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Abstract: This paper derives the declarations for timelike ruled surfaces with stationary timelike
Disteli-axis by the E. Study map. This prepares the ability to determine a set of Lorentzian invariants
which explain the local shape of timelike ruled surfaces. As a result, the Hamilton and Mannhiem
formulae of surfaces theory are attained at Lorentzian line space and their geometrical explanations
are examined. Then, we define and explicate the kinematic geometry of a timelike Plucker conoid
created by the timelike Disteli-axis. Additionally, we provide the relationships through timelike ruled
surface and the order of contact with its timelike Disteli-axis.
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1. Introduction

In the context of spatial movements, a ruled surface is a surface that can be created by
movable line in space. The significance of the ruled surface lies in the certainty that it is
exercised in considerable ranges of manufacturing and engineering, including modeling of
apparel and automobile parts. Moreover, it can be utilized to build mathematical models
of movable structures, which can be utilized to design and optimize complex engineering
systems (see e.g., [1–3]). One of the generalization-comfortable methods to heading the
locomotion of line space seems to find a link with this space and dual numbers. Via the
E. Study map in screw and dual number algebra, the set of all oriented lines in Euclidean
3-space E3 is instantly attached to the set of points on the dual unit sphere in the dual
3-space D3. Further characteristics on the necessary essential registrations of the E. Study
map and one-parameter dual spherical movement can be found in [4–8].

In Minkowski 3-space E3
1, the discussion of ruled surface is more distant than the

Euclidean case, Lorentzian distance function can be negative, positive, or zero, whereas
the Euclidean distance function can only be positive-definite. Then, if we occupy the
Minkowski 3-space E3

1 as an substitutional of the Euclidean 3-space E3, the E. Study map
can be presented as: The set of all timelike (spacelike) oriented lines in Minkowski 3-space
E3

1 is instantly attached to the set of points on the hyperbolic (Lorentzian) dual unit sphere
in the Lorentzian Dual 3-space D3

1. It shows that a spacelike curve on H2
+ matching a

timelike ruled surface at E3
1. Similarly, a spacelike (timelike) curve on S2

1 matching timelike
(spacelike) ruled surface at E3

1. By means of its dealings with engineering and physical
sciences in Minkowski space, senior geometers and engineers have researched and acquired
a lot of ownerships of the ruled surfaces (see [9–14]).

This work is an access for establishing timelike ruled surfaces with a stationary (in-
variable) timelike Disteli-axis by the E. Study map. Then, we specify and treatise the
kinematic-geometry of a timelike Plűcker conoid created by the timelike Disteli-axis. As a
result, a description for a spacelike line trajectory to be a invariable timelike Disteli-axis is
gained and explored. Lastly, we research some conditions which lead to specific timelike
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ruled surfaces such as the general timelike surface, the timelike helicoidal surface, and the
timelike cone.

2. Preliminaries

In this section, we list some connotations, formulae of dual numbers and dual
Lorentzian vectors (see, e.g., [1–5,15,16]). A non-null directed line L in Minkowski 3-
space E3

1 can be distinguished with a point a ∈ L and a normalized vector ξ on L, that is,
‖ξ‖2 = ±1. To hold coordinates for L, one set the moment vector ξ∗ = a× ξ in relation to
the origin point in E3

1. If a is replaced by any point b = a + t ξ, t ∈ R on L, this detects that
ξ∗ is independent of a on L. The two non-null vectors ξ and ξ∗ are dependent; they fulfill
the following:

L : < ξ, ξ >= ±1, < ξ∗, ξ >=0.

The six components ξ i, ξ∗i (i = 1, 2, 3) of ξ and ξ∗ are named the normalized Plűcker
coordinates of L. Therefore, ξ and ξ∗ locate the non-null directed line L.

A dual number ξ̂ is a number ξ + εξ∗, where ξ, ξ∗ in R, ε is a dual unit with ε 6= 0
and ε2 = 0. Then, the set

D3 = {ξ̂:= ξ + εξ∗ =(ξ̂1, ξ̂2, ξ̂3)},

with the Lorentzian scalar product

< ξ̂, ξ̂ >= ξ̂2
1 + ξ̂2

2 − ξ̂2
3,

creates the so-named dual Lorentzian 3-space D3
1. Then, a point ξ̂ = (ξ̂1, ξ̂2, ξ̂3)

t has dual

coordinates ξ̂ i = (ξ i + εξ∗i ) ∈ D. If ξ 6= 0 the norm
∥∥∥ξ̂
∥∥∥ of ξ̂ =ξ+εξ∗ is

∥∥∥ξ̂
∥∥∥ =

√∣∣∣< ξ̂, ξ̂ >
∣∣∣ = ‖ξ‖(1+ε

< ξ, ξ∗ >

‖ξ‖2 ).

Then, ξ̂ is named a timelike (spacelike) dual unit vector if
∥∥∥ξ̂
∥∥∥2
= −1(

∥∥∥ξ̂
∥∥∥2
=1). Conse-

quently, we have ∥∥∥ξ̂
∥∥∥2

= ±1⇐⇒ ‖ξ‖2 = ±1, < ξ, ξ∗ >= 0.

The hyperbolic and Lorentzian (de Sitter space) dual unit spheres with the center 0̂,
respectively, are:

H2
+ =

{
ξ̂∈D3

1 | ξ̂2
1 + ξ̂2

2 − ξ̂2
3 = −1

}
,

and
S2

1 =
{

ξ̂∈D3
1 | ξ̂2

1 + ξ̂2
2 − ξ̂2

3 = 1
}

.

Hence, we have the E. Study map: The ring-shaped hyperboloid represents the set of
spacelike lines, the combined asymptotic cone represents the set of null-lines, and the oval-
shaped hyperboloid represents the set of timelike lines (see Figure 1). As a consequence, a
curve on H2

+ matches a timelike ruled surface in ξ3
1. Additionally, a curve on S2

1 matches a
spacelike or timelike ruled surface in E3

1 [8–14].

Definition 1. For any two (non-null) dual vectors â and b̂ in D3
1, we have [8–12]:

(i) If â and b̂ are two dual spacelike vectors, then:

• If they span a dual spacelike plane, there is a dual number θ̂ = θ + εθ∗; 0 ≤ θ ≤ π, and

θ∗ ∈ R such that < â, b̂ >= ‖â‖
∥∥∥b̂
∥∥∥ cos θ̂. This number is the spacelike dual angle amongst

â and b̂;
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• If they span a dual timelike plane, there is a dual number θ̂ = θ + εθ∗ ≥ 0 such that

< â, b̂ >= ε‖â‖
∥∥∥b̂
∥∥∥ cosh θ̂, where ε = +1 or ε = −1 via sign(â2) = sign(ŷ2) or

sign(â2) 6= sign(b̂2), respectively. This number is the central dual angle amongst â and b̂;
(ii) If â and b̂ are two dual timelike vectors, then there is a dual number θ̂ = θ + εθ∗ ≥ 0
such that < â, b̂ >= ε‖â‖

∥∥∥b̂
∥∥∥ cosh θ̂, where ε = +1 or ε = −1 via â and b̂ have different

time-direction or the same time-direction, respectively. This dual number is the Lorentzian
timelike dual angle amongst â and b̂;
(iii) If â is dual spacelike, and b̂ is dual timelike, then there is a dual number θ̂ = θ + εθ∗ ≥ 0
such that < â, b̂ >= ε‖â‖

∥∥∥b̂
∥∥∥ sinh θ̂, where ε = +1 or ε = −1 via sign(â2) = sign(b̂1)

or sign(â2) 6= sign(b̂1). This number is the Lorentzian timelike dual angle amongst â and b̂.

Figure 1. The dual hyperbolic and dual Lorentzian unit spheres.

Definition 2. A pencil of non-null oriented lines â = (a, a∗) ∈ E3
1 satisfying

C : < a∗, b >+< b∗, a >=0,

where
∥∥∥b̂
∥∥∥2

= ±1 is named a spacelike (timelike) line complex when < b, b∗ > 6= 0. In the special

case, C is named a spacelike (timelike) singular line complex if < b∗, b >=0, and
∥∥∥b̂
∥∥∥2

= ±1.

A non-null singular line complex is a pencil of all non-null lines â intersecting the
non-null line b̂. Then, we can have a non-null line congruence by common non-null line
complexes. The non-null line congruences include a regular pencil of non-null lines in E3

1
realized as a non-null ruled surface. Non-null ruled surface (such as cone and cylinder )
include non-null lines in which the tangent plane touches the surface over the non-null
ruling. Such non-null lines are named non-null torsal lines.

One-Parameter Lorentzian Dual Spherical Movements

Let S2
1m and S2

1 f be two Lorentzian dual unit spheres with a joint center 0̂ in D3
1.

We choose {ζ̂} = {0̂; ζ̂1, ζ̂2, ζ̂3(timelike)}, and {ξ̂} = {0̂; ξ̂1, ξ̂2, ξ̂3(timelike)} as two
orthonormal dual frames related with S2

1m and S2
1 f , respectively. If we set {ξ̂} is stationary,

whereas the components of the set {ζ̂} are functions of a real parameter t ∈ R (say the
time). Then, we say that S2

1m movements with respect to S2
1 f . Such movement is named a
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one-parameter Lorentzian dual spherical movements, and indicated by S2
1m/S2

1 f . If S2
1m and

S2
1 f matches to the Lorentzian line spaces Lm and L f , respectively, then S2

1m/S2
1 f matches

the one-parameter Lorentzian spatial movements Lm/L f . Therefore, Lm is the movable
Lorentzian space with respect to the invariable Lorentzian space L f in E3

1. Since each of
these orthonormal dual frames has the same direction, one frame is gained by employing
second when revolved about 0̂. By letting < ζ̂ i, ξ̂ j >= âij = aij + εa∗ij and considering the
dual matrix â(t) = (âij). It then follows that the signature matrix ε of the inner product is
specified by

ε =

 1 0 0
0 1 0
0 0 −1

.

Hence, the movement S2
1m/S2

1 f can be described as ξ̂1

ξ̂2

ξ̂3

 =

 â11 â12 â13
â21 â22 â23
â31 â32 â33


 ζ̂1

ζ̂2

ζ̂3

.

Thus, the dual matrix â(t) = aij(t) + εa∗ij(t) has âT = εâ−1ε, and â−1 = εâTε. There-
fore, we have:

ââ−1 = âεâTεa = â−1 â = εâTεâ = I, (1)

which mean it is an orthogonal matrix. This outcome indicates that when a one-parameter
Lorentzian spatial movement is stated in E3

1, we can locate a Lorentzian dual orthogonal
3× 3 matrix â(t) = (âij), where (âij) are dual functions of one variable t ∈ R. Similar to
the set of real Lorentzian orthogonal matrices, the set of Lorentzian dual orthogonal 3× 3
matrices, indicated by O(D3×3

1 ), locate a group with matrix multiplication as the group
operation (real Lorentzian orthogonal matrices are subgroup of Lorentzian dual orthogonal
matrices). The identity element of O(D3×3

1 ) is the 3× 3 unit matrix. Since the center of the
Lorentzian dual unit sphere in D3

1 should remain inanimate, the transformation group in
D3

1 (the picture of Lorentzian movements in the Minkowski 3-space E3
1) does not hold any

translations. Then, for the Lorentzian movements in D3
1, we can state the next theorem:

Theorem 1. The set of all Lorentzian dual orthogonal matrices O(D3×3
1 ) in D3

1-space is in one-to-
one agreement with the set of all one-parameter Lorentzian spatial movements in E3

1-space.

To derive an element of the dual Lie algebra L(OD3×3
1

) of the dual group O(D3×3
1 ), we

set a Lorentzian dual curve of such dual matrices â(t) such that â(0) is the identity. By
setting the derivative of Equation (1) with respect to t, we attain:

â
′
â−1 + â

(
â−1
)′

= 0; 0 is zero 3× 3 matrix.

If we set ω̂(t) = â
′
â−1, we see that ω̂T + εω̂ε = 0, that is, the matrix ω̂ is a skew-

adjoint matrix. Thus, via Theorem 1, the Lie algebra L(OD3×3
1

) of the dual Lorentzian group

O(D3×3
1 ) is the algebra of dual skew-adjoint 3× 3 matrices

ω̂(t) := â
′
εâTε =

 0 ω̂3 ω̂2
−ω̂3 0 −ω̂1
−ω̂2 −ω̂1 0

. (2)
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Here, “dash” references the derivative with respect to t ∈ R. Then, ζ̂
′
1

ζ̂
′
2

ζ̂
′
3

 =

 0 ω̂3 ω̂2
−ω̂3 0 −ω̂1
−ω̂2 −ω̂1 0


 ζ̂1

ζ̂2

ζ̂3

 = ω̂ ×

 ζ̂1

ζ̂2

ζ̂3

, (3)

where ω̂(t) = ω(t)+εω∗(t) = (ω̂1, ω̂2, ω̂3) is named the instantaneous dual rotation
vector of S2

1m/S2
1 f . ω and ω∗, respectively, are the instantaneous rotational differen-

tial velocity vector and the instantaneous translational differential velocity vector of
the movement Lm/Lξ .

3. Timelike Ruled Surfaces with Stationary Disteli-Axis

According to Formula (3), let ζ̂1(t) be a spacelike dual curve on S2
1 f match a timelike

ruled surface (ζ̂) in L f . As customary Blaschke frame for ζ̂1(t) will be specified as

ζ̂1=ζ̂1(t), ζ̂2(t) = ζ̂
′
1

∥∥∥ζ̂
′
1

∥∥∥−1
, ζ̂1 × ζ̂2 = −ζ̂3, (4)

where
< ζ̂1, ζ̂1 >=< ζ̂2, ζ̂2 >= 1, < ζ̂3, ζ̂3 >= −1,

ζ̂1 × ζ̂2 = ζ̂3, ζ̂1 × ζ̂3 = ζ̂2, ı̂2 × ζ̂3 = −ζ̂1.

The frame {ζ̂1(t), ζ̂2(t), ζ̂3(t)} is named Blaschke frame. Through the movement
S2

1m/S2
1 f , the matching lines intersect at the striction point c of the ruled surface (ζ̂). The

trajectory of the central points trace the striction curve c(t) on (ζ̂). Therefore, the structural
equation of S2

1m/S2
1 f is specified by ζ̂
′
1

ζ̂
′
2

ζ̂
′
3

 =

 0 p̂ 0
− p̂ 0 −q̂
0 −q̂ 0


 ζ̂1

ζ̂2

ζ̂3

 = ω̂×

 ζ̂1

ζ̂2

ζ̂3

, (5)

where ω̂(t)=(q̂, 0, p̂), and

p̂(t) = p(t) + εp∗(t) =
∥∥∥ζ̂
′
1

∥∥∥, q̂ = q + εq∗ = det(ζ̂1,ζ̂
′
1, ζ̂

′′

1 ),

are the Blaschke invariants of the timelike dual curve r̂(t) ∈ S2
1 f . The tangent of the striction

curve is:
c
′
(t) = q∗(t)ζ1(t)−p∗(t)ζ3(t). (6)

The Lorentzian invariants of (ζ̂) are:

γ(t) =
q(t)
p(t)

, z(t) =
q∗(t)
q(t)

, and µ(t) =
p∗(t)
p(t)

with p(t) 6= 0. (7)

The geometric elucidations of γ(t), z(t), and µ(t) are as follows: γ is the spherical
curvature of the image curve ζ1(t); z is the angle amongst the tangent to the striction curve
and the ruling of (ζ̂); and µ is its distribution parameter at the ruling. Thus, a timelike ruled
surface can be specified as follows:

(r̂) : y(t, v) =
t∫
0

(q∗(t)ζ1(t)−p∗(t)g(t))dt + vζ1(t). (8)
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3.1. Timelike Disteli-Axis

Under the hypothesis that |q̂| < | p̂|, we specify the timelike Disteli-axis of (ζ̂) in L f
as follows:

d̂(t) = d(t) + εd∗(t) =
ω̂(t)
‖ω̂(t)‖ =

q̂√
p̂2 − q̂2

ζ̂1 +
p̂√

p̂2 − q̂2
ζ̂3. (9)

Then, Equation (5) can be written as ζ̂
′
1

ζ̂
′
2

ζ̂
′
3

 = ‖ω̂‖d̂×

 ζ̂1

ζ̂2

ζ̂3

. (10)

Therefore, at any instant t ∈ R, we gain

ω∗(t) =
pp∗ − qq∗√

p2 − q2
, ω(t) =

√
p2 − q2.

Therefore, the timelike Disteli-axis is the instantaneous screw axis of the the
movement Lm/L f .

Proposition 1. The pitch β(t) of the Blaschke frame along the timelike Disteli-axis is specified by

β(t) :=
< ω, ω∗>

‖ω‖2 =
pp∗ − qq∗

p2 − q2 . (11)

However, the timelike Disteli-axis d̂(t) can be realized by Equation (9), and we have:

(1) The dual angular speed can be specified as ‖ω̂(t)‖ = ω(t)(1 + εβ(t));

(2) If p(x, y, z) be a point on d̂(t), then

p(t, v)= d(t)× d∗(t) + vd(t), v ∈ R. (12)

is a non-developable timelike ruled surface (d̂).
If the movement Lm/L f is a pure rotation, that is, β(t) = 0, then,

d̂(t)= d(t) + εd∗(t) =
1
‖ω‖ (ω + εω∗), (13)

whereas, if β(t) = 0, and ‖ω(t)‖2 = 1, then ω̂(t) is a timelike line. However, if ω̂(t)= 0+εω∗(t),
that is, the movement Lm/L f is pure translational, we let ω∗(t) = ‖ω∗(t)‖; ω∗d(t) =ω∗ for
arbitrary d∗(t) such that ω∗(t) 6= 0, in other view d(t) can be arbitrarily selection, too.

Let φ̂(t) = φ(t) + εφ∗(t) be the dual radius of curvature through d̂ and ı̂1
(see Figure 2). Then,

d̂(t) = sinh φ̂ζ̂1 + cosh φ̂ζ̂3, (14)

where
tanh φ̂ = tanh φ + εφ∗(1− tanh2 φ) =

q̂
p̂

. (15)

From Equation (7), (11), and (15), we attain:

β(t) = µ cosh2 φ−z sinh2 φ,
φ∗(t) = 1

2 (µ−z) sinh 2φ.

}
(16)
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The first one is due to Hamilton and the second one is due to Mannhiem of surface theory in
Euclidean 3-space E3 (Compared with [1–4]).

3.2. Timelike Plücker’s Conoid

We now explicate and research the geometrical demonstrations of the Hamilton and
Mannhiem formulae. The surface defined by φ∗ is the timelike form of the well-known
Plücker’s conoid, or cylindroid. as follows: let ζ̂2 and y-axis of a stationary Lorentzian
frame (oxyz) be coincident and the place of the timelike dual unit vector d̂ be specified by
angle φ and distance φ∗ on the positive orientation of y-axis. The dual unit vectors ζ̂1 and
ζ̂3 can be chosen over the x and z-axes, respectively. This displays that ζ̂1 and ζ̂3 together
with ζ̂2 display the coordinate system of the timelike Plücker’s conoid (Figure 2). Therefore,
if r(x, y, z) should be a point on (d̂), then we have:

φ∗ := y =
1
2
(µ−z) sinh 2φ, x = v sinh φ, and z = v cosh φ.

By an uncomplicated calculation, we gain the algebraic equation

(d̂) :
(

x2 − z2
)

y + (µ−z)xz = 0, (17)

It is clear that Equation (17) depends on the two integral invariants of the first order;
µ−z = 1, 0 ≤ φ ∈ R, −2 ≤ υ ≤ 2 (Figure 3). Further, one can obtain a second-order
algebraic equation in x/z as

x
z
=

1
2y

[
−(µ−z)±

√
(µ−z)2 + 4y2

]
. (18)

For the limits of (d̂), we put (µ−z)2 + 4y2 = 0. Therefore, the two limits of (d̂) are
as follows

y = ±i(µ−z)/2, with i =
√
−1. (19)

Equation (19) admits two isotropic torsal timelike planes, each of which contains one
isotropic torsal timelike line L. Hence, the geometric aspects of the (d̂) are as follows:

(i) If β(t) 6= 0, then we have two generators through the point (0, y, 0); and for the
two limit isotropic torsal timelike planes y = ±i(z− µ)/2, the generators and the
principal axes ζ̂1 and ζ̂3 are coincident;

(ii) If β(t) = 0, then we have two torsal isotropic lines L1, L2 determined by

L1, L2 :
x
z
= tanh φ = ±

√
µ

z , y = ±i(µ−z)/2. (20)

Equation (20) offer that the two isotropic torsal lines L1, and L2 are orthogonal to each
other. Therefore, if µ and z are commensurate, then the timelike Plücker’s conoid becomes
a pencil of timelike lines in the origin “o” in the timelike torsal plane y = 0. In this case, L1
and L2 are the principal axes of an elliptic timelike line congruence. However, if µ and z
have opposite signs, then L1 and L2 are isotropic and are coincident with the principal axes
of a timelike hyperbolic line congruence.

Furthermore, if we convert from polar coordinates to Cartesian, we use
the impersonation

x =
1√

β
sinh φ, and z =

1√
β

cosh φ,

into the Hamilton’s formula and we obtain the following conic section

D : |µ|z2 − |z|x2 = 1.
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This conic section is a Minkowski version of Dupin’s indicatrix of the surface theory
in Euclidean 3-space E3.

Figure 2. d̂ = sinh φ̂ζ̂1 + cosh φ̂ζ̂3.

Figure 3. Timelike Plücker’s conoid.

Serret–Frenet Frame

In Equation (6): (a) If p∗ = 0, then (ζ̂) is a tangential timelike developable surface, that

is, c
′
= q∗ζ1. In this case, the striction curve c(t) is a spacelike edge of regression of (ζ̂), and

then D is a pencil of parallel isotropic lines specified by x = ±i/ |z|. Let s be an arc-length
parameter of c(t) and {e1(s), e2(s), e3(s); κ(s), τ(s)} is the Serret–Frenet apparatus of c(t).
After several algebraic manipulations, it can be gained that:

d
ds

 e1
e2
e3

 =

 0 κ 0
−κ 0 −τ
0 −τ 0

 e1
e2
e3

,
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where
κ(s) =

p
q∗

, τ(s) =
1
z , with q∗ 6= 0.

Therefore, the curvature function z(s) is the radius of torsion of the spacelike striction
curve c(s). Further, we therefore arrive at:

β(s) = − 1
τ sinh2 φ, φ∗(s) = − 1

2τ sinh 2φ,
(d̂) :

(
x2 − z2)y− 1

τ xz = 0.

}

(b) If q∗(t) = 0, the striction curve is timelike tangent to ζ3; it is normal to rule over c(t). In
this case, (ζ̂) is a binormal timelike ruled surface, and D is a pencil of parallel lines decided
by z = ±1/ |µ|. Similarly, we can also specify that:

κ(s) =
q(s)
p∗(s)

, and τ(s) =
1

µ(s)
, with p∗(s) 6= 0.

Then, the curvature function µ(s) is the radius of torsion of c(s) of the timelike
binormal surface (ζ̂). Additionally, we derive

β(s) = 1
τ cosh2 φ, φ∗(s) = 1

2τ(s) sinh 2φ,

(d̂) :
(

x2 − z2)y + 1
τ xz = 0.

}

3.3. Stationary Timelike Disteli-Axis

In what follow, when we state that (b̂mζ) is a timelike ruled surface with stationary
timelike Disteli-axis, we mean that all the rulings of (b̂mζ) have a stationary dual angle
with respect the Disteli-axis.

Let dŝ = ds + εds∗ indicate the dual arc length of ζ̂1(t) Then,

ŝ(t) =
t∫
0

p̂dt =
t∫
0

p(1 + εµ)dt. (21)

By employing ŝ instead of t, from Equations (5) and (21), we have: ζ̂
′
1

ζ̂
′
2

ζ̂
′
3

 =

 0 1 0
−1 0 −χ̂
0 −χ̂ 0


 ζ̂1

ζ̂2

ζ̂3

 = ω̂×

 ζ̂1

ζ̂2

ζ̂3

; (′ = d
dŝ

), (22)

where ω̂(ŝ)=(χ̂, 0, 1), χ̂(ŝ) := χ + εχ∗ = q̂
p̂ is the dual spherical curvature of ζ̂1(ŝ) ∈ S2

1 f .
Therefore, we have the following associations:

γ̂(ŝ) = γ + ε(z− χµ) = tanh φ̂,
κ̂(ŝ) := κ + εκ∗ =

√
1− χ̂2 = 1

cosh φ̂
= 1

ρ̂(ŝ) ,

τ̂(ŝ) := τ + ετ∗ = ±φ̂
′
= ± χ̂

′

1−χ̂2 .

 (23)

where κ̂(ŝ) is the dual curvature, and τ̂(ŝ) is the dual torsion of the dual curve ζ̂1 ∈ S2
1ξ .

3.3.1. Height Dual Functions

In identification with [17,18], a dual point d̂0 of S2
1 f will be named a d̂k evolute

of the dual curve ζ̂1(ŝ) ∈ S2
1 f ; for all t such that 1 ≤ t ≤ k, < d̂0, ζ̂t

1(ŝ) >= 0, but

< d̂0, ζ̂k+1
1 (ŝ) > 6= 0. Here ζ̂t

1 indicates the t-th derivatives of ζ̂1 with respect to the dual
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arc length ŝ. For the first evolute d̂ of ζ̂1(ŝ), we have < d̂, ζ̂
′
1 >= ± < d̂, ζ̂2 >= 0, and

< d̂, ζ̂
′′
1 >= ± < d̂, ζ̂1+χ̂ζ̂3 > 6= 0. Therefore, d̂ is at least a d̂2 evolute of ζ̂1(ŝ) ∈ S2

1 f .

We are now heading a dual function f̂ : I × S2
1 f → D, by f̂ (ŝ, d̂0) =< d̂0, ζ̂1 >. We call

f̂ a Lorentzian height dual function on ζ̂1(ŝ) ∈ S2
1 f . We use the notation f̂ (ŝ) = f̂ (ŝ, d̂0) for

any stationary point d̂0 ∈ S2
1 f .

Proposition 2. Under the above notations, the following holds:

1. f̂ will be stationary in the first approximation iff d̂0 ∈ Sp{ζ̂1,ζ̂3}, that is,

f̂
′
= 0⇔< ζ̂

′
1, d̂0>=0⇔< ζ̂2, d̂0>=0⇔ d̂0=â1ζ̂1+â3ζ̂3;

for some dual numbers â1, â3 ∈ D, and â2
1 − â2

3 = 1;

2. f̂ will be stationary in the second approximation iff d̂0 is d̂2 evolute of d̂0 ∈ S2
1 f , that is,

f̂
′
= f̂

′′
= 0⇔ d̂0=± d̂.

;
3. f̂ will be invariant in the third approximation iff d̂0 is d̂3 evolute of d̂0 ∈S2

1 f , that is,

f̂
′
= f̂

′′
= f̂

′′′
= 0⇔ d̂0= ±d̂, and χ̂

′ 6= 0.

;
4. f̂ will be stationary in the fourth approximation iff d̂0 is d̂4 evolute of d̂0 ∈ S2

1 f , that is,

f̂
′
= f̂

′′
= f̂

′′′
= f̂ iv = 0⇔ d̂0= ±d̂, χ̂

′
= 0, and γ̂

′′ 6= 0.

Proof. For the first derivative of f̂ we obtain:

f̂
′
=< ζ̂

′
1, d̂0>. (24)

Therefore, we obtain:

f̂
′
= 0⇔< ζ̂2, d̂0>=0⇔ d̂0=â1ζ̂1+â2ζ̂3; (25)

for some dual numbers â1, â2 ∈ D, and â2
1 − â2

3 = 1, the result is clear.
2-Derivative of Equation (24) leads to:

f̂
′′
=< ζ̂

′′

1 , d̂0>= − < ζ̂1 + χ̂ζ̂3, d̂0> . (26)

By the Equations (24) and (26) we have:

f̂
′
= f̂

′′
= 0⇔< ζ̂

′
1, d̂0>= < ζ̂

′′

1 , d̂0>=0⇔ d̂0= ±
ζ̂
′
1 × ζ̂

′′

1∥∥∥ζ̂
′
1 × ζ̂

′′

1

∥∥∥ = ±d̂. (27)

3-Derivative of Equation (26) leads to:

f̂
′′′
=< x̂

′′′
, d̂0 >= −

(
1 + χ̂2

)
< ζ̂2, d̂0>− χ̂

′
< ĝ, d̂0> (28)

Hence, we have:

f̂
′
= f̂

′′
= f̂

′′′
= 0⇔ d̂0= ±d̂, and χ̂

′ 6= 0. (29)
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4-By the similar arguments, we can also have:

f̂
′
= f̂

′′
= f̂

′′′
= f̂

′′′′
= 0⇔ d̂0= ±d̂, χ̂

′
= 0, and χ̂

′′ 6= 0. (30)

The proof is completed.

(a) The osculating circle S(ρ̂, d̂0) of ζ̂1(ŝ) in S2
1 f is specified by

< d̂0, ζ̂1>=ρ̂(ŝ), < ζ̂
′
1, d̂0 >= 0,< ζ̂

′′

1 , d̂0 >= 0,

which are gained from the condition that the osculating circle must have touch of at
least third order at ζ̂1(ŝ0) if and only if χ̂

′ 6= 0.

(b) The osculating circle S(ρ̂, d̂0) and the curve ζ̂1(ŝ) in S2
1 f have at least fourth order at

ζ̂1(s0) if and only if χ̂
′
= 0, and χ̂

′′ 6= 0.

In this direction, by catching into contemplation the evolutes of ζ̂1(ŝ) in S2
1 f , we can

gain a sequence of evolutes d̂2, d̂3, . . . , d̂n. The ownerships and the interrelatedness through
these evolutes and their involutes are very interesting problems. For instance, it is not
difficult to consider that when d̂0= ± d̂, and χ̂

′
= 0, ζ̂1(ŝ) is situated at φ̂ is invariable

relative to d̂0. In this case, the timelike Disteli-axis is invariable up to second order, and
the line ζ̂1 moves over it with invariable pitch. Thus, the timelike ruled surface (ζ̂) with
invariable timelike Disteli-axis is produced by timelike line ζ̂1 existing at a Lorentzian
invariable distance φ∗ and Lorentzian invariable angle φ with respect to the timelike
Disteli-axis d̂. In the case of χ̂(ŝ) = 0, then ζ̂1(ŝ) is a spacelike dual great circle on S2

1 f ,
that is,

ĉ = {ζ̂1∈S2
1 f |< ζ̂1, d̂ >= 0; with

∥∥∥d̂
∥∥∥2

= −1}.

In this case, in the Lorentzian sense, all the spacelike rulings of (ζ̂) intersected or-
thogonally with the timelike Disteli-axis d̂, that is, φ = 0, and φ∗ = 0. Thus, we have
χ̂(ŝ) = 0⇔(ζ̂) is a timelike helicoid of the first kind.

Theorem 2. A non-developable timelike ruled surface (ζ̂) is a stationary timelike Disteli-axis iff
χ(s) = invariable, and z(s)− χ(s)µ(s)=invariable.

However, from the Equation ((22)) we have the ODE ζ̂
′′′

1 + κ̂2ζ̂
′
1 = 0. After several

algebraic manipulations, the general solution of this equation is:

ζ̂1(ϕ̂) =
(
cosh φ̂ sin ϕ̂,− cosh φ̂ cos ϕ̂, sinh φ̂

)
. (31)

Here, κ̂ŝ = ϕ̂(ŝ) := ϕ + εϕ∗; where 0 ≤ ϕ ≤ 2π, and ϕ∗ ∈ R. From the real and the
dual parts, we have

ζ1 = cosh φ sin ϕ, ζ∗1 = φ∗ sinh φ sin ϕ + ϕ∗ cosh φ cos ϕ,
ζ2 = − cosh φ cos ϕ, ζ∗2 = −φ∗ sinh φ cos ϕ + ϕ∗ cosh φ sin ϕ,
ζ3 = sinh φ, ζ∗3 = φ∗ cosh φ.

 (32)

Let p(p1, p2, p3) be a point on ζ̂1. Since ζ∗1=p×ζ1 we have the system of linear equa-
tions in pi(i = 1, 2, 3, and pis are the coordinates of p):

p2 sinh φ + p3 cosh φ cos ϕ = ζ∗1 ,
−p1 sinh φ + p3 cosh φ sin ϕ = ζ∗2 ,

p1 cosh φ cos ϕ + p2 cosh φ sin ϕ = ζ∗3 .

 (33)
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The matrix of coefficients of unknowns pi is the skew symmetric matrix 0 sinh φ cosh φ cos ϕ
− sinh φ 0 cosh φ sin ϕ
cosh φ cos ϕ cosh φ sin ϕ 0

,

and thus its rank is 2 with φ 6= 2πk (k is an integer). The rank of the augmented matrix 0 sinh φ cosh φ cos ϕ ζ∗1
− sinh φ 0 cosh φ sin ϕ ζ∗2
cosh φ cos ϕ cosh φ sin ϕ 0 ζ∗2

,

is also 2. Then, this system has infinite solutions given by

p1 cos ϕ + p2 sin ϕ = φ∗

p1 = (p3 − φ∗) coth φ sin ϕ + φ∗ cos ϕ,
p2 = −(p3 − φ∗) coth φ cos ϕ + φ∗ sin ϕ.

(34)

Since p3 can be arbitrarily, then we may put p3 = ϕ∗. In this case, the
Equation ((34)) becomes

p1 = φ∗ cos ϕ, p2 = φ∗ sin ϕ, p3 = ϕ∗. (35)

Thus, the director surface of the timelike congruence is:

p(φ∗, φ) = (φ∗ cos ϕ, φ∗ sin ϕ, ϕ∗)

Let y(y1, y2, y3) be a point on this timelike congruence. Hence, we obtain:

(ζ̂) : y(ϕ, ϕ∗v) =

 φ∗ cos ϕ + v cosh φ sin ϕ
φ∗ sin ϕ− v cosh φ cos ϕ

ϕ∗ + v sinh φ

, v ∈ R. (36)

All lines which satisfy the Equation (36) is a timelike congruence. Also, we may
write that

(ζ̂) :
y2

1
φ∗2

+
y2

2
φ∗2
−

Y2
3

∆2 = 1, (37)

where ∆ = φ∗ tanh φ, and Y3 = y3 − ϕ∗. Then (ζ̂) is a one-parameter family of Lorentzian
spheres. The common of each Lorentzian sphere and the conformable spacelike plane
y3 = ϕ∗ is a one-parameter family of Lorentzian cylinders (c): y2

1 + y2
2 = φ∗2. Therefore,

the envelope of (ζ̂) is the Lorentzian cylinder which is the position for φ∗ = φ = 0.

3.3.2. Special Timelike Ruled Surfaces

A correlation such as Γ(ϕ, ϕ∗) = 0 restricts the Equations (36) and (37) to a 1-parameter
set of timelike lines, that is, a timelike ruled surface in the line congruence. Therefore, if
we set ϕ∗ = βϕ, β indicating the pitch of the movement Lm/L f and ϕ as the movement
parameter, then Equations (36) and (37) is a timelike ruled surface in L f -space. Thus, from
the Equations (4) and (31), we immediately find that: ζ̂1

ζ̂2

ζ̂3

 =

 cosh φ̂ sin ϕ̂ − cosh φ̂ cos ϕ̂ sinh φ̂
cos ϕ̂ sin ϕ̂ 0
− sinh φ̂ sin ϕ̂ sinh φ̂ cos ϕ̂ − cosh φ̂


 ξ̂1

ξ̂2

ξ̂3

. (38)

From the Equations (14) and (38), we have:

d̂ = sinh φ̂ζ̂1 + cosh φ̂ζ̂3 = ξ̂3. (39)
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This insist that the timelike Disteli-axis d̂ is ξ̂3. Additionally, the director surface of
the timelike congruence reduces to the striction curve, that is,

c(ϕ) = (φ∗ cos ϕ, φ∗ sin ϕ, hϕ).

It can be shown that c(ϕ) is a spacelike (a timelike) if and only if |φ∗| > |h|(|φ∗| < |h|).
Further, the curvature κc(ϕ) and torsion τc(ϕ) can be specified by

κc(ϕ) =
φ∗

φ∗2 − h2 , τc(ϕ) =
h

φ∗2 − h2 .

Then, c(ϕ) is a spacelike or timelike helix. Additionally, the timelike ruled surface (ζ̂)
with stationary timelike Disteli-axis is:

(ζ̂) : y(ϕ, v) =

 φ∗ cos ϕ + v cosh φ sin ϕ
φ∗ sin ϕ− v cosh φ cos ϕ

βϕ + v sinh φ

, v ∈ R. (40)

β, φ and φ∗ can control the shape of (ζ̂), that is, it can be classified into the following:

(1) General timelike helicoidal surface with its striction curve is a timelike cylindrical
helix: for β = 1.5, φ∗ = 1, φ = 0.5, −3 ≤ v ≤ 3 and 0 ≤ ϕ ≤ 2π (see Figure 4).

Figure 4. General timelike helicoidal surface.

(2) Lorentzian sphere with its striction curve is a spacelike circle: for β = 0, φ∗ = 1,
φ = 1.3, −1.5 ≤ v ≤ 1.5, and 0 ≤ ϕ ≤ 2π (see Figure 5).

Figure 5. Lorentzian sphere.



Symmetry 2023, 15, 998 14 of 16

(3) Timelike Archimedes with its striction curve is a timelike line: for β = 1, φ∗ = 0,
φ = 1.3, −3 ≤ v ≤ 3, and −π ≤ ϕ ≤ π (see Figure 6).

Figure 6. Timelike Archimedes.

(4) Timelike circular cone with its striction curve is a fixed point: for β = φ∗ = 0, φ = 0.5,
−2.5 ≤ v ≤ 2.5, and 0 ≤ ϕ ≤ 2π (see Figure 7).

Figure 7. Timelike cone.
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(5) Timelike helicoid of the 1st kind with its striction curve is a timelike line: for β = 1,
φ∗ = φ = 0, −3 ≤ v ≤ 3, and −π ≤ ϕ ≤ π (see Figure 8).

Figure 8. a timelike helicoid of the 1st kind.

4. Conclusions

This work supplies the kinematic geometry for a timelike ruled surface with stationary
timelike Disteli-axis by the similarity with Lorentzian dual spherical kinematics. This
supplies the ability to derive set of invariants which discover the local shape of timelike
ruled surface. Hence, the Lorentzian form of the well-known equation of the Plücker’s
conoid has been concluded and its kinematic-geometry are explained in detail. Finally, a
description for a timelike line trajectory to be a stationary timelike Disteli-axis is extracted
and examined. These results have the potential to expand the use of geometric properties
of timelike ruled surfaces created by spacelike lines embedded in spatial mechanisms. Our
results in this paper can contribute to the field of spatial kinematics and have practical
implementations in mechanical mathematics and engineering. In future work, we plan to
proceed to research some implementations of timelike ruled surfaces as tooth flanks for
gears with skew timelike axes such that at any instant the contact points are located on a
timelike line as in [17–19].
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