Therefore, the SIFs, KI, KII, and T-stress,
are important parameters for studying mixed-mode I/II fracture problems.

As shown in Figure 1, for the NDB specimen proposed by Luo et al. [23], the specimen
width is W, the specimen length is 2W, the crack length is a, the angle between the pre-
fabricated crack and the loading direction is β, the support span is 2S, and the specimen
thickness is B.
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Figure 1. Schematic view of the NDB specimen and its related parameters.

The KI, KII, and T-stress at the crack tip of the NDB specimen can be expressed as:

KI =
P
√

πa
2WB

YI (2)

KII =
P
√

πa
2WB

YII (3)
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T =
P

2WB
T∗ (4)

where YI, YII, and T* are normalized factors of the mode I SIF, mode II SIF, and T-stress,
respectively, and P is the applied load.

For the loading modes of the crack in the NDB specimen, when the crack inclination
angle β of the NDB specimen is 0, KI 6= 0, KII = 0, the crack is subjected to pure mode I
loading. As the crack dip angle β gradually increases, the crack loading condition can be
changed from the pure mode I to mixed mode I/II (KI 6= 0, KII 6= 0), and pure mode II
loading (KI = 0, KII 6= 0) is obtained when the crack dip angle β reaches a specific degree.

2.2. Finite Element Model of NDB Specimens

In previous studies, the fracture stress field calibration of fracture specimens usually
excluded the support friction effect, and the normalized factors YI, YII, and T* were only
functions influenced by β, a/W, and S/W. After considering the support friction, the
normalized factors YI, YII, and T* became functions influenced by β, a/W, S/W, and f.
Therefore, quantifying the effect of support friction on the stress field at the crack tip of NDB
specimens is essential for accurately determining the fracture properties of the test material.

In this study, the finite element software ABAQUS was used to establish the numerical
model for NDB specimens. As shown in Figure 2, the NDB specimen has a length of
2W = 75 mm, a width of W = 37.5 mm, a thickness of B = 30 mm thick, and an applied
reference load of P = 1000 N. According to previous studies, the modulus of elasticity
and Poisson’s ratio have no effect on the calibration of the stress field [36]. Therefore, the
modulus of elasticity and Poisson’s ratio were taken as 1.65 GPa and 0.35, respectively.
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Figure 2. Finite element model of the NDB specimen.

To simulate the boundary conditions of the NDB specimen, the support at the bottom
was completely fixed, and the loading point at the top was limited to moving in the
vertical direction only. The entire specimen was loaded by applying a vertical downward
concentrated force to the top loading point. To reflect the friction coefficient between the
actual support point and the specimen, a discrete rigid body was used to model the top
loading point and the bottom support [25,31], each of the three supports was modeled as a
rigid part, and the frictional contact was regarded between the supports and the specimen.
The mesh division model of the NDB specimen at β = 20◦, a/W = 0.6, and S/W = 0.6 is
illustrated in Figure 2.

The J-integral approach was adopted to calculate KI and KII, and the integral inter-
action method was used to calculate T-stress [23,24,30]. Due to the singularity of stress
distribution near the crack tip, singular cells were arranged in the first ring of the crack tip,
and the size of the singular cells was less than 1/100 of the crack length a. In addition, a
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20-turn four-node quadratic integral quadrilateral cell was divided around the singular cell
using a sweeping technique. The distance between the edge of the outermost ring cell and
the crack tip was about 1/9 of the crack length, and the rest of the region was divided freely
to produce quadrilateral cells. The KI, KII, and T-stress at the crack tip of the specimen
can be obtained by numerical computation. Then, YI, YII, and T* can be back-calculated
according to Equations (2)–(4).

In order to verify the reasonableness of the model, the crack tip stress field of the
NDB specimen at f = 0 and a/W = 0.4 was calculated and compared with the results
of Luo et al. [23], as shown in Figure 3. With a different S/W and different β, the YI
obtained through numerical simulation is basically consistent with the YI patterns and
magnitudes obtained from the literature [23], demonstrating the rationality of the proposed
numerical model.
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2.3. Calculation Scheme

To investigate the effect of support friction on the crack tip stress field of NDB speci-
mens, the effect of the support friction coefficient f was added based on the conventional
calibration work considering β, a/W, and S/W. The calculation scheme is shown in Table 1,
with 2 S/W, 3 a/W, 5 f, 11 β, and 330 models selected.

Table 1. Calculation scheme.

S/W a/W f β/◦

0.6 0.4, 0.5, 0.6 0, 0.2, 0.4, 0.6, 0.8 0, 5, 10, 15, 20, 25,
30, 35, 40, 45, 50

0.8 0.4, 0.5, 0.6 0, 0.2, 0.4, 0.6, 0.8 0, 5, 10, 15, 20, 25,
30, 35, 40, 45, 50

3. Effect of Support Friction on the Stress Field at the Crack Tip of NDB Specimens
3.1. Variation Curve of YI with β under Different Support Friction Conditions

Through the calculation of 330 numerical models, the KI, KII, and T-stress at the
crack tip in each model were obtained. Then, the YI, YII, and T* values were obtained by
back-calculating according to Equations (2)–(4).

As shown in Figure 4, YI gradually decreases with increasing β for any a/W, S/W, and
f condition. When a/W and S/W are fixed, the slope of the YI–β curve gradually decreases
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with the increase in the friction coefficient f, and the influence of support friction on YI is
more significant when β is small.
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Figure 4. Variation curves of YI with β under different a/W, S/W, and f conditions, (a) a/W = 0.4,
(b) a/W = 0.5, (c) a/W = 0.6.

The comparison of the YI–β curves under different S/W conditions suggests that when
a/W is fixed, a larger S/W leads to a larger YI, which is more sensitive to the influence
of support friction. Comparing the YI–β curves under different a/W conditions, it can
be concluded that when S/W is fixed, a larger a/W leads to a larger YI, which is more
significantly affected by the support friction.

In addition, there is a critical dip angle βII of the crack in a certain range between
a/W and S/W. It makes YI = 0, indicating that the crack achieves pure mode II loading.
However, at a large S/W and small a/W, pure mode II loading of cracks cannot be achieved,
no matter how much β increases.

Interestingly, the critical crack inclination angle βII corresponding to the pure mode II
loading condition (YI = 0) of the NDB specimen changed significantly after considering the
support friction, indicating that the support friction significantly impacts the loading state
of the crack, which directly affects the scheme design of the mixed-mode I/II fracture test.
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3.2. Variation Curve of YII with β under Different Support Friction Conditions

As shown in Figure 5, under any a/W, S/W, and f condition, as the crack inclination
angle β increases, mode II load components start to appear, YII increases first and then
decreases, and the YII–β relation curve is distributed in an asymmetric parabolic pattern.
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Figure 5. Variation curves of YII with β under different a/W, S/W, and f conditions. (a) a/W = 0.4;
(b) a/W = 0.5; (c) a/W = 0.6.

Overall, when a/W and S/W are certain, increasing f only decreases YII, but does
not affect the trend of YII–β curve, and the β corresponding to the maximum YII is also
basically unchanged. In addition, as S/W or a/W increases, YII increases gradually, and it
is more sensitive to the influence of support friction.

As seen in Figure 4, YI corresponding to the β that maximizes YII is not 0, which
indicates that the YII of the crack is not the maximum value during pure mode II loading.

3.3. Variation Curve of T* with β under Different Support Friction Conditions

Extensive literature has shown that T-stress has a non-negligible role in crack initiation
and expansion [20,37–40]. Therefore, the normalized T-stress (T*) of NDB specimens was
calibrated in this paper.
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As seen in Figure 6, T* gradually increases with increasing β, and then stabilizes or
slightly decreases. Its value reveals that the T-stress gradually changes from compressive
to tensile stress. As a/W increases, the YII~T* curve changes gradually from an approx-
imately linear to a convex S-shaped curve, and the β corresponding to the maximum T*
decreases gradually.
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Figure 6. Variation curve of T* with β under different a/W, S/W, and f conditions. (a) a/W = 0.4;
(b) a/W = 0.5; (c) a/W = 0.6.

Similar to the rule in Figures 4 and 5, T* is more significantly influenced by the support
friction at a larger S/W or larger a/W.

3.4. Effect of Support Friction on YI

To further observe the influence law of the support friction coefficient on YI, the
YI–f relation curve was drawn, as shown in Figure 7. Under different a/W, S/W, and β
conditions, YI decreases gradually with the increase in f ; when f increases to a certain
extent, it basically has no effect on YI. This result is because the load P acting on the
specimen is fixed in numerical calibration. As f increases, the friction between the support
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and the specimen increases, and the load that causes the specimen to fracture gradually
decreases, thus decreasing KI and YI.
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Figure 7. Variation curve of YI with f under different a/W, S/W, and β conditions. (a) a/W = 0.4;
(b) a/W = 0.5; (c) a/W = 0.6.

3.5. Effect of Support Friction on YII

To further observe the influence law of the support friction coefficient on YI, the
relation curve of YII–f under different cases was drawn, as shown in Figure 8. Overall,
when other factors are certain, YII gradually decreases with the increase in f (except for
β = 0◦ when YII is 0, since the crack is the pure mode I loading). Additionally, YII is more
sensitive to support friction when S/W or a/W is larger. By comparing with Figure 7, it can
be found that the influence of support friction on YI is significantly greater than that on YII.
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Figure 8. Variation curve of YII with f under different a/W, S/W, and β conditions. (a) a/W = 0.4;
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3.6. Effect of Support Friction on T*

The T*–f relation curves for different a/W, S/W, and β conditions are shown in
Figure 9. Overall, T* is not sensitive to f when a/W is small, regardless of the variation
of β and S/W, and shows a horizontal trend. As a/W increases, the T*–f relation curve
gradually shows a decreasing trend. For example, when a/W = 0.6, T* gradually decreases
as f increases and tends to be stable after f reaches a certain value.

In addition, as a/W increases, the T*–f curve corresponding to β = 30◦ gradually
approaches the T*–f curve corresponding to β = 40◦ and β = 50◦, which is because increasing
a/W leads to a smaller β corresponding to the maximum T*.
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3.7. Effect of Support Friction on the Pure Mode II Crack Inclination Angle

As seen in Figure 4, the support friction has a significant effect on the normalized
mode I SIF at the crack tip of the NDB specimen and directly affects the critical crack
inclination angle βII under pure mode II loading. Therefore, the critical crack inclination
angle βII of NDB specimens under different a/W, S/W, and f conditions is given according
to the calculation scheme in this paper, as shown in Tables 2 and 3.
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Table 2. Crack inclination βII of the NDB specimen under pure mode II loading at S/W = 0.6.

a/W
βII/(◦)

f = 0 f = 0.2 f = 0.4 f = 0.6 f = 0.8

0.4 - - - -
0.5 49 44 42 40 38
0.6 42 39 37 34 32

Table 3. Crack inclination βII of the NDB specimen under pure mode II loading at S/W = 0.8.

a/W
βII/(◦)

f = 0 f = 0.2 f = 0.4 f = 0.6 f = 0.8

0.4 - - - -
0.5 - - - -
0.6 - 57 51 45 42

From Table 2, it can be concluded that the crack cannot achieve pure mode II loading
at S/W = 0.6 and a/W = 0.4. When S/W = 0.6, and a/W = 0.5 and 0.6, the crack can achieve
pure mode II loading in the range of f = 0–0.8, and the critical crack inclination angle βII
gradually decreases as f increases.

From Table 3, it can be deduced that the crack cannot achieve pure mode II loading
at S/W = 0.8, and a/W = 0.4 and 0.5. When S/W = 0.8 and a/W = 0.6, the critical crack
inclination angle βII gradually decreases as f increases. In addition, with the support
friction considered, pure mode II loading can be achieved in cases where it cannot be
achieved originally, such as the case of a/W = 0.6, S/W = 0.8, and f = 0.

First, it is necessary to reduce the S/W or increase a/W to achieve the full range of the
mixed-mode I/II fracture test for cracks from pure mode I to pure mode II based on the
three-point bending test of NDB specimens, and reduce the critical inclination angle βII for
the convenience of specimen processing. Additionally, it can also be achieved by fixing the
support and increasing the roughness of the support.

3.8. Effect of Support Friction on Mises Stress at the Crack Tip

Mises stress nephogram of a typical NDB specimen (a/W = 0.5, S/W = 0.6, β = 45◦)
with different friction coefficients is shown in Figure 10. With the increase in the friction
coefficient f, the range of Mises stress profile at the crack tip gradually decreases and
basically stabilizes after f reaches 0.4, which confirms the trend of the normalized fracture
parameter mentioned above that first decreases and then stabilizes with the increasing
friction coefficient (Figures 7–9). In addition, the elliptical zone (i.e., red- and orange-
colored zones) near the bottom support tends to rotate inside the specimen due to friction
force at the contact points.
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4. Mixed-Mode I/II Fracture Test of Compacted Clay Using NDB Specimens
4.1. Test Purpose

To investigate the influence of support friction on the mixed-mode I/II fracture be-
havior of compacted clay using NDB specimens, a mixed-mode I/II fracture test was
conducted on compacted clay under symmetric fixed support conditions. The primary
objectives of the test are as follows: (1) To evaluate the mixed-mode I/II fracture behavior
of compacted clay utilized in this study; (2) To analyze the variation in mixed-mode I/II
fracture parameters of compacted clay, with and without support friction; (3) To furnish
test data for discussion on fracture criterion analysis.

4.2. Soil Parameters

The test clay was taken from a construction site in Chongqing, China. Its particle size
distribution is as follows: 0.5–0.25 mm (0.5%), 0.25–0.1 mm (17.9%), 0.1–0.075 mm (41.6%),
and <0.075 mm (40.0%). Its basic physical and mechanical properties are as follows: specific
gravity GS = 2.72, plasticity index IP = 20.1, liquid limit WL = 50.1%, plastic limit WP = 30.0%,
maximum dry density ρmax = 1.68 g/cm3, optimal moisture content wop = 16.6%, tensile
strength σt = 44.3 kPa, cohesion c = 48.5 kPa, and internal friction angle ϕ = 16.3◦.

4.3. Specimen Preparation Method and Loading Instrument

The specimen was prepared using a self-made compaction vessel with the dimensions
of 100 × 50 × 80 mm. First, the dry density and moisture content of the compacted clay
specimen were controlled to calculate the required mass of soil and water. In this test, a 95%
degree of compaction was selected, the dry density of the compacted clay specimen was
1.6 g/cm3, and the optimum moisture content of 16.6% was taken. Then, the soil materials
were mixed thoroughly, and the well-mixed soil materials were poured into a fresh-keeping
bag in an airtight container to rest for 24 h. Second, the soil materials were poured into
the compaction vessel, and rectangular specimens of 100 mm in length, 50 mm in width
and 30 mm in thickness were obtained through layered compaction. Finally, the specimens
were demolded, and then cutting equipment was used for crack preparation. The specimen
preparation process is shown in Figure 11.

During the compaction, the configured soil materials were compacted in three layers.
The quality of each layer was controlled as equally as possible, and each layer was fully
scraped after compaction [16]. To facilitate the demolding of the specimens, a certain
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amount of lubricant was applied to the side walls and bottom of the compaction vessel
before pouring in the soil material [16].
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Figure 11. Preparation process of specimens. (a) Natural soil; (b) mixing soil; (c) before compacting;
(d) after compacting.

All tests for this study were conducted at the Key Laboratory for Hydraulic and Water-
way Engineering of the Ministry of Education of Chongqing Jiaotong University. As shown
in Figure 12, the self-developed DTV-3 soil fracture instrument was used, including a servo
motor, load sensor, displacement sensor, telescopic rod, fixture, and data acquisition soft-
ware. The maximum axial load and axial displacement were 3 kN and 40 mm, respectively,
the precision was 0.1 N, and the loading rate ranged from 0.12 to 30 mm/min. In this NDB
tests, displacement-controlled loading was adopted at a rate of 0.8 mm/min [16,41], and
the bottom was a fixed steel support.
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4.4. Friction Coefficient of the Compacted Clay–Steel Interface

The friction coefficient of the compacted clay–steel interface was determined using
the method [41,42] shown in Figure 13. First, the prepared NDB specimen was placed in
the middle of the steel plate. Then, the steel plate was slowly raised until the specimen
began to slide. The lifting height, h, of the steel plate was tested. The friction coefficient f
can be calculated according to the relationship between f and α (f = tanα), where α is the
angle between the steel plate and the horizontal direction. According to the above method,
the average f was 0.4 for the compacted clay NDB specimen and the steel plate under the
steel support (the steel plate is of the same material as the steel support), i.e., the friction
coefficient between the support and the specimen was regarded as 0.4 in this paper.
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Figure 13. Determination method of the friction coefficient.

4.5. Test Scheme

According to the numerical calibration results in Section 3, NDB specimens with
a/W = 0.6 and S/W = 0.6 (specimen size of 100 mm × 50 mm × 30 mm) were selected to
perform the mixed-mode I/II fracture test.

To verify the effect of support friction on the test results, consistent with previous
studies, support friction was not considered in designing the crack inclination angle of
the specimens. According to the YI–β curve corresponding to f = 0 in Figure 4, six crack
inclination angles were selected, namely β = 0◦ (pure mode I), 10◦, 20◦, 30◦, 37◦, and 42◦

(pure mode II). Two sets of parallel specimens, totaling 12 specimens, were considered.
To facilitate the processing and analysis of the test results, the normalized factors YI,

YII, and T* of NDB specimens at a/W = 0.6 and S/W = 0.6 were compiled according to
Figures 4–6, as shown in Figure 14.
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Figure 14. Normalized factors of NDB specimens at a/W = 0.6 and S/W = 0.6, (a) without considering
support friction, and (b) considering support friction.

5. Test Results and Analysis

Figures 4 and 5 show the results of the mixed-mode I/II fracture test of compacted
clay without and with consideration of support friction, respectively. As illustrated in the
Tables 4 and 5, the combined relationship between KI and KII is represented by Me. As
shown in Equation (5), Me = 0 corresponds to pure mode II, Me = 1 corresponds to pure
mode I, and Me between 0 and 1 is compound loading.

Me =
2
π

tan−1
( K

I

KII

)
(5)

As shown in Figure 4, when β = 0◦, KII is 0, the crack is the pure mode I loading and
KIC is 19.01 kPa·m0.5. When β = 42◦, KI is 0, the crack is pure mode II loading, KIIC is
7.79 kPa·m0.5, and the fracture toughness ratio KIIC/KIC is 0.41.

As shown in Table 5, the mixed-mode I/II fracture characteristics of compacted clay
change significantly after data processing using YI, YII, and T*, considering support friction.

When β = 0◦, the crack is still under pure mode I loading and KIC is 9.41 kPa·m0.5;
however, the value is 51% lower than the KIC without considering support friction. When
β = 42◦, KI is −2.31 kPa·m0.5 and the crack is in the compression-shear-stress state, which
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does not belong to mixed-mode I/II fracture. Due to the support friction, the critical
inclination angle βII of the crack corresponding to pure mode II becomes smaller. When
β = 37◦, KI is very small, approximately equal to 0, so it is considered to be pure mode II
loading at this time. Correspondingly, KIIC is 6.63 kPa·m0.5, which is 15% lower than KIIC
without considering the support friction, and the fracture toughness ratio KIIC/KIC is 0.71,
which is 72% higher than KIIC/KIC without considering the support friction. In addition,
the Me corresponding to different β values decreases after considering the support friction,
indicating that the support friction increases the proportion of mode II loading at the crack
tip of the NDB specimen.

Table 4. Mixed-mode I/II fracture test results of compacted clay without considering support friction.

β (◦) Me KI (kPa·m0.5) KII (kPa·m0.5) KI/KIC KII/KIC T (kPa)

0 1.00 19.01 0.00 1.00 0.00 −13.08
10 0.86 15.57 3.57 0.82 0.19 2.96
20 0.70 11.82 5.98 0.62 0.31 31.12
30 0.49 6.46 6.62 0.34 0.35 51.21
37 0.26 3.30 7.50 0.17 0.39 69.20
42 0.00 0.00 7.79 0.00 0.41 79.62

Table 5. Mixed-mode I/II fracture test results of compacted clay considering support friction.

β (◦) Me KI (kPa·m0.5) KII (kPa·m0.5) KI/KIC KII/KIC T (kPa)

0 1.00 9.41 0.00 1.00 0.00 −24.45
10 0.76 7.52 3.03 0.80 0.32 −7.32
20 0.51 5.29 5.05 0.56 0.54 20.71
30 0.23 2.13 5.65 0.23 0.60 41.57
37 ≈0.00 ≈0.00 6.63 ≈0.00 0.71 60.52
42 −0.22 −2.31 6.51 −0.25 0.69 64.78

The peak load measured in the three-point bending fracture test using fixed support
exists in part to resist the friction between the support and the specimen. Therefore, the
obtained KI, KII, and T must show different degrees of the decrease law when the test
results are processed by using the previous numerical calibration results (YI, YII, T*) without
considering the support friction.

The fracture phenomena of specimens at different prefabricated crack inclination
angles are shown in Figure 15. Under pure mode I loading (β = 0◦), the crack undergoes a
self-similar expansion along the direction of the prefabricated crack. As β increases, the
crack is deflected along the prefabricated crack direction, and the crack initiation angle θ0
gradually increases. When β exceeds 30◦, the crack initiation angle θ0 varies little.
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6. Discussion

The mixed-mode I/II fracture criterion is an important theory for judging whether the
crack reaches the propagation condition and the direction of the crack propagation. The
most commonly used criteria are the maximum tangential stress (MTS) criterion [43], the
minimum strain energy density (MSED) criterion [44] and the maximum energy release
rate (MERR) theoretical criterion [45,46]. Studies have shown that these classical criteria
have large deviations in predicting the fracture behavior of materials under laboratory
conditions [35,47]. Many scholars believe that the non-singular constant term T-stress
of the Williams expansion term [19,38,42,47,48] accounts for the failure of conventional
fracture mechanics theories to predict experimental results well. The widely adopted GMTS
criterion, proposed by Smith et al. [33], considers that the stress field at the crack tip is
jointly determined by KI, KII, and T-stress, the calculation principle of the GMTS criterion
is given in Appendix A.

In order to compare the degree of agreement between the theoretical prediction values
and the test values considering and not considering the support friction, the crack initiation
angle of NDB specimens was theoretically predicted by the GMTS and MTS criteria for both
cases considering and not considering the support friction, using the YI, YII, and T* of NDB
specimens and the rc of compacted clay. According to the tensile strength of compacted
clay and the results of KIC testing considering support friction, the rc of the compacted clay
used was calculated to be 7.2 mm using Equation (A8). The prediction result was compared
with the experimental results, as shown in Figure 16.
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Figure 16. Crack initiation angle direction of the tested NDB specimens and comparison with the MTS
and GMTS criteria, (a) without considering support friction, and (b) considering support friction.

The direction of the crack initiation angle was measured from fractured NDB speci-
mens. First, to measure the angle θ0 for each specimen, the crack front area of the fractured
specimen was photographed. A tangent line was drawn from the tip of the crack along the
direction of the crack initiation angle. Then, θ0 was determined by measuring the angle
between the original crack line and the tangent line.

From Figure 16, it can be concluded that there is a large deviation between the theo-
retical prediction curve of the crack initiation angle based on the classical MTS criterion
and the experimental results, regardless of whether friction is considered. After the GMTS
criterion is adopted, the theoretical prediction curve of the crack initiation angle better
agrees with the experimental results.

A comparison of Figure 16a,b shows that the theoretical curve of the GMTS criterion
(rc = 7.2 mm) is closer to the experimental data point after considering the support friction.
It is worth noting that the critical crack dip angle βII corresponding to pure mode II loading
becomes smaller after considering the support friction. Therefore, there is one less set of
data points in Figure 16b than in Figure 16a.
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Furthermore, the mixed-mode fracture envelope of NDB specimens was plotted based
on the GMTS and MTS criteria for both cases considering and not considering the support
friction, and was compared with the experimental results, as shown in Figure 17.
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Figure 17. Mixed-mode I/II fracture envelope for the tested NDB specimens and comparison with
the MTS and GMTS criteria, (a) without considering support friction, and (b) considering support
friction.

Similarly to the pattern in Figure 16, the theoretical curve based on the GMTS criterion
is closer to the experimental results than that based on the MTS criterion, regardless of
whether friction is considered. In addition, the degree of agreement between the theoretical
curve based on the GMTS criterion and the experimental results is significantly improved
after considering the support friction.

From Figures 16 and 17, the following conclusions can be drawn: (1) The GMTS
criterion can better reveal the mixed-mode fracture failure behavior of compacted clay
under indoor laboratory conditions than the MTS criterion, due to the consideration of
T-stress. (2) For materials with large rc values, the support friction has a greater effect on the
test results. (3) After considering the support friction, the degree of agreement between the
theoretical curves based on the GMTS criterion and the experimental results is significantly
improved, which indicates that the effect of support friction on mixed-mode I/II fracture
of compacted clay cannot be ignored.

Above all, when the NDB specimen is adopted to conduct the mixed-mode fracture
test of compacted clay, the normalized parameters (YI, YII, T*) considering the support
friction should be used to deduce the fracture parameter of the compacted clay NDB
specimen in the case of fixed steel support; otherwise, the calculated fracture parameters
cannot reflect the real fracture properties of compacted clay.

7. Conclusions

In this paper, the normalized fracture factors (YI, YII and T*) of the NDB specimen
crack were calibrated numerically by considering the crack inclination angle, crack length,
support span, and support friction coefficient. Then, the mixed-mode I/II fracture test of
compacted clay was performed using NDB specimens. The test results were analyzed by
combining the GMTS criteria. The main conclusions are as follows:

1. When the support friction is not considered, as β increases, YI decreases gradually, YII
increases first and then decreases, and T* increases gradually. After considering the
support friction, YI, YII, and T* all tend to decrease, but the trends of YI–β, YII–β, and
T*–β curves are not affected. When the a/W or S/W is large, the stress concentration
at the crack tip of the specimen is greater, resulting in a more significant effect of the
support friction coefficient f on YI, YII, and T*.

2. For the case where pure mode II loading can be achieved originally, increasing the
friction coefficient f can effectively reduce the critical inclination angle βII for pure
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mode II loading of crack initiation, which is beneficial for the crack prefabrication in
the test. For some cases where pure mode II loading cannot occur originally, pure
mode II loading can be achieved by increasing the friction coefficient f.

3. The test data were processed and analyzed using YI, YII, and T* considering and not
considering the support friction. After considering the support friction, the measured
fracture parameters all decreased at different degrees, such as KIC decreased by 51%,
KIIC decreased by 15%, and the fracture toughness ratio KIIC/KIC increased by 72%,
indicating that the support friction increases the proportion of mode II loading at the
crack tip.

4. After considering the support friction, the degree of agreement between the theoretical
curves based on the GMTS criterion and the experimental results is significantly
improved, which indicates that the effect of support friction on the mixed-mode I/II
fracture of compacted clay cannot be ignored.

5. When the NDB specimen is used to conduct the mixed-mode fracture test of com-
pacted clay, the normalized parameters (YI, YII, and T*) considering the support
friction should be used to deduce the fracture parameter of the compacted clay NDB
specimen in the case of fixed support.
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Nomenclature

NDB Notched deep beam
CT Compact tension
SENB Single-edge notched beam
SCB Semi-circular bend
ASCB Asymmetric semi-circular bend
β Crack inclination angle
a Crack length
W Width of specimen
2W Length of specimen
B Specimen thickness
2S Support span
f The friction coefficient between the supports and the specimen
KI Normalized mode I stress intensity factor
KII Normalized mode II stress intensity factor
T T-stress
YI Normalized mode I stress intensity factor
YII Normalized mode II stress intensity factor
T* Normalized T-stress
βII Crack inclination angle corresponding to pure mode II loading
Me A parameter to describe the relative portions of mode I and mode II loadings at the crack tip
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σθ Circumferential stress of crack tip
θ0 Direction of fracture initiation

Appendix A

In the GMTS criterion, the T-stress was considered in the stress field at the crack tip,
thus the tangential stress, σθ , at the crack tip is expressed as follows:

σθ =
1√
2πr

cos
θ

2

[
KI cos2 θ

2
− 3

2
KII sin θ

]
+ T sin2 θ (A1)

Similar to conditions in the MTS criterion, the crack initiation conditions in the GMTS
criterion are:

∂σθ

∂θ
= 0,

∂2σθ

∂θ2 <0 (A2)

The crack initiation direction, θ0, can be determined using the following equation:

∂σθ

∂θ

∣∣
θ=θ0 = 0⇒ KI sin θ0 + KII(3 cos θ0 − 1)− 16T

3
√

2πrc cos θ0 sin
θ0

2
= 0 (A3)

By combining Equations (A1)–(A3), the conditions required for the mixed-mode I/II
fracture can be rewritten in terms of mode I fracture toughness KIC:

KIC = cos
θ0

2

(
KI cos2 θ0

2
− 3

2
KII sin θ0

)
+ T
√

2πrc sin2 θ0 (A4)

By substituting Equations (2)–(4) into Equation (A4), the fracture behavior of the NDB
specimen can be predicted theoretically using the normalized fracture parameters YI, YII,
and T*. Then, the crack initiation direction, θ0, of the NDB specimen can be determined
using the following equation:

YI sin θ0 + YII(3 cos θ0 − 1)− 16T∗

3

√
2rc

a
cos θ0 sin

θ0

2
= 0 (A5)

Additionally, the KI/KIC and KII/KIC ratios of the NDB specimen can be written in
terms of YI, YII, and T* as:

KI

KIC
=

1

cos θ0
2

[
cos2 θ0

2 −
3YII
2YI

sin θ0

]
+
√

2rc
a

T∗
YI

sin2 θ0

(A6)

KII

KIC
=

1

cos θ0
2

[
YI
YII

cos2 θ0
2 −

3
2 sin θ0

]
+
√

2rc
a

T∗
YII

sin2 θ0

(A7)

In applying the GMTS guidelines, the critical distance from the crack tip (rc) is another
necessary parameter. According to the maximum principal stress model introduced by
Schmidt [49], rc can be calculated by:

rc =
1

2π

(
KIC

σt

)2
(A8)

where KIC and σt are the mode I fracture toughness and tensile strength of the material,
respectively.
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