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Abstract: Differential fault analysis (DFA) was introduced by Biham and Shamir. It is a powerful
analysis technique to retrieve the secret key by injecting fault into an internal state and utilizing
the differences between the correct ciphertexts and the faulty ciphertexts. Based on the idea of
meet-in-the-middle, some differential characters can help to recover the key of some symmetric
ciphers. At CHES 2011, this technique was utilized to give analyses on AES. In this article, we
propose several DFA schemes on ITUbee, a software-oriented block symmetric cipher for resource-
constrained devices based on the meet-in-the-middle idea. Our attacks are efficient enough and
more powerful than previous works. Furthermore, the attacks in this article break the protection
countermeasure, meaning we have to review the protection method on devices for ITUbee.

Keywords: differential fault attack; meet-in-the-middle; lightweight block cipher

1. Introduction

With the popularization and development of computer network technology, cryp-
tographic techniques have been widely used to ensure the confidentiality or integrity of
messages and the authenticity of communication parties. However, for many resource-
constrained devices such as mobile phones, public transport systems, smart cards, RFID
tags, and Internet of Things devices, the majority of which employ lightweight cryp-
tographic algorithms [1,2], these devices are convenient yet vulnerable. The sensitive
information within them might be easily exposed by adversaries through side-channel
analysis because of the vulnerability of physical information. Among the attacks of side-
channel analysis, fault analysis (FA) is a renowned attack, first introduced by Boneh
et al. [3] in 1997, which enables the attacker to obtain additional side-channel information
and achieve the key recovery in practical time. At the same time, Biham and Shamir
proposed a differential fault analysis (DFA) on DES [4] in 1997. This was the first time
DFA was introduced to key recovery for block symmetric ciphers. Utilizing an induced
error to disturb the actual implementation of the encryption process and obtain differential
information between correct and faulty ciphertext pairs, DFA recovers the correct key
efficiently. The key point of DFA is that it allows the adversary to analyze a small number of
rounds of a block cipher. DFA has been widely applied to attacks on DES [5,6], AES [7–14],
PRESENT [15–17], and others [18,19]. The countermeasures against DFA include cipher- or
mode-level (e.g., FRIET [20], CRAFT [21], DEFAULT [22], and others [23–25]) and
implementation-level countermeasures [26]. A widely used implementation-level coun-
termeasure against DFA is to perform the computation twice and check whether the same
result is obtained [27–30].
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Proposed initially by Diffie and Hellman [31], the meet-in-the-middle strategy stands
as a pivotal tool in symmetric-key primitive cryptanalysis, specifically targeting block
ciphers. The effectiveness of this method is particularly showcased when an MITM attack
is deliberately imposed on a block cipher designed to be susceptible to this sort of assault.
This strategy’s variations are well documented in numerous academic works [32–36].
Let a block symmetric cipher EK(·) have an n-bit block size satisfying the condition that
C = EK(P) = FK2(FK1(P)), where K = K1||K2, “||” denotes the concatenation operation
and K1 and K2 are two independent parts of the K. Consequently, both sides of the function
FK1(P) = F−1

K2
(C) can be computed independently. In addition, the function will be satisfied

if the guesses of K1 and K2 are correct. Therefore, we can reduce the search space from
2|K| = 2|K1|+|K2| to 2|K1|+|K2|−n , where |K| represents the length of the key K, similarly to
|K1| and |K2|, and n denotes the number of advantage bits we can obtain from the structure.
This approach helps us recover the secret key in lower complexity. In 2011, Derberz [12]
combined this idea with differential fault analysis (DFA) to analyze the security of AES. In
their work, they injected faults in the sixth round of AES and successfully recovered the
key with a complexity of 240 in time and memory.

Designed on the framework of the Feistel network, ITUbee is a block cipher with a
software emphasis introduced by Karakoc, et al. [37]. With an 80-bit key length and block
size, ITUbee incorporates a unique structure and key scheduling. It is specifically designed
to cater to the constraints of resource-limited devices, such as 8-bit microcontrollers found
in sensor nodes. In an earlier study, an in-depth cryptanalysis of ITUbee was carried out
by Soleimany [38], disclosing a diminution of one bit in the security level of the 8-round
cipher under the single-key model. Fu et al. [39] performed a DFA attack on ITUbee by
injecting faults into its last two rounds, which required the injection of four faults and had
a computational complexity of 225.2.

Our Contribution. In this paper, we propose three improved DFA schemes on the
ITUbee block cipher. In our schemes, the faults are injected to the third to last round of
ITUbee, while, in [39], the fault was injected to the last and second to the last round. We find
filters to construct differential equations in perspective of the meet-in-the-middle attack.
Concretely, in our first scheme, based on observations of the cipher’s round function and its
structure, we carry out a DFA with 248 complexity using an exhaustive search. Additionally,
combining DFA with the idea of meet-in-the-middle, our next two schemes’ complexity is
reduced to 240 and 232, respectively. Furthermore, our schemes can break the protection
countermeasures proposed in [39]; thus, the security should be reviewed. Our results are
summarized in Table 1.

The rest of the article is organized as follows: Section 2 gives a brief description of
ITUbee and reviews the essential property of S-box S and F-function F which is useful to
our schemes. In Section 3, we review the DFA proposed in the previous work. In addition,
the detailed attack procedure is described in Section 4.

Table 1. Summary of our results.

Number of Faults Computational
Complexity Memory Complexity Precomputational

Complexity

Scheme 1 1 248 240 240

Scheme 2 4 240 240 -

Scheme 3 3 232 240 240

2. Preliminaries
2.1. Description of the Block Cipher ITUBee

ITUbee [37] is a software-oriented lightweight Feistel-like block cipher. Both the key
length and block size are 80-bit. It consists of 20 rounds, and the whitening key was added
before the first round and after the last round.
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The definitions of the components and the notations used in the encryption and
decryption procedure are as follows:

- (PL, PR) and (KL, KR) are, respectively, two 40-bit parts of the 80-bit plaintexts and the
80-bit key.

- RCi is a 16-bit round constant which is added to the rightmost 16-bit.
- S(a||b||c||d||e) = s[a]||s[b]||s[c]||s[d]||s[e], where a, b, c, d, and e are 8-bit values and S

is the S-box same as that in AES [40].
- L(a||b||c||d||e) = (e⊕ a⊕ b)||(a⊕ b⊕ c)||(b⊕ c⊕ d)||(c⊕ d⊕ e)||(d⊕ e⊕ a), where

a, b, c, d, and e are 8-bit values.
- The F-function used in the round is defined as F(X) = S(L(S(X))).

The encryption procedure is shown in Algorithm 1 and Figure 1, and the decryption
procedure is the same as the encryption except for the order of the keys and the round
constants.

Algorithm 1: Encryption Procedure of ITUbee (Enc(PL, PR, KL, KR))
Initialize X1 ← PL ⊕ KL and X0 ← PR ⊕ KR
for i = 1 to 20 do

if i mod 2 = 1 then
RK ← KR

else
RK ← KL

end
Xi+1 ← Xi−1 ⊕ F(L(RK⊕ RCi ⊕ F(Xi)))

end
CL ← X20 ⊕ KR and CR ← X21 ⊕ KL
Output (CL, CR)

Differential Fault Attack on ITUbee Block Cipher 54:3

Fig. 1. Block cipher ITUbee.

3. OBSERVATIONS OF ITUBEE

In this section, several observations of ITUbee are given, which are the bases of our
DFA.

3.1. Differential Property of S-box

As the only non-linear operation in most block ciphers, S-box and its property should
be well studied when applying DFA. Let s(·) be S-box used in ITUbee and consider the
following equation:

s(x) ⊕ s(x ⊕ α) = β. (1)

α is an input difference and β is an output difference. Given α and β, Equation (1) can
be solved by testing all x values. With different α and β, the number of solutions of (1)
could only be 0, 2, and 4. More precisely, it is 0 with the probability of 129

256 , 2 with the
probability of 126

256 , and 4 with the probability of 1
256 . On average, randomly given an

input difference and an output difference, one could find the 2× 126
256 +4× 1

256 = 1 solution
of x. This property could be verified by traversing every value of x ∈ {0, 1, . . . 255} under
any given α and β. Actually, we could build a look-up table indexed by α and β to solve
this kind of equation.

3.2. Property of F Function

From the definition of L(·), we can easily find that, for any 40b input with one nonzero
byte, the output of L(·) always contains three nonzero bytes. The position of the three
nonzero bytes is determined by the position of the nonzero byte in the input. Since S(·)
is the nonlinear function that works on every byte independently, a similar property
holds for F(·). For any 40b input difference with one nonzero byte, the output difference

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 54, Publication date: December 2016.

Figure 1. Schematic diagram of ITUbee.

For more details, please refer to [37].

2.2. Obervations on ITUBee Block Cipher

In this section, we review several observations of ITUbee, which are the bases of our schemes.
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2.2.1. Differential Property of S-Box

Let S(·) be the S-box used in ITUbee, and consider the following equation:

S(x)⊕ S(x⊕ α) = β (1)

With α and β standing for input and output differentials, respectively, Equation (1)
can be tackled by examining all conceivable x values. Based on the specific α and β, the
solution counts to Equation (1) can only be 0, 2, or 4. To elaborate, the likelihoods stand at
129
256 for 0, 126

256 for 2, and 1
256 for 4. Typically, for a randomly chosen input–output differential

pair, one would expect to locate 1 x solution. A lookup table structured around α and β
indices could simplify this process.

2.2.2. Property of F-Function

Consider a 40-bit input differential exhibiting a singular nonzero byte; the resulting
output differential from F(·) will consistently incorporate three nonzero bytes. Given the
input differential α and output differential β, on average, there exists a single solution for
the equation F(x)⊕ F(x⊕ α) = β. To streamline the equation-solving process, it is practical
to construct a lookup table, with α and β as guiding indices, bringing computational com-
plexity down to 1. However, the prerequisite calculation for this lookup table necessitates
nearly 240 iterations of F(·) operations along with a matching memory requirement.

3. Previous DFA Scheme

In [39], Fu et al. proposed two fault injection schemes on ITUbee and suggested
countermeasures to protect the encryption devices. In this section, we review their analysis
schemes and countermeasures, and we will prove their countermeasures are not strong
enough by proposing our improved DFA schemes in Section 4.

3.1. Fault Model

Fu et al.’s DFA on ITUbee is based on the byte-oriented model, which has the
following assumptions:

- The adversary can inject a byte fault to a selected state of the block cipher; for example,
the adversary could inject a random byte fault to the output of the last S(·) in the last
but two rounds.

- The location of the fault in the word is known to the adversary. Moreover, the case of
unknown location of injected fault is also discussed.

- The adversary could obtain ciphertexts of both correct and faulty execution.

3.2. DFA Schemes
3.2.1. Attack 1

Randomly choose a plaintext P and ask for the corresponding ciphertext C, inject
a random byte fault to a certain position of the second S(·) layer of the last round, and
obtain the faulty ciphertext C∗. For every possible difference generated from the injection,
compute the input difference and output difference of the last S(·) operation in the last
round and filter the values of input and output states. For the remaining candidates,
compute the pairs backwards and filter with the injection position. If there is more than
one candidate remaining, repeat the steps and recover the secret key.

3.2.2. Scheme 2

A plaintext P is picked at random and its corresponding ciphertext C is computed
using the unknown key. Subsequently, a random byte fault is inserted at a designated spot
within the output of the final S(·) layer of the round preceding the last, leading to a faulty
ciphertext referred to as C∗. For the input difference and output difference of the second
F-function of the last round, deduce the possible values of the internal state before and
after the F-function according to the property in Section 2.2.2. Further filter the candidates
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according to the differential in the last round. If there is more than one candidate remaining,
repeat the steps and recover the secret key.

3.3. Countermeasures

Considering the efficiency, Fu et al. propose to protect the encryption devices by running
the double-check mechanism in the last two rounds. However, if we can achieve key recovery
attacks by injecting fault before the last two rounds, the countermeasure is invalid.

4. Improved DFA Schemes on ITUbee

In this section, DFA on ITUbee is described in detail. Under the same assumptions
as defined in Section 3.1, we give three schemes whose fault is injected before the last two
rounds. For a better understanding of our method, we first introduce some notations used
in the section. Xi denotes the input state of round i, and CL and CR are the ciphertexts.
For each internal state noted in Figure 2, for example, e0, use e0[i] to denote the i-th byte
of the state. e∗0 [i] denotes the corresponding byte of the state with fault, and ∆e∗0 [i] is the
difference between the correct and fault value of the i-th byte of the state.

e2 f2 g2 h2 i2 j2 l2 m2 n2

L S ⊕
KL

⊕
RC18

L S L SS
X18 ⊕

X17

e1 f1 g1 h1 i1 j1 l1 m1 n1

L S ⊕
KR

⊕
RC19

L S L SS
X19 ⊕

X18

e0 f0 g0 h0 i0 j0 l0 m0 n0

L S ⊕
KL

⊕
RC20

L S L SS ⊕
X19

⊕

X20

KR

CL

⊕
X21

KL

CR

the difference obtained by guessing KR the difference obtained by guessing ∆ϵ

Figure 2. Fault injection Scheme 1.

4.1. Scheme 1: Differential Fault Attack with Exhaustive Search

We assume that the fault ∆ε is injected at a selected byte of state n2. The major steps
of the attack are as follows:

Step 1. Obtain the correct and faulty ciphertexts. Initiate by randomly picking a plaintext P,
and calculate the equivalent ciphertext C with the undisclosed key. As presented in Figure 2,
infuse a random byte fault ∆ε into the state n2 to procure the erroneous ciphertext C∗.

Step 2. Deduce the difference of the internal state. For each 8-bit value in ∆ε, the corre-
sponding difference in ∆n0 can be determined in reverse order. Note that

∆n0 = n0 ⊕ n∗0 = (X19 ⊕ KL ⊕ CR)⊕ (X19 ⊕ KL ⊕ C∗R ⊕ ∆ε) = CR ⊕ C∗R ⊕ ∆ε.

Further, using 40-bit KR, we can forward compute the corresponding difference of ∆j0,
namely,

∆j0 = L(∆i0) = L(∆g0) = L(F(e0)⊕ F(e∗0)) = L(F(KR ⊕ CL)⊕ F(KR ⊕ C∗L)).

∆n0, ∆j0 can be deduced from the ciphertexts, which means both the differences before
and after the last F(·) operation are known. According to the observations in Section 2.2.2,
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for every fixed input difference and output difference pair of F(·), we can obtain one
solution that matches the input and output difference pair on average. Thus, for each of
the 248 possible values of the pair of ∆n0 and ∆j0, there is one corresponding value of n0
and j0 that exists on average.

Step 3. Exhaustively search to recover the whole key. Looking up the table storing the
values indexed by input and output difference of F(·), we obtain 248 possible values of
(n0, j0). Computing KL = n0 ⊕ CR and KR = F−1(L−1(j0))⊕ CL, we obtain 248 possible
keys of (KL, KR). Exhaustively search for all the possible values and recover the whole key.

Complexity. As F(·) consists of L(·) and S(·) operations only, it is a 40-bit permutation.
This kind of permutation can be viewed as a Super S-box [41]. To build a look-up table
indexed by input difference α and output difference β, we need 240 precomputation time
complexity and 240 bits of memory. To recover the whole key, we need 248 forward and
backward computing operations and 248 decryption time complexity.

4.2. Scheme 2: Meet-in-the-Middle Fault Attack with 240 Complexity

Assume that a random fault ∆ε is injected at a selected byte of state n2. Without loss
of generality, we assume that n2[0] is the position where the fault is injected. Note that

j0 = F−1(n0) = F−1(X19 ⊕ KL ⊕ CR)

The corrupted value of the internal state j0 can be obtained in the same way. According to
the property of F(·), we can always compute two bytes in the input of F(·), though one
byte in the output is unknown. For example, if n0[1, 2, 3, 4] is known, only the 0-th byte of
n0 is unknown, so we have

j0[1] = F−1(n0[1, 3, 4]) = F−1(X19[1, 3, 4]⊕ KL[1, 3, 4]⊕ CR[1, 3, 4]) (2)

j0[4] = F−1(n0[1, 2, 4]) = F−1(X19[1, 2, 4]⊕ KL[1, 2, 4]⊕ CR[1, 2, 4]) (3)

Utilizing this property, and noting that X19[1, 2, 3, 4] = X∗19[1, 2, 3, 4], X19[0] 6= X∗19[0],
we can obtain the following equation:

∆j0[1] = F−1(n0[1, 3, 4])⊕ F−1(n∗0 [1, 3, 4])

= F−1(X19[1, 3, 4]⊕ KL[1, 3, 4]⊕ CR[1, 3, 4])⊕ F−1(X19[1, 3, 4]⊕ KL[1, 3, 4]⊕ C∗R[1, 3, 4])
(4)

Furthermore, ∆j0[4] can be computed in the same way. Moreover, we can obtain the
state ∆j0 for all possible values of KR in such a computational path:

∆j0 = L(∆i0) = L(∆g0) = L(F(KR ⊕ CL)⊕ F(KR ⊕ C∗L)) (5)

With the obtained C and C∗, as we can see, ∆j0[1, 4] can be obtained in two computa-
tional paths, meaning each computing direction involving several uncorrelated key bytes.
Thus, we can carry out an MITM attack. The major steps of an attack making use of ∆j0[1]
are shown below:

Step 1. Obtain the correct and faulty ciphertexts with the same plaintext. Randomly choose a
plaintext P and obtain the corresponding ciphertext C under the unknown key. As depicted
in Figure 3, inject a random difference ∆ε to the 0-th byte of the state n2 and ask for the
corresponding corrupt ciphertext four times. Then, we obtain four pairs of different correct
and faulty ciphertext pairs (C, (C∗)i) and six pairs of faulty ciphertext pairs ((C∗)i, (C

∗)j),
where 0 ≤ i, j ≤ 3, i 6= j. Under the correct key guess, these 10 pairs that satisfy the values
in X19[1, 2, 3, 4] are the same, only the values in X19[0] have differences.



Symmetry 2023, 15, 1196 7 of 13

e2 f2 g2 h2 i2 j2 l2 m2 n2

L S ⊕
KL

⊕
RC18

L S L SS
X18 ⊕

X17

e1 f1 g1 h1 i1 j1 l1 m1 n1

L S ⊕
KR

⊕
RC19

L S L SS
X19 ⊕

X18

e0 f0 g0 h0 i0 j0 l0 m0 n0

L S ⊕
KL

⊕
RC20

L S L SS ⊕
X19

⊕

X20

KR

CL

⊕
X21

KL

CR
forward computation backward computation

forward and backward computation

Figure 3. Fault injection Scheme 2.

Step 2. Compute ∆j0[1] in two computational directions and filter them. To obtain a valid
candidate, execute the following:

1. For each pair, guess all 224 candidates of X19⊕KL[1, 3, 4], compute the values of ∆j0[1]
according to Equation (4), store the value of ∆j0[1] for each X19 ⊕ KL[1, 3, 4].

2. For all 240 candidates of KR, forward compute the value of ∆j0[1] for each pair, store
the values of ∆j0[1] indexed by KR.

3. For each pair, if the value ∆j0[1] of two computational directions is equal, mark the
KR and X19 ⊕ KL[1, 3, 4] as a valid candidate. This phase can be seen as a 2−8 filter,
with eight pairs filtered, the number of candidates of (KR, X19 ⊕ KL[1, 3, 4]) decreased
to close to 1.

Step 3. Recover the correct key. We consider the computation procedure without injected
fault, namely, (P, C). With KR filtered by the above process, we can compute the state g0.
Moreover, for every 216 of possible values of X19 ⊕ KL[0, 2], we can compute all possible
states h0 with the X19 ⊕ KL[1, 3, 4] obtained before. Finally, we can deduce all possible KL
to recover and validate the whole key using exhaustive searching.

KL = g0 ⊕ h0 = F(KR ⊕ CL)⊕
(

RC20 ⊕ L−1
(

F−1(CR ⊕ KL ⊕ X19)
))

(6)

The above is the attack procedure when the fault is injected in the state n2[0]. Likewise,
for other certain locations of the injected fault, we can carry out an MITM attack in a similar
way. However, if the location of the fault is unknown, we can also carry out three MITM
attacks on any given three bytes on ∆j0, respectively. Because of the Pigeonhole Principle,
there exists at least one byte whose computation is unaffected by the fault. As a result, in
this case, we need three times the computational complexity of the known location’s case.

Complexity. For a known injected location’s fault, we have only one MITM episode,
and, in each episode, 240+24 different elements in {KR, X19 ⊕ KL[1, 3, 4]} are tested. Only the
corrected one will pass the filter in theory. Next, we exhaustively search the corresponding
key for every possible value of X19 ⊕ KL[0, 2] which costs 216 in complexity. Therefore,
the overall time complexity can be estimated as 240 + 224 + 216 times the encryption or
decryption, which is approximately 240. In addition, we need 240 memory complexity
to store the candidates. However, if the injected location is unknown, we suppose that
the same byte is injected by different faults. For consequences, the complexity will be
multiplied by three.
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4.3. Scheme 3: Meet-in-the-Middle Attack with 232 Complexity

Assume that the fault ∆ε is injected at a selected byte of state n2. Without loss of
generality, we assume that n2[0] is the position where the fault is injected. Consequently,
the difference is not totally diffused in state i1, namely, ∆i1[2, 3] = 0. Note that

∆j1[0]⊕ ∆j1[2]⊕ ∆j1[4] = ∆
(

L−1(j1[0, 2, 4])
)
= ∆i1[2] = 0. (7)

Thus, we have ∆j1[0]⊕ ∆j1[2] = ∆j1[4], and

F−1((KR⊕X18)[0, 2, 3, 4]⊕ CL[0, 2, 3, 4])⊕ F−1((KR ⊕ X18)[0, 2, 3, 4]⊕ C∗L[0, 2, 3, 4])

= F−1((KR ⊕ X18)[1, 2, 4]⊕ CL[1, 2, 4])⊕ F−1((KR ⊕ X18)[1, 2, 4]⊕ C∗L[1, 2, 4]).
(8)

As we can see, KR ⊕ X18 can be computed in two parts, respectively, in Equation (8)
so that we can carry out an MITM attack as described in the following.

Step 1. Obtain the correct and faulty ciphertexts with the same plaintext. Randomly choose
a plaintext P and obtain the corresponding ciphertext C under the unknown key. As shown
in Figure 4, inject at random byte faults ∆ε to a certain byte of the state n2 in the last two
rounds and store the faulty ciphertext. Inject different faults three times, so we can obtain
six ciphertext pairs, which contain three pairs of correct and different faulty ciphertext
(C, (C∗)i) and three pairs of faulty and faulty ciphertext ((C∗)i, (C

∗)j), where 0 ≤ i, j ≤ 2
and i 6= j.

e2 f2 g2 h2 i2 j2 l2 m2 n2

L S ⊕
KL

⊕
RC18

L S L SS
X18 ⊕

X17

e1 f1 g1 h1 i1 j1 l1 m1 n1

L S ⊕
KR

⊕
RC19

L S L SS
X19 ⊕

X18

e0 f0 g0 h0 i0 j0 l0 m0 n0

L S ⊕
KL

⊕
RC20

L S L SS ⊕
X19

⊕

X20

KR

CL

⊕
X21

KL

CR
forward computation backward computation

forward and backward computation

Figure 4. Fault injection Scheme 3.

Step 2. Compute the value for all candidates and filter them. For all 216 candidates of
KR ⊕ X18[2, 4], perform the following operations:

1. Compute the values of ∆j1[0]⊕ ∆j1[2] according to the left side of Equation (8) for all
candidates of KR ⊕ X18[0, 3] for each that we obtained before, and store the values of
KR ⊕ X18[0, 3] indexed by the vector of ∆j1[0]⊕ ∆j1[2] of five pairs in the six in a table.

2. Compute the vector ∆j1[4] following the right side of Equation (8) for all candidates of
KR ⊕ X18[1] of the five pairs we obtained before, and store the values in another table.

3. We sort the two tables and find collisions for the index values. If there is a collision
between the two tables, the corresponding KR ⊕ X18 is stored as a valid candidate.
With the five-pair filter, there will exist just one candidate in theory.
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Step 3. Recover the remaining key bits. We consider the computational procedure of one
correct and faulty pair {(P, C), (P, C∗)}. With KR ⊕ X18 filtered by the above process, we
can compute the state h1 and the difference ∆g1. Moreover, for every 28 possible difference
∆ε, which is the input difference of the first function F(·) in the last but one round, all
possible states g1 can be deduced with the property of function F(·). Consequently, we can
recover the possible KR and the state X20, g0. Similarly, we can also obtain the difference
∆j0 and ∆n0, which is the input and output difference of the last function in the last round.
Likewise, we can obtain the state j0 to recover the state h0 and the key KL. Finally, we can
obtain all possible keys and validate the correct key using an exhaustive search.

The above is the attack procedure when the fault is injected in the state n2[0]. Likewise,
for every known location of the injected fault, we can carry out an MITM attack in a similar
way. However, if the location of the fault is unknown, we can also reanalyze a byte in state
i1 where the fault has not been affected and carry out MITM attacks. Because the fault
can be injected into any one byte of the total five bytes in state n2, we need five times the
computational complexity of the known location’s case.

Complexity. For a known injected location’s fault, we have 216 MITM episodes for
KR ⊕ X18[2, 4], and, in each episode, elements in KR ⊕ X18[0, 1, 3] are tested. Only one
element will pass the filter with a high probability. Next, we calculate the corresponding
key for every possible value of ∆ε which costs 28 in complexity. Therefore, the overall time
complexity can be estimated as 216(216 + 28) + 28, which is approximately 232; meanwhile,
240 precomputational complexity and 240 memory complexity for storing the values and
difference of the F-function is needed. If the injected location is unknown, we suppose
that the same byte is injected by different faults. As a consequence, the computational
complexity will be multiplied by five.

4.4. Simulation Results

In this section, we give some simulation results of our schemes. As Scheme 1 requires
too much time and memory, only the simulations of Schemes 2 and 3 are given. We
implemented our schemes on a PC with an Intel Core i7 processor whose frequency is
2.5 GHz. In the simulation of Schemes 2 and 3, respectively, 500 and 1000 samples were
recorded with randomly selected keys.

Scheme 2. Owing to the huge computational complexity of Scheme 2, we chose
500 samples simulated in Figure 5, where the y-axis represents the number of key candidates
filtered after Step 2 in Scheme 2 and the x-axis represents the sample number. A data point
with a value above 1 on the y-axis indicates that the key candidates for that sample have not
been completely filtered. In that case, we can filter one more time using the remaining pairs,
or we have to endure extra computational complexity in Step 3. As depicted in Figure 5,
with the injection of 4 faults, the average number of remaining key candidates is 1.546. This
result confirms that 4 faults are sufficient for Scheme 2 to be effective.

Scheme 3. As shown in Figure 5, we simulated Scheme 3 with 1000 samples and
collected the number of candidates filtered after Step 2 in Scheme 3. Similarly, we could
still filter again in the case that the number of candidates was over one. Moreover, in Step
3, the exhaustive search has a really low probability of causing a situation in which we
cannot recover the correct key due to the property of function F. A simple solution to this
problem is just changing the correct and faulty pair used in Step 3. When injecting 3 faults,
the average number of remaining key candidates is 1.397. This result provides evidence
that 3 faults are sufficient for the effectiveness of Scheme 3.
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Figure 5. Key candidates after Step 2 in Scheme 2 (left) and after Step 2 in Scheme 3 (right).

4.5. Further Countermeasures

In [39], the authors proposed a countermeasure based on the double-check mechanism.
For efficiency, they ran the crucial operation twice to check if the two executions matched
each other. However, they only ran the last two rounds twice according to their analysis.
The countermeasure is invalid for our attack scheme, so we suggest extending the number
of rounds involved in the double-check mechanism by at least one. Namely, run the ITUbee
as follows in Algorithm 2:

Algorithm 2: ITUbee-Cipher (Message, Key)
State1← Round1− 17(Message, Key)
State2← State1
Res1← Round18− 20(State1, Key)
Res2← Round18− 20(State2, Key)
RandomDelay()
if Res1 = Res2 then

Output(Res1)
else

Reset()
end

Thus, the countermeasure could protect the devices from our attacks. The random
delay was introduced to avoid the adversary injecting twice in one execution to run a
successful attack.

4.6. Discussions

In this section, we present a comparison between the work conducted by Fu et al. [39]
and the work conducted by ourselves on the DFA of the same ITUbee algorithm. Fu et
al. induced single-byte random faults on the state located in the second to the last round,
and they suggested implementing ITUbee with a double-check mechanism in the last
two rounds to go against fault analysis. In this paper, we proposed three schemes to
achieve DFA attacks, with faults induced at the third to the last round. Our attacks prove
that their countermeasures do not protect against all DFA attacks. These distinctions are
comprehensively summarized in Table 2 .

Table 2. The comparisons with Fu et al.’s work.

Number of Faults Faults Injection
Round

Computational
Complexity

Memory
Complexity

Precomputational
Complexity

Our Scheme 3 3 third to last 232 240 240

Fu et al.’s Scheme 2 4 second to last 225.2 240 240
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5. Conclusions

This article presents several differential fault analyses on ITUbee based on the meet-
in-the-middle idea. Our attacks make use of the property of faulty values and differences
in faulty and correct intermediate values. Our attack schemes combine the differential
fault analysis and meet-in-the-middle methods, which can also be extended to other block
ciphers. In addition, we overrode the security of the countermeasures given in previous
works and revisited the protection schemes for ITUbee block cipher on devices.
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