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1. Introduction

In the present paper, we investigate the Cauchy problem for the generalized Kawahara–
KdV system:

∂tu +
N1

∑
k=0

N1−k

∑
l=0

∂x

{
N1−k

∑
m=0

∂m
x upPk,l,m

(
∂l

xv
)}

+
N2

∑
k=1

ak(t, x)∂2k+1
x u = 0

∂tv +
N3

∑
k=0

N3−k

∑
l=0

∂k
x

{
N3−k

∑
m=0

∂m
x vpQk,l,m

(
∂l

xu
)}

+
N4

∑
k=1

bk(t, x)∂2k+1
x v = 0,

t ∈ [0, ∞), x ∈ R, u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R,

(1)

where

Hypothesis 1. u0, v0 ∈ Cq(R), 0 ≤ u0, v0 ≤ B on R for B > 1, aj, bk ∈ C([0, ∞) × R),
0 ≤ |aj|, |bk| ≤ B on [0, ∞)×R, j = 1, . . . , N2, k = 1, . . . , N4,

Pk,l,m(z) =
N5

∑
r=0

ck,l,m,r(t, x)zr,

Qk,l,m(z) =
N6

∑
r=0

dk,l,m,r(t, x)zr, t ∈ [0, ∞), x ∈ R, z ∈ R,
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ck,l,m,j, dk,l,m,r ∈ C([0, ∞), Cq(R)),

0 ≤
∣∣∣∂p1

x ck,l,m,j

∣∣∣, ∣∣∣∂p1
x dk,l,m,r

∣∣∣ ≤ B,

on [0, ∞)×R, j = 1, . . . , N5, r = 1, . . . , N6, p1 = 1, . . . , N1, p, N1, N2, N3, N4, N5, N6 ∈ N,

q = max{N1, 2N2 + 1, N3, 2N4 + 1}.

Kondo and Pes [1] proved the local well-posedness of this system in analytic Gevrey
spaces Gσ,s(R) with s ≥ 2N + 1/2, N = max{N2, N4}.

The range of the type of equations that this model encompasses is obviously broad
and can represent many physical phenomena. As examples, we can consider the nonlinear
case

N1

∑
k=0

N1−k

∑
`=0

∂k
x

{
N1−k

∑
m=0

∂m
x wpPk,`,m

(
∂`xz
)}

.

When N1 = 1, we have

wpP0,0,0(z) + ∂xwpP0,0,1(z) + wpP0,1,0(∂xz) + ∂xwpP0,1,1(∂xz)
+ ∂x[wpP1,0,0(z) + ∂xwpP1,0,1(z)].

(2)

When N1 = N2 = 1 and p = 1, taking P0,0,0 = P0,1,0 = P0,0,1 = P0,1,1 = P1,0,1 ≡
0, P1,0,0(x) = x2, a1 = 1 and taking the same choices to Qk,`,m with N3 = N4 = 1 and b1 = 1,
we have a coupled system of modified KdV equations (see [2,3]):

∂tw + ∂3
xw + ∂x

(
wz2) = 0,

∂tz + ∂3
xz + ∂x

(
zw2) = 0,

w(x, 0) = w0(x), z(x, 0) = z0(x).

Considering in (2) the case when p = q ∈ N and P1,0,0(x) = xq+1, since N1 = N2 =
N3 = N4 = 1, we obtain a more general system, treated in [4] as

∂tw + ∂3
xw + ∂x

(
wqzq+1) = 0,

∂tz + ∂3
xz + ∂x

(
zqwq+1) = 0,

w(x, 0) = w0(x), z(x, 0) = z0(x).

In order to find a more general and more complicated systems, we can consider N1 = 2
and p = 1; then, we notice that the term nonlinear is more general:

wP0,0,0(z) + ∂xwP0,0,1(z) + ∂2
xwP0,0,2(z)

+ wP0,1,0(∂xz) + ∂xwP0,1,1(∂xz) + ∂2
xwP0,1,2(∂xz)

+ wP0,2,0

(
∂2

xz
)
+ ∂xwP0,2,1

(
∂2

xz
)
+ ∂2

xwP0,2,2

(
∂2

xz
)

+ ∂x

[
wP1,0,0(z) + ∂xwP1,0,1(z) + ∂2

xwP1,0,2(z)

+wP1,1,0(∂xz) + ∂xwP1,1,1(∂xz) + ∂2
xwP1,1,2(∂xz)

]
+ ∂2

x

[
wP2,0,0(z) + ∂xwP2,0,1(z) + ∂2

xwP2,0,2(z)
]
.

If we change z by w, and consider again all identical null polynomials, except P0,0,1(x) =
xk, we obtain the Kawahara system [5]

∂tu + ∂3
xu + ∂5

xu + uk∂xu = 0.

The study of nonlinear partial differential equations (PDEs) has garnered significant
attention in recent years due to their wide-ranging applications in various fields such as
fluid dynamics, plasma physics, and optical communications [6–8]. In particular, fractional-
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order PDEs, which generalize classical PDEs by incorporating nonlocal effects, have been
the subject of extensive research, including the analysis of the Kaup–Kupershmidt equation
and Korteweg–De Vries (KdV)-type equations within different operators [6,7]. Additionally,
the investigation of nonlinear wave phenomena in plasma and fluid systems has led to
the development of analytical solutions for various nonlinear PDEs, such as the nonlinear
Schrodinger equation with a detuning term [8].

Shah et al. [6] conducted a comparative analysis of the fractional-order Kaup–Kupershmidt
equation using different operators, offering valuable insights into the behavior of the
equation and its solutions. Similarly, Shah et al. [7] explored the analytical investigation
of fractional-order KdV-type equations under the Atangana–Baleanu–Caputo operator,
focusing on the modeling of nonlinear waves in plasma and fluid systems. Furthermore,
Shah et al. [8] analyzed optical solitons for the nonlinear Schrodinger equation with a
detuning term using the iterative transform method, which has important implications for
the understanding and control of optical communication systems.

Building on these foundational studies, our research aims to further advance the
understanding of nonlinear PDEs by applying a novel topological approach to the gen-
eralized Kawahara–KdV system. We seek to demonstrate the existence of classical and
non-negative solutions, thus contributing to the broader knowledge of nonlinear PDEs and
their applications in various scientific and engineering contexts.

Theorem 1. We suppose that Hypothesis 1 holds. Then, the initial value problem (1) has at least
one solution

(u, v) ∈
(
C1([0, ∞), Cq(R))

)2
.

Theorem 2. We suppose that Hypothesis 1 holds. Then, the initial value problem (1) has at least
two non-negative solutions

(u1, v1), (u2, v2) ∈
(
C1([0, ∞), Cq(R))

)2
.

We organized the paper as follows. In the second section, we introduce and state
some auxiliary results related the to our system and its symmetrical problem. In the next
Section 3, we prove Theorem 1 for the existence of at least one solution. In Section 4, we
show the existence of at least two non-negative solutions in in Theorem 2. In Section 5, we
introduce an example illustrating the main results.

2. Preliminary Results

In order to prove the existence of the solution, we shall use the following fixed-point
Theorem.

Theorem 3. Let 0 < ε > 0, B > 0, E be a Banach space and

W = {x ∈ E : ‖x‖ ≤ B}.

Let also T x = −εx, x ∈ W , S :W → E be a continuous function, (I − S)(W) reside in a
compact subset of E , and

{x ∈ E : x = λ(I − S)x, ‖x‖ = B} = ∅, ∀λ ∈
(

0,
1
ε

)
. (3)

Then, there exists x∗ ∈ W such that

T x∗ + Sx∗ = 0.
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Proof. Define

r
(
−1

ε
x
)
=


− 1

ε x, if Bε ≥ ‖x‖

Bx
‖x‖ , if Bε < ‖x‖.

Then,

r
(
−1

ε
(I − S)

)
:W →W

is compact and continuous. Thus, owing to the Schauder fixed-point theorem, it follows
that there exists x∗ ∈ W such that

r
(
−1

ε
(I − S)x∗

)
= x∗.

Assume that − 1
ε (I − S)x∗ 6∈ W . Thus,

Bε <
∥∥∥(I − S)x∗

∥∥∥, B‖(I − S)x∗‖−1 <
1
ε

,

and

x∗ = B‖(I − S)x∗‖−1(I − S)x∗

= r
(
−1

ε
(I − S)x∗

)
.

Then, ‖x∗‖ = B contradicts (3). Thus, − 1
ε (I − S)x∗ ∈ W and

x∗ = r
(
−1

ε
(I − S)x∗

)
= −1

ε
(I − S)x∗,

or
−εx∗ + Sx∗ = x∗,

or
T x∗ + Sx∗ = x∗,

which completes our proof.

LetW be a real Banach space.

Definition 1. A mapping K :W →W is said to be completely continuous if it is continuous and
maps bounded sets into relatively compact sets.

The definition of l-set contraction is related to the Kuratowski measure of noncom-
pactness, which we recall for completeness.

Definition 2. Let ΓW be the class of all bounded sets ofW . The Kuratowski measure of noncom-
pactness

α : ΓW → [0, ∞)

is defined by

α($) = inf

δ > 0 : $ =
m⋃

j=1

$j and diam($j) ≤ δ, j = 1, . . . , m

,

where
diam($j) = sup{‖x− y‖W : x, y ∈ $j},
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is the diameter of $j, j = 1, . . . , m.

We refer the reader to [9] for the main symmetrical properties of the measure of
noncompactness.

Definition 3. A mapping A : W → W is said to be an l-set contraction if it is continuous,
bounded, and there exists a constant 0 ≤ l such that

β(A(Z)) ≤ lβ(Z)

for any bounded set Z ⊂ W . The mapping A is said to be a strict set contraction if 1 > l.

If A : W → W is a completely continuous mapping, then A is 0-set contraction
(see [10] (p. 264)).

Definition 4. LetW and Z be real Banach spaces. A mappingA :W → Z is said to be expansive
if there exists a constant α > 1 such that

‖Ax−Az‖Z ≥ α‖x− z‖W , ∀x, z ∈ W .

Definition 5. A closed, convex set v in $ is said to be cone if

1. βy ∈ v for any β ≥ 0 and for any y ∈ v;
2. y,−y ∈ v implies y = 0.

Let us denote v∗ = v\{0}.

Lemma 1. Let $ be a convex closed subset of a Banach space E and X ⊂ $ be a bounded open
subset where 0 ∈ X . For small enough values of ε > 0, let A : X → $ be a strict k-set contraction
that satisfies

Ay 6∈ {y, λy}, ∀y ∈ ∂X , λ ≥ 1 + ε.

Thus, i (A,X , $) = 1.

Proof. Let the homotopic deformation be

H : [0, 1]×X → $,

defined by

H(t, y) =
1

ε + 1
tAy.

For each y, the operatorH is continuous and uniformly continuous in t, whereH(t, .)
is a strict set contraction for each t ∈ [0, 1]. Notice thatH(t, .) has no fixed point on ∂X . On
the contrary,

• If t = 0, ∃y0 ∈ ∂X such that y0 = 0, contradicting y0 ∈ X .
• If t ∈ (0, 1], ∃y0 ∈ P ∩ ∂X such that 1

ε+1 tAy0 = y0; then, Ay0 = 1+ε
t y0 with 1+ε

t ≥
1 + ε, contradicting the assumption. From the invariance under homotopy and the
normalization symmetrical properties of the index, we deduce

i (
1

ε + 1
A,X , $) = i (0,X , $) = 1.

We show that
i (A,X , $) = i (

1
ε + 1

A,X , $).

Then,
1

ε + 1
Ay 6= y, ∀ y ∈ ∂X . (4)
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Thus, ∃γ > 0 so that

‖y− 1
ε + 1

Ay‖ ≥ γ, ∀ y ∈ ∂X .

We have 1
ε+1Ay→ Ay as ε→ 0, for x ∈ X .

So, for small enough ε,

‖Ay− 1
ε + 1

Ay‖ < γ

2
, ∀ y ∈ ∂X .

Let us define the convex deformation F : [0, 1]×X → $ by

F(t, y) = tAy + (1− t)
1

ε + 1
Ay.

For all x, F is continuous, and uniformly continuous in t. The mapping F(t, .) is a
strict set contraction ∀t ∈ [0, 1]. We mention that F(t, .) has no fixed point on ∂X . We have
∀x ∈ ∂X , and thus we have

‖y− F(t, y)‖ = ‖y− tAy− (1− t) 1
ε+1Ay‖

≥ ‖y− 1
ε+1Ay‖ − t‖Ay− 1

ε+1Ay‖
> γ− γ

2 > γ
2 ,

According to the invariance properties, the homotopy of the index ensures the claim.

3. Proof of Theorem 1

LetW1 = C1([0, ∞), Cq(R)) be a space endowed with

‖u‖2 = max{ sup
t∈[0,∞),x∈R

|u|, sup
t∈[0,∞),x∈R

|∂tu|,

sup
t∈[0,∞),x∈R

|∂j
xu|, j ∈ {1, . . . , q}},

provided it exists. DefineW =W1 ×W1 with

‖(u, v)‖ = max{‖u‖2, ‖v‖2}.

We define for (u, v) ∈ W

Q1(u, v) =
N1

∑
k=0

N1−k

∑
l=0

∂x

{
N1−k

∑
m=0

∂m
x upPk,l,m

(
∂l

xv
)}

,

Q2(u, v) =
N3

∑
k=0

N3−k

∑
l=0

∂k
x

{
N3−k

∑
m=0

∂m
x vpQk,l,m

(
∂l

xu
)}

, t ∈ [0, ∞), x ∈ R.

Then, the IVP (1) can be rewritten as

∂tu + Q1(u, v) +
N2

∑
k=1

ak(t, x) + ∂2k+1
x u = 0,

∂tv + Q2(u, v) +
N4

∑
k=1

bk(t, x)∂2k+1
x v = 0, t ∈ [0, ∞), x ∈ R,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R.

(5)
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Let

C1 =

{ N1

∑
k=0

N1−k

∑
l=0

N1−k

∑
m=0

k

∑
r=0

(
k
r

)
((k− r + m)!)2 p!Bp

N5

∑
j=0

r

∑
i=0

(
r
i

)
(i!)2 j!B j+1,

N3

∑
k=0

N3−k

∑
l=0

N3−k

∑
m=0

k

∑
r=0

(
k
r

)
((k− r + m)!)2 p!Bp

N6

∑
j=0

r

∑
i=0

(
r
i

)
(i!)2 j!B j+1

}
.

Lemma 2. Suppose ((Hyp1). If (u, v) ∈ W and ‖(u, v)‖ ≤ B, then

|Q1(u, v)|, |Q2(u, v)| ≤ C1, t ∈ [0, ∞), x ∈ R.

Proof. We have

∂x

{
N1−k

∑
m=0

∂m
x upPk,l,m

(
∂l

xv
)}

=
N1−k

∑
m=0

∂k
x

(
∂m

x upPk,l,m

(
∂l

xv
))

=
N1−k

∑
m=0

k

∑
r=0

(
k
r

)
∂k−r+m

x up∂r
xPk,l,m

(
∂l

xv
)

=
N1−k

∑
m=0

k

∑
r=0

(
k
r

)
∂k−r+m

x up∂r
x

N5

∑
j=0

ck,l,m,j

(
∂l

xv
)j

=
N1−k

∑
m=0

k

∑
r=0

(
k
r

)
∂k−r+m

x up
N5

∑
j=0

r

∑
i=0

(
r
i

)
∂r−i

x ck,l,m,j∂x

(
∂l

xv
)j

,

k ∈ N, 0 ≤ k ≤ N1. Since B > 1, we have∣∣∂r1
x ur2

∣∣ ≤ (r1!)2r2!Br2 ,

for any r1, r2 ∈ N, r1 ≤ q. Then,∣∣∣∣∣∂x

{
N1−k

∑
m=0

∂m
x upPk,l,m

(
∂l

xv
)}∣∣∣∣∣

≤
N1−k

∑
m=0

k

∑
r=0

(
k
r

)∣∣∣∂k−r+m
x up

∣∣∣ N5

∑
j=0

r

∑
i=0

(
r
i

)∣∣∣∂r−i
x ck,l,m,j

∣∣∣∣∣∣∣∂i
x

(
∂l

xv
)j
∣∣∣∣

≤
N1−k

∑
m=0

k

∑
r=0

(
k
r

)
((k− r + m)!)2 p!Bp

N5

∑
j=0

r

∑
i=0

(
r
i

)
(i!)2 j!B j+1,

on [0, ∞)×R, 0 ≤ k ≤ N1, and then

|Q1(u, v)| ≤
N1

∑
k=0

N1−k

∑
l=0

N1−k

∑
m=0

k

∑
r=0

(
k
r

)
((k− r + m)!)2 p!Bp

N5

∑
j=0

r

∑
i=0

(
r
i

)
(i!)2 j!B j+1

≤ C1,

on [0, ∞)×R. As above,
|Q2(u, v)| ≤ C1,

on [0, ∞)×R. The proof is now completed.
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For (u, v) ∈ W , we define the operators

S1
1(u, v) = u− u0(x)

+
∫ t

0

(
Q1(u, v)(s, x) +

N2

∑
k=1

ak(s, x)∂2k+1
x u(s, x)

)
ds,

S2
1(u, v) = v− v0(x)

+
∫ t

0

(
Q2(u, v)(s, x) +

N4

∑
k=1

bk(s, x)∂2k+1
x v(s, x)

)
ds,

S(u, v) =
(

S1
1(u, v), S2

1(u, v)
)

,

t ∈ [0, ∞), x ∈ R.

Lemma 3. Suppose ((Hyp1). If (u, v) ∈ W satisfies

S1(u, v) = 0, t ∈ [0, ∞), x ∈ R,

then (u, v) is a solution to (1).

Proof. We have

0 = u− u0(x)

+
∫ t

0

(
Q1(u, v)(s, x) +

N2

∑
k=1

ak(s, x)∂2k+1
x u(s, x)

)
ds,

0 = v− v0(x)

+
∫ t

0

(
Q2(u, v)(s, x) +

N4

∑
k=1

bk(s, x)∂2k+1
x v(s, x)

)
ds,

(6)

t ∈ [0, ∞), x ∈ R, where we differentiate with respect to t to have (5). Let t = 0 in (6). We
thus obtain

0 = u(0, x)− u0(x)

0 = v(0, x)− v0(x), x ∈ R.

Thus, (u, v) is a solution to (1). The proof is now completed.

Let
B1 = max{2B, C1 + N2B2, C1 + N4B2}.

Lemma 4. Suppose ((Hyp1). If (u, v) ∈ W and ‖(u, v)‖ ≤ B; then,

|S1
1(u, v)| ≤ B1(1 + t),

|S2
1(u, v)| ≤ B1(1 + t), t ∈ [0, ∞), x ∈ R.
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Proof. We have

|S1
1(u, v)| =

∣∣∣∣u− u0(x)

+
∫ t

0

(
Q1(u, v)(s, x) +

N2

∑
k=1

ak(s, x)∂2k+1
x u(s, x)

)
ds
∣∣∣∣

≤ |u|+ |u0(x)|

+
∫ t

0

(
|Q1(u, v)(s, x)|+

N2

∑
k=1
|ak(s, x)||∂2k+1

x u(s, x)|
)

ds

≤ 2B +
∫ t

0
(C1 + N2B2)ds

≤ B1(1 + t), t ∈ [0, ∞), x ∈ R.

As above,
|S2

1(u, v)| ≤ B1(1 + t), t ∈ [0, ∞), x ∈ R,

which completes the proof.

Let

Hypothesis 2. There exists a function g ∈ C([0, ∞) × R), g > 0 on (0, ∞) × (R\{0}),
g(0, x) = g(t, 0) = 0, t ∈ [0, ∞), x ∈ R, and A > 0 such that

q! · 2q+1(1 + t + t2)(1 + |x|+ · · ·+ |x|q)
∫ t

0

∣∣∣∣ ∫ x

0
g(t2, x2)dx2

∣∣∣∣dt2 ≤ A,

t ∈ [0, ∞), x ∈ R.

We will give some examples for g and A that satisfy Hypothesis 2. For (u, v) ∈ W ,
define the operators

S1
2(u, v) =

∫ t

0

∫ x

0
(t− t2)(x− x2)

qg(t2, x2)S1
1(u, v)(t2, x2)dx2dt2,

S2
2(u, v) =

∫ t

0

∫ x

0
(t− t2)(x− x2)

qg(t2, x2)S2
1(u, v)(t2, x2)dx2dt2,

S2(u, v) = (S1
2(u, v), S2

2(u, v)), t ∈ [0, ∞), x ∈ R.

Lemma 5. Suppose Hypothesis 1 and Hypothesis 2. If (u, v) ∈ W satisfies

S2(u, v) = 0, t ∈ [0, ∞), x ∈ R,

then (u, v) is a solution to (1).

Proof. Differentiating the Equation (5) two times in t and q + 1 times in x, we have

g(t, x)S1
1(u, v) = g(t, x)S2

1(u, v) = 0, t ∈ [0, ∞), x ∈ R.

Hence,
S1

1(u, v) = S2
1(u, v) = 0, t,∈ (0, ∞), x ∈ (R\{0}).
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Since S1
1(u, v)(·, ·) and S2

1(u, v)(·, ·) are continuous functions on [0, ∞)×R, we have

0 = S1
1(u, v)(0, x) = S2

1(u, v)(0, x)

= lim
t→0

S1
1(u, v) = lim

t→0
S2

1(u, v)

= lim
x→0

S1
1(u, v) = lim

x→0
S2

1(u, v)

= S1
1(u, v)(t, 0) = S2

1(u, v)(t, 0), t ∈ [0, ∞), x ∈ R.

Therefore,
S1

1(u, v) = S2
1(u, v) = 0, t ∈ [0, ∞), x ∈ R.

Using Lemma 3, we obtain the main result.

Lemma 6. Suppose Hypothesis 1 and Hypothesis 2. If (u, v) ∈ W , ‖(u, v)‖ ≤ B, then

‖S2(u, v)‖ ≤ AB1.

Proof. The inequality (z + w)r ≤ 2r(zr + wr), w, z, q ≥ 0 will be used. We have

|S1
2(u, v)| =

∣∣∣∣ ∫ t

0

∫ x

0
(t− t2)(x− x2)

qg(t2, x2)S1
1(u, v)(t2, x2)dx2dt2

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)|x− x2|qg(t2, x2)|S1

1(u, v)(t2, x2)|dx2

∣∣∣∣dt2

≤ B1

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)(1 + t2)|x− x2|qg(t2, x2)dx2

∣∣∣∣dt2

≤ B1t(1 + t)2q+1|x|q
∫ t

0

∣∣∣∣ ∫ x

0
g(t2, x2)dx2

∣∣∣∣dt2

≤ AB1, t ∈ [0, ∞), x ∈ R,

and

|∂tS1
2(u, v)| =

∣∣∣∣ ∫ t

0

∫ x

0
(x− x2)

qg(t2, x2)S1
1(u, v)(t2, x2)dx2dt2

∣∣∣∣
≤

∫ t

0

∣∣∣∣ ∫ x

0
|x− x2|qg(t2, x2)|S1

1(u, v)(t2, x2)|dx2

∣∣∣∣dt2

≤ B1

∫ t

0

∣∣∣∣ ∫ x

0
(1 + t2)|x− x2|qg(t2, x2)dx2

∣∣∣∣dt2

≤ B1(1 + t)2q+1|x|q
∫ t

0

∣∣∣∣ ∫ x

0
g(t2, x2)dx2

∣∣∣∣dt2

≤ AB1, t ∈ [0, ∞), x ∈ R,

and

|∂xS1
2(u, v)| = q

∣∣∣∣ ∫ t

0

∫ x

0
(t− t2)(x− x2)

q−1g(t2, x2)S1
1(u, v)(t2, x2)dx2dt2

∣∣∣∣
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≤ q
∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)|x− x2|q−1g(t2, x2)|S1

1(u, v)(t2, x2)|dx2

∣∣∣∣dt2

≤ qB1

∫ t

0

∣∣∣∣ ∫ x

0
(t− t2)(1 + t2)|x− x2|q−1g(t2, x2)dx2

∣∣∣∣dt2

≤ qB1t(1 + t)2q|x|q−1
∫ t

0

∣∣∣∣ ∫ x

0
g(t2, x2)dx2

∣∣∣∣dt2

≤ AB1, t ∈ [0, ∞), x ∈ R,

and so on. As above,

|S2
2(u, v)| ≤ AB1, |∂tS2

2(u, v)| ≤ AB1,

|∂j
xS2

2(u, v)| ≤ AB1, j ∈ {1, . . . , q}.

t ∈ [0, ∞), x ∈ R. Thus,
‖S2(u, v)‖ ≤ AB1,

which completes our proof.

Suppose

Hypothesis 3. Let ε ∈ (0, 1), A, B and B1 satisfy εB1(1 +A) < 1 and B > AB1.

Let ˜̃̃$ denote the set of all equi-continuous inW with respect to the norm ‖ · ‖. Also let˜̃$ = ˜̃̃$ be the closure of ˜̃̃$, where

$̃ = ˜̃$ ∪ {(u0, v0)},

and
$ = {(u, v) ∈ $̃ : (u, v) ≥ 0, ‖(u, v)‖ ≤ B}.

Note that $ is a compact set inW . For (u, v) ∈ W , we define

T (u, v) = −ε(u, v),

S(u, v) = (u, v) + ε(u, v) + εS2(u, v), t ∈ [0, ∞), x ∈ R.

Owing to the Lemma 5, we have f (u, v) ∈ $

‖(I − S)(u, v)‖ = ‖ε(u, v)− εS2(u, v)‖

≤ ε‖(u, v)‖+ ε‖S2(u, v)‖

≤ εB1 + εAB1

= εB1(1 +A)

< B.



Symmetry 2023, 15, 1159 12 of 17

Thus, S : $→W is continuous, and (I − S)($) resides in a compact subset ofW . One
can suppose that ∃(u, v) ∈ W such that ‖(u, v)‖ = B and

(u, v) = λ(I − S)(u, v),

or
1
λ
(u, v) = (I − S)(u, v) = −ε(u, v)− εS2(u, v),

or (
1
λ
+ ε

)
(u, v) = −εS2(u, v),

for λ ∈
(

0, 1
ε

)
. Then, ‖S2(u, v)‖ ≤ AB1 < B,

εB <

(
1
λ
+ ε

)
B =

(
1
λ
+ ε

)
‖(u, v)‖ = ε‖S2(u, v)‖ < εB.

This is a contradiction. By Theorem 3, we see that T + S has a fixed point (u∗, v∗) ∈ $.
Then,

(u∗, v∗) = T (u∗, v∗) + S(u∗, v∗)

= −ε(u∗, v∗) + (u∗, v∗) + ε(u∗, v∗) + εS2(u∗, v∗),

t ∈ [0, ∞), x ∈ R, whereupon

0 = S2(u∗, v∗), t ∈ [0, ∞), x ∈ R.

Owing to the Lemma 5, we have (u∗, v∗) as a solution to (1), which completes the
proof.

4. Proof of Theorem 2

LetW be the space used in the previous section (see [11]).

Hypothesis 4. Let 0 < m be large enough and r,A,B, L, R1 > 0 satisfy

B ≥ R1 > r, 0 < ε, R1 >

(
2

5m
+ 1
)

L,

AB1 <
L
5

.

Define
P̃ = {(u, v) ∈ W : 0 ≤ (u, v) on [0, ∞)×R}.

We denote by v the set of all equi-continuous families in P̃. For (u, v) ∈ W , define

T1(u, v) = (1 + mε)(u, v)−
(

ε
L
10

, ε
L
10

)
,

S3(u, v) = −εS2(u, v)−mε(u, v)−
(

ε
L
10

, ε
L
10

)
,

t ∈ [0, ∞). We have any fixed point (u, v) ∈ W of the operator T1 + S3 is a solution to (1).
Define

X1 = vr = {(u, v) ∈ v : ‖(u, v)‖ < r},
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X2 = vL = {(u, v) ∈ v : ‖(u, v)‖ < L},

X3 = vR1 = {(u, v) ∈ v : ‖(u, v)‖ < R1},

R2 = R1 +
A
m
B1 +

L
5m

,

Γ = vR2 = {(u, v) ∈ v : ‖(u, v)‖ ≤ R2}.

1. For (u1, v1), (u2, v2) ∈ Γ, we have

‖T1(u1, v1)− T1(u2, v2)‖ = (1 + mε)‖(u1, v1)− (u2, v2)‖,

where T1 : Γ→W is an expansive operator with a constant 1 < h = 1 + mε.
2. For (u, v) ∈ vR1 , we have

‖S3(u, v)‖ ≤ ε‖S2(u, v)‖+ mε‖(u, v)‖+ ε
L
10

≤ ε

(
AB1 + mR1 +

L
10

)
.

Then, S3(vR1) is uniformly bounded. As S3 : vR1 →W is continuous, we note that
S3(vR1) is equi-continuous. Then, S3 : vR1 →W is a 0-set contraction.

3. Let (u1, v1) ∈ vR1 . Set

(u2, v2) = (u1, v1) +
1
m

S2(u1, v1) +

(
L

5m
,

L
5m

)
.

We have 0 ≤ S2u1 +
L
5 , 0 ≤ S2v1 +

L
5 on [0, ∞)×R. We have 0 ≤ u2, v2 on [0, ∞)×R

and

‖(u2, v2)‖ ≤ ‖(u1, v1)‖+
1
m
‖S2(u1, v1)‖+

L
5m

≤ R1 +
A
m
B1 +

L
5m

= R2.

Then, (u2, v2) ∈ Γ and

−εm(u2, v2) = −εm(u1, v1)− εS2(u1, v1)− ε

(
L
10

,
L
10

)
− ε

(
L
10

,
L
10

)
or

(I − T1)(u2, v2) = −εm(u2, v2) + ε

(
L
10

,
L
10

)
= S3(u1, v1).

Thus, S3(vR1) ⊂ (I − T1)(Γ).
4. ∀(u0, v0) ∈ v∗, ∃0 ≤ λ and (u, v) ∈ ∂vr ∩ (Γ + λ(u0, v0)) or v ∈ ∂vR1 ∩ (Γ +

λ(u0, v0)) so that
S3(u, v) = (I − T1)((u, v)− λ(u0, v0)).
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Thus,

−εS2(u, v)−mε(u, v)− ε

(
L
10

,
L
10

)
= −mε((u, v)− λ(u0, v0)) + ε

(
L
10

,
L
10

)
,

or

−S2(u, v) = λm(u0, v0) +

(
L
5

,
L
5

)
.

Hence,

‖S2v‖ =
∥∥∥∥λm(u0, v0) +

(
L
5

,
L
5

)∥∥∥∥ >
L
5

.

This contradicts our claim.
5. ∀ε1 ≥ 0 small enough ∃(u1, v1) ∈ ∂vL and λ1 ≥ 1 + ε1 so that λ1(u1, v1) ∈ vR1 and

S3(u1, v1) = (I − T1)(λ1(u1, v1)). (7)

In particular, for ε1 > 2
5m , we have (u1, v1) ∈ ∂vL, λ1(u1, v1) ∈ vR1 , λ1 ≥ 1 + ε1 and

(7) holds. Since (u1, v1) ∈ ∂vL and λ1(u1, v1) ∈ vR1 , then(
2

5m
+ 1
)

L < λ1L = λ1‖(u1, v1)‖ ≤ R1.

Moreover,

−εS2(u1, v1)−mε(u1, v1)− ε

(
L
10

,
L
10

)
= −λ1mε(u1, v1) + ε

(
L
10

,
L
10

)
,

or

S2(u1, v1) +

(
L
5

,
L
5

)
= (λ1 − 1)m(u1, v1).

Then,

2
L
5
≥
∥∥∥∥S2(u1, v1) +

(
L
5

,
L
5

)∥∥∥∥ = (λ1 − 1)m‖(u1, v1)‖ = (λ1 − 1)mL,

and
2

5m
+ 1 ≥ λ1,

which contradicts out claim.

Then, conditions of Theorem 2 hold, and (1) has at least two solutions (u1, v1) and
(u2, v2) so that

‖(u1, v1)‖ = L < ‖(u2, v2)‖ < R1,

or
r < ‖(u1, v1)‖ < L < ‖(u2, v2)‖ < R1.

5. Example

Let B = 1 and

R1 = 10, L = 5, r = 4, m = 1050, A =
1

10B1
, ε =

1
5B1(1 +A)

,

Nj = 5, j ∈ {1, . . . , 4}, p = 10. Then,

AB1 =
1
10

< B, εB1(1 +A) < 1,
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i.e., (Hypothesis 3) holds. Next,

r < L < R1, ε > 0, R1 >

(
2

5m
+ 1
)

L, AB1 <
L
5

,

i.e., (Hypothesis 4) holds. Take

h(s) = log
1 + sq+1

√
2 + s2q+2

1− sq+1
√

2 + s2q+2
, l(s) = arctan

sq+1
√

2
1− s2q+2 , s ∈ R, s 6= ±1.

Then,

h′(s) =
2
√

2(q + 1)sq(1− s2q+2)

(1− sq+1
√

2 + s2q+2)(1− sq+1
√

2 + s2q+2)
,

l′(s) =
(q + 1)

√
2sq(1 + s2q+2)

1 + s4q+4 , s ∈ R, s 6= ±1.

Therefore,

lim
s→±∞

q+1

∑
r=0

srh(s) = lim
s→±∞

h(s)
1

∑l+1
r=0 sr

= lim
s→±∞

h′(s)

−∑
q
r=0(r+1)sr(
∑

q+1
r=0 sr

)2

= − lim
s→±∞

2
√

2(q + 1)sq(1− s2q+2)
(

∑
q+1
r=0 sr

)2(
∑

q
r=0(r + 1)sr

)
(1− sq+1

√
2 + s2q+2)(1− sq+1

√
2 + s2q+2)

6= ±∞,

and

lim
s→±∞

q+1

∑
r=0

srl(s) = lim
s→±∞

l(s)
1

∑
q+1
r=0 sr

= lim
s→±∞

l′(s)

−∑
q
r=0(r+1)sr(
∑

q+1
r=0 sr

)2

= − lim
s→±∞

(q + 1)
√

2sq(1 + s2q+2)
(

∑
q+1
r=0 sr

)2

(
1 + s4q+4

)(
∑

q
r=0(r + 1)sr

)
6= ±∞.

Consequently,

−∞ < lim
s→±∞

(
q+1

∑
r=0

sr

)
h(s) < ∞,

−∞ < lim
s→±∞

(
q+1

∑
r=0

sr

)
l(s) < ∞.
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Hence, there exists C2 > 0 such that

q+1

∑
r=0
|s|r
(

1
(4q + 4)

√
2

log
1 + sq+1

√
2 + s2q+2

1− sq+1
√

2 + s2q+2
+

1
(2q + 2)

√
2

arctan
sq+1
√

2
1− s2q+2

)
≤ C2,

s ∈ R. Note that acccording to lim
s→±1

l(s) = π
2 and [12] (p. 707, Integral 79), we have

∫ dz
1 + z4 =

1
4
√

2
log

1 + z
√

2 + z2

1− z
√

2 + z2
+

1
2
√

2
arctan

z
√

2
1− z2 .

Let
Q(s) =

sq

(1 + s4q+4)
, s ∈ R,

and
g1(t, x, y) = Q(t)Q(x), t ∈ [0, ∞), x ∈ R.

Then, ∃C > 0 such that

2q+1(q + 1)!(1 + t + t2)

(
q

∑
r=0
|x|r
) ∫ t

0

∣∣∣∣ ∫ x

0
g1(t2, x2)dx2

∣∣∣∣∣dt2 ≤ C, t ∈ [0, ∞), x ∈ R.

Let
g(t, x) =

A
C

g1(t, x), t ∈ [0, ∞), x ∈ R.

Then,

2q+1q!(1 + t + t2)

(
q

∑
r=0
|x|r
) ∫ t

0

∣∣∣∣ ∫ x

0
g(t2, x2)dx2

∣∣∣∣∣dt2 ≤ A, t ∈ [0, ∞), x ∈ R,

i.e., (Hypothesis 3) holds. Therefore, for the IVP

∂tu +
5

∑
k=0

5−k

∑
l=0

∂x

{
5−k

∑
m=0

∂m
x u10∂l

xv

}
+

5

∑
k=1

1
(1 + t2k)(1 + x2k)

∂2k+1
x u = 0

∂tv +
5

∑
k=0

5−k

∑
l=0

∂k
x

{
5−k

∑
m=0

∂m
x v10∂l

xu

}
+

5

∑
k=1

1
(2 + t4k)(3 + x6k)

∂2k+1
x v = 0,

t ∈ [0, ∞), x ∈ R, u(0, x) =
1

1 + x4 , v(0, x) =
1

3 + 4x8 , x ∈ R,

all conditions of Theorems 1 and 2 are fulfilled.
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