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1. Introduction and Outline

There are numerous important number/polynomial sequence pairs in the mathemat-
ical literature that are tied by symmetric reciprocities. By employing reciprocal function
pairs and formal power series expansions, an overview about explicit expressions, re-
currence relations, orthogonality relations, convolution sums, and reciprocal formulae
will systematically be presented for several typical classical sequences, such as binomial
coefficients, Stirling numbers, Bernoulli/Euler numbers, and polynomials.

The general framework for symmetric reciprocities about abstract sequences will be
set in the next section. Then, applications will be given in the remaining sections. The
contents are organized as follows:

• Background about formal power series;
• Binomial-related coefficients;
• The Stirling numbers;
• arcsin and multifold Euler sums;
• arctan and multiple zeta values;
• Composite series pairs;
• Further exploration.

2. Framework about Formal Power Series

In this section, we shall review some general results about the formal power series,
their coefficients, and their associated linear relations, which constitute the basis for manip-
ulating specific functions and sequences in the subsequent sections.

Denote by [xk]φ(x) the coefficient of xk in the formal power series φ(x). We shall fre-
quently utilize the Lagrange inversion theorem, which is fundamental in classical analysis
and combinatorics computation.

The Lagrange Inversion Theorem [1] (see Comtet [2] (§3.8) and [3,4]). For a formal
power series ϕ(y) subject to the condition ϕ(0) 6= 0, the functional equation x = y/ϕ(y)
determines y as an implicit function of x. Then, for another formal power series F(y) in the
variable y, the following expansions (called Lagrange expansion formulae) hold for both
composite series:
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F(y(x)) = F(0) +
∞

∑
n=1

xn

n
[yn−1]

{
F′(y)ϕn(y)

}
, (1)

F(y(x))
1−

(
yϕ′(y)/ϕ(y)

) =
∞

∑
n=0

xn[yn]
{

F(y)ϕn(y)
}

. (2)

2.1. Composite Series

Denote by 〈φ; k〉 and bφ; ke the respective coefficients of xk and xk

k! in the formal power
series φ(x):

φ(x) =
∞

∑
k=0

xk〈φ; k〉 =
∞

∑
k=0

xk

k!
bφ; ke with bφ; ke = k!〈φ; k〉.

Suppose that ψ(x) is another series with ψ(0) = 0. Then, the composite series φ ◦ ψ
is also a formal power series of x. Denote by σn(m) the set of partitions of m into n parts,
represented by [1k12k2 · · ·mkm ] subject to the conditions ∑m

i=1 ki = n and ∑m
i=1 iki = m. For

the coefficients of ψ(x), we define the ordinary and exponential partial Bell polynomials
(see Comtet [2] (§3.3) and [5–8]), respectively, by

Bm,n(ψ) = n! ∑
σn(m)

m

∏
ı=1

〈ψ; i〉ki

ki!
and B?

m,n(ψ) = m! ∑
σn(m)

m

∏
ı=1

bψ; ieki

ki!i!ki
.

Then, the coefficients of the composite series φ ◦ ψ(x)

φ ◦ ψ(x) =
∞

∑
n=0

ψn(x)〈φ; n〉 =
∞

∑
m=0

xm〈φ ◦ ψ; m〉,

φ ◦ ψ(x) =
∞

∑
n=0

ψn(x)
n!
bφ; ne =

∞

∑
m=0

xm

m!
bφ ◦ ψ; me;

are expressed in terms of Bell polynomials

〈φ ◦ ψ; m〉 =
m

∑
n=0
〈φ; n〉〈ψn; m〉 =

m

∑
n=0
〈φ; n〉Bm,n(ψ), (3)

bφ ◦ ψ; me =
m

∑
n=0

bφ; ne
n!
bψn; me =

m

∑
n=0
bφ; neB?

m,n(ψ). (4)

2.2. Univalent Series

A formal power series f (x) is univalent if it satisfies the conditions f (0) = 0 and
f ′(0) = 1. Define the ordinary and exponential connection coefficients by

f n(x) =
∞

∑
m=n

xmΦ(m, n) and
f n(x)

n!
=

∞

∑
m=n

xm

m!
Φ?(m, n). (5)

They can obviously be expressed via each other

Φ(m, n) = 〈 f n(x); m〉 and Φ?(m, n) =
⌊

f n(x)
n!

; m
⌉
=

m!
n!

Φ(m, n). (6)

Both Φ(m, n) and Φ?(m, n) admit the following useful properties.

• Expressions in Bell polynomials:

Φ(m, n) = Bm,n( f ), (7)

Φ?(m, n) = B?
m,n( f ). (8)
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• Symmetric convolution:

Φ(m, p + q) =
m−q

∑
k=p

Φ(k, p)Φ(m− k, q), (9)

(
p + q

p

)
Φ?(m, p + q) =

m−q

∑
k=p

(
m
k

)
Φ?(k, p)Φ?(m− k, q). (10)

• Recurrence relations:

Φ(m, n) =
m−n

∑
k=0

(
n
k

)(
m− 2n

m− n− k

)
Φ(m− n + k, k), (11)

Φ?(m, n) =
m−n

∑
k=0

(
m

n− k

)(
m− 2n

m− n− k

)
Φ?(m− n + k, k). (12)

The first relation (11) can be shown as follows. Specifying F(y) = yn and y = f (x)
in (1) implies that the inverse function x = g(y). Writing g(y) = y/ϕ(y) with ϕ(y) =
y/g(y), we can carry out the following operation:

Φ(m, n) = [xm] f n(x) = [xm−n]

{
1−

(
1− f (x)

x

)}n

= [xm−n]
m−n

∑
j=0

(−1)j
(

n
j

)(
1− f (x)

x

)j

= [xm−n]
m−n

∑
j=0

(−1)j
(

n
j

) j

∑
k=0

(−1)k
(

j
k

)( f (x)
x

)k

=
m−n

∑
k=0

(
n
k

)
[xm−n+k] f k(x)

m−n

∑
j=k

(−1)j−k
(

n− k
j− k

)
.

Then, the curious equality (11) follows by evaluating the last binomial sum

m−n

∑
j=k

(−1)j−k
(

n− k
j− k

)
=

(
m− 2n

m− n− k

)
.

Taking into account the binomial product

m!
n!

(
n
k

)
=

(m− n + k)!
k!

(
m

n− k

)
,

we deduce the exponential form displayed in (12), to which there is an equivalent form due
to Sun [9].

We remark that both Formulas (11) and (12) make sense only for n ≤ m < 2n, because
otherwise, we would have two trivial equalities for m < n and m ≥ 2n. Under the
replacement m→ m + n, two recurrence relations (11) and (12) can be restated equivalently
as the following self-reciprocal relations:

Φ(m + n, n) =
n

∑
k=0

(
n
k

)(
m− n
m− k

)
Φ(m + k, k), (13)

Φ?(m + n, n) =
n

∑
k=0

(
m + n
m + k

)(
m− n
m− k

)
Φ?(m + k, k). (14)
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2.3. Reciprocal Series

When g(x) is another univalent series with g(0) = 0 and g′(0) = 1, its ordinary and
exponential connection coefficients are given by

gn(x) =
∞

∑
m=n

xmΨ(m, n) and
gn(x)

n!
=

∞

∑
m=n

xm

m!
Ψ?(m, n) (15)

which can be expressed via each other

Ψ(m, n) = [xm]gn(x) and Ψ?(m, n) =
m!
n!

Ψ(m, n). (16)

The two series f (x) and g(x) are called “compositional reciprocal” if and only if
f (g(x)) = g( f (x)) = x, i.e., one is the compositional inverse of the other. If { f , g} and
{F, G} are two reciprocal pairs, then both {− f (−x),−g(−x)} and

{
F( f ), g(G)

}
are again

reciprocal pairs. Supposing that f (x) and g(x) are reciprocal univalent series with their
coefficients being given by (5) and (15), we have the following orthogonality relations

m

∑
k=n

Φ(m, k)Ψ(k, n) = χ(m = n),

m

∑
k=n

Ψ(m, k)Φ(k, n) = χ(m = n);
(17)

where χ stands for the logical function with χ(true) = 1 and χ(false) = 0. They can be
verified by comparing the coefficients of ym in the following equations:

yn = gn( f (y)) =
∞

∑
k=n

f k(y)Ψ(k, n)

=
∞

∑
k=n

Ψ(k, n)
∞

∑
m=k

Φ(m, k)ym

=
∞

∑
m=n

ym
m

∑
k=n

Φ(m, k)Ψ(k, n).

Expressing in terms of the exponential coefficients, the orthogonality relations have the
same form:

m

∑
k=n

Φ?(m, k)Ψ?(k, n) = χ(m = n),

m

∑
k=n

Ψ?(m, k)Φ?(k, n) = χ(m = n).
(18)

Let F(y) = yn and y = f (x) as before. This implies again that x = g(y) = y/ϕ(y)
with ϕ(y) = y/g(y). According to (1), we have

Φ(m, n) = [xm] f n(x) = [xm]yn =
n
m
[ym−1]

ym+n−1

gm(y)
.

This leads us to the following alternative expressions:

Φ(m, n) =
n
m
[ym−n]

ym

gm(y)
and Φ?(m, n) =

(m− 1)!
(n− 1)!

[ym−n]
ym

gm(y)
, (19)

Ψ(m, n) =
n
m
[ym−n]

ym

f m(y)
and Ψ?(m, n) =

(m− 1)!
(n− 1)!

[ym−n]
ym

f m(y)
. (20)
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The first expression (19) can be manipulated further as follows:

Φ(m, n) =
n
m
[ym−n]

ym

gm(y)
=

n
m
[ym−n]

{
1−

(
1− g(y)

y

)}−m

=
n
m
[ym−n]

m−n

∑
j=0

(−1)j
(
−m

j

)(
1− g(y)

y

)j

=
n
m
[ym−n]

m−n

∑
j=0

(−1)j
(
−m

j

) j

∑
k=0

(−1)k
(

j
k

)( g(y)
y

)k

=
n
m

m−n

∑
k=0

(
−m

k

)
[ym−n+k]gk(y)

m−n

∑
j=k

(−1)j−k
(
−m− k

j− k

)
.

Evaluating the last binomial sum

m−n

∑
j=k

(−1)j−k
(
−m− k

j− k

)
=

(
2m− n
m + k

)

we derive the following reciprocally symmetric relations:

Φ(m, n) =
n
m

m−n

∑
k=0

(
−m

k

)(
2m− n
m + k

)
Ψ(m− n + k, k),

Ψ(m, n) =
n
m

m−n

∑
k=0

(
−m

k

)(
2m− n
m + k

)
Φ(m− n + k, k).

(21)

Under the replacement m→ m + n, they can be restated as the reciprocities below

Φ(m + n, n) =
(

2m + n
m

) m

∑
k=0

n(−1)k

m + n + k

(
m
k

)
Ψ(m + k, k),

Ψ(m + n, n) =
(

2m + n
m

) m

∑
k=0

n(−1)k

m + n + k

(
m
k

)
Φ(m + k, k).

(22)

Keeping in mind the binomial product

m!n
n!m

(
−m

k

)
= (−1)k (m− n + k)!

k!

(
m + k− 1

n− 1

)
,

we recover the symmetric reciprocities due to Hsu [10]:

Φ?(m, n) =
m−n

∑
k=0

(−1)k
(

2m− n
m + k

)(
m + k− 1

n− 1

)
Ψ?(m− n + k, k),

Ψ?(m, n) =
m−n

∑
k=0

(−1)k
(

2m− n
m + k

)(
m + k− 1

n− 1

)
Φ?(m− n + k, k).

(23)

By replacing m by m + n, we can further restate the above relations as

Φ?(m + n, n) =
m

∑
k=0

(−1)m
(
−n

m + k

)(
2m + n
m− k

)
Ψ?(m + k, k),

Ψ?(m + n, n) =
m

∑
k=0

(−1)m
(
−n

m + k

)(
2m + n
m− k

)
Φ?(m + k, k).

(24)
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Alternatively, the above relations can be expressed as

Φ?(m + n, n) =
(

2m + n
n

) m

∑
k=0

n(−1)k

m + n + k

(
2m

m + k

)
Ψ?(m + k, k),

Ψ?(m + n, n) =
(

2m + n
n

) m

∑
k=0

n(−1)k

m + n + k

(
2m

m + k

)
Φ?(m + k, k).

(25)

They are equivalent to the orthogonality relation:

m

∑
k=0

(
−n

m + k

)(
2m + n
m− k

)(
−k

m + `

)(
2m + k
m− `

)
=

(
m + n
m + `

)(
m− n
m− `

)
= δn,`.

For n ∈ N0 and an indeterminate x, define the rising and falling factorials by (x)0 =
〈x〉0 = 1 and

(x)n = x(x + 1) · · · (x + n− 1)

〈x〉n = x(x− 1) · · · (x− n + 1)

}
for x ∈ N.

In terms of classical hypergeometric series (see Bailey [11] §2.5)

pFq

[
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣ z
]
=

∞

∑
k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!
,

the last sum can be expressed as a terminating balanced 4F3-series

4F3

[
1−m,m + n + 1,m + `+ 1,2m + 2

m + n + 2,m + `+ 2, m + 2

∣∣∣ 1
]

= (−1)m (m + n + 1)(m + `+ 1)(n−m)m

m(`− n)(m + n + 1)m(
2m+1

m )
.

The above identity admits the following extension for the balanced 4F3-series:

4F3

[
a, b, d, −n
1 + b, 1 + d, a− n

∣∣∣ 1
]
=

n!
(1− a)n

{
b(1 + d− a)n

(b− d)(1 + d)n
− d(1 + b− a)n

(b− d)(1 + b)n

}
.

This can be verified by combining the partial fractions

bd
(b + k)(d + k)

=
bd

(b− d)(d + k)
+

bd
(d− b)(b + k)

with the Pfaff–Saalschütz summation theorem (see Bailey [11] §2.2)

3F2

[
a, b, −n

c, 1 + a + b− c− n

∣∣∣ 1
]
=

(c− a)n(c− b)n

(c)n(c− a− b)n
.

3. Binomial-Related Coefficients

For a formal power series ϕ(x) with ϕ(0) = 1, we can define a univalent function by
f (x) = x/ϕ(x), which determines the implicit inverse function g(x) = f−1(x). For this
reciprocal pair { f , g}, recall the connection coefficients (19) and (20):

Φ(m, n) = [xm] f n(x) = [xm−n]ϕ−n(x),

Ψ(m, n) = [xm]gn(x) =
n
m
[xm−n]ϕm(x).

By choosing properly ϕ(x), we are going to examine five classes of reciprocal relations
related to binomial coefficients. We shall confine ourselves to highlighting the formu-
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lae concerning ordinary coefficients {Φ(m, n), Ψ(m, n)} without producing those about
exponential ones {Φ?(m, n), Ψ?(m, n)} .

3.1. The Abel Coefficients

By letting ϕ(x) = eλx, we obtain the Abel coefficients:

Φ(m, n) =
(−nλ)m−n

(m− n)!
and Ψ(m, n) =

n
m

(mλ)m−n

(m− n)!
.

Then, we deduce the following known results (cf. [3,12–14] §1.5).

• Orthogonality relations corresponding to (17):

χ(m = n) =
m

∑
k=n

k
m

(mλ)m−k

(m− k)!
(−nλ)k−n

(k− n)!
,

χ(m = n) =
m

∑
k=n

n
k
(−kλ)m−k

(m− k)!
(kλ)k−n

(k− n)!
,

where the first one is easy to check directly, while the second is not.
• Convolution formulae corresponding to (9):

m−q

∑
k=p

(−p)k−p

(k− p)!
(−q)m−k−q

(m− k− q)!
=

(−p− q)m−p−q

(m− p− q)!
,

m−q

∑
k=p

m
k(m− k)

kk−p

(k− p)!
(m− k)m−k−q

(m− k− q)!
=

p + q
pq

mm−p−q

(m− p− q)!
.

(26)

• Recurrence relations corresponding to (11):

nm−n =
m−n

∑
k=0

(
n
k

)(
m− 2n

m− n− k

)
km−n, (27)

n
m

nm−n =
m−n

∑
k=0

(
n
k

)(
m− 2n

m− n− k

)
k

m− n + k
(m− n + k)m−n. (28)

• Reciprocal relations corresponding to (21):

m
n
(−n)m−n =

m−n

∑
k=0

(
−m

k

)(
2m− n
m + k

)
k

m− n + k
(m− n + k)m−n, (29)

mm−n =
m−n

∑
k=0

(
−m

k

)(
2m− n
m + k

)
(−k)m−n. (30)

3.2. The Gould Coefficients

The Gould coefficients are defined via ϕ(x) = (1 + βx)λ as follows:

Φ(m, n) =
(
−nλ

m− n

)
βm−n and Ψ(m, n) =

n
m

(
mλ

m− n

)
βm−n.

The following known results can be deduced (cf. [4,15–17]).
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• Orthogonality relations corresponding to (17):

χ(m = n) =
m

∑
k=n

k
m

(
mλ

m− k

)(
−nλ

k− n

)
,

χ(m = n) =
m

∑
k=n

n
k

(
−kλ

m− k

)(
kλ

k− n

)
.

• Convolution formulae corresponding to (9):

m−q

∑
k=p

(
−pλ

k− p

)(
−qλ

m− k− q

)
=

(
−(p + q)λ
m− p− q

)
,

m−q

∑
k=p

m
k(m− k)

(
kλ

k− p

)(
(m− k)λ
m− k− q

)
=

p + q
pq

(
mλ

m− p− q

)
.

(31)

• Recurrence relations corresponding to (11):(
−nλ

m− n

)
=

m−n

∑
k=0

(
n
k

)(
m− 2n

m− n− k

)(
−kλ

m− n

)
, (32)

n
m

(
mλ

m− n

)
=

m−n

∑
k=0

(
n
k

)(
m− 2n

m− n− k

)
k

m− n + k

(
(m− n + k)λ

m− n

)
. (33)

• Reciprocal relations corresponding to (21):

m
n

(
−nλ

m− n

)
=

m−n

∑
k=0

(
−m

k

)(
2m− n
m + k

)
k

m− n + k

(
(m− n + k)λ

m− n

)
, (34)(

mλ

m− n

)
=

m−n

∑
k=0

(
−m

k

)(
2m− n
m + k

)(
−kλ

m− n

)
. (35)

In what follows, we briefly review Catalan numbers, Lah numbers, and binomial
coefficients. For these connection coefficients, we shall not produce the formulae for the
corresponding convolution (9), recurrence relations (11), orthogonality relations (17), and
reciprocal relations (21), as the reader can write them down without difficulty.

3.3. Catalan Numbers

For ϕ(x) = (1− x)−1, we have the inverse pair

f (x) = x(1− x) and g(x) =
1−
√

1− 4x
2

where g(x)
x is the generating function of the Catalan numbers (cf. [5,18–20]), and

1−
√

1− 4x
2x

=
∞

∑
n=0

1
n + 1

(
2n
n

)
xn.

The connection coefficients (see Wilf [21] §2.5) are given explicitly by

Φ(m + n, n) = (−1)m
(

n
m

)
and Ψ(m + n, n) =

n
2m + n

(
2m + n

m

)
.
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3.4. Lah Numbers

Lah numbers are self-reciprocal, defined by the connection coefficients expressing
rising factorials in terms of falling factorials (cf. [22], p. 44)

(x)n =
n

∑
k=1

(−1)kL(n, k)(−x)k and (−x)n =
n

∑
k=1

(−1)kL(n, k)(x)k.

They have the exponential generating function (equivalent to ϕ(x) = 1− x)

1
k!

(
x

1− x

)k

=
∞

∑
n=k

xn

n!
L(n, k)

and the explicit formula

L(n, k) =
n!
k!

(
n− 1
k− 1

)
.

Denote by S1(m, k) and S2(m, k) (see Section 4) the Stirling numbers of the first and
the second kinds, respectively. By manipulating the expressions

(−x)m = (−1)m〈x〉m =
m

∑
k=0

(−1)m+kS1(m, k)(−x)k

=
m

∑
k=0

(−1)m+kS1(m, k)
k

∑
n=0
〈−x〉nS2(k, n)

=
m

∑
n=0

(x)n(−1)m+n
m

∑
k=n

(−1)kS1(m, k)S2(k, n),

we recover the following known formula:

L(m, n) =
m

∑
k=n

(−1)m+kS1(m, k)S2(k, n).

More convolutions of a similar type have been evaluated in [23] (§6.1) and [24,25].

3.5. Binomial Coefficients

For ϕ(x) =
√

1 + 2x, we have the inverse pair:

f (x) =
x√

1 + 2x
and g(x) = f−1(x) = x

(
x +

√
1 + x2

)
.

The connection coefficients are given explicitly by

Φ(m + n, n) =
(
− n

2
m

)
2m and Ψ(m + n, n) =

n · 2m

m + n

(m+n
2
m

)
. (36)

Alternatively, for ϕ(x) = 2(
√

1+x−1)
x = 2

1+
√

1+x
, we have another inverse pair, i.e.,

f (x) =
x
2
(
1 +
√

1 + x
)

and g(x) = f−1(x) =
2(9x2 +

√
48x3 + 81x4)2/3 − 4 · 61/3x

62/3(9x2 +
√

48x3 + 81x4)1/3
.

Even though the inverse function g(x) looks ugly, the related connection coefficients
are quite elegant, as shown below

Φ(m + n, n) =
n · 4−m

n−m

(
n−m

m

)
and Ψ(m + n, n) =

n(−1)m+n

m · 4m

(
−m

2m + n

)
. (37)
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4. The Stirling Numbers

The Stirling numbers are defined by the connection coefficients (cf. [26–29])

〈x〉n =
n

∑
k=0

xkS1(n, k) and xn =
n

∑
k=0
〈x〉kS2(n, k)

with the following exponential generating functions:

lnn(1 + x)
n!

=
∞

∑
m=n

S1(m, n)
m!

xm and
(ex − 1)n

n!
=

∞

∑
m=n

S2(m, n)
m!

xm.

Euler’s formula for the Stirling numbers of the second kind is as follows:

S2(m, n) =
1
n!

n

∑
k=0

(−1)k
(

n
k

)
(n− k)m.

The symmetric formulae on reciprocities due to Schlfli–Schlmilch [30,31] (see also
Carlitz [32] and Gould [33]) follow directly from (23)

S1(m + n, n) =
m

∑
k=0

(−1)k
(

2m + n
m + n + k

)(
m + n + k− 1

n− 1

)
S2(m + k, k), (38)

S2(m + n, n) =
m

∑
k=0

(−1)k
(

2m + n
m + n + k

)(
m + n + k− 1

n− 1

)
S1(m + k, k). (39)

The recurrence relations of Sun [9] follow from (14)

S1(m + n, n) =
m

∑
k=0

(
m + n
n− k

)(
m− n
m− k

)
S1(m + k, k), (40)

S2(m + n, n) =
m

∑
k=0

(
m + n
n− k

)(
m− n
m− k

)
S2(m + k, k). (41)

For an extra indeterminate q, define the q-binomial coefficients by[
n
0

]
= 1 and

[
n
k

]
=

k

∏
j=1

1− qn−j+1

1− qj for k ∈ N.

M. Josuat-Vergs [34] introduced the q-analogues of the Stirling numbers below

S1[m, n] =
m−n

∑
j=0

m−n

∑
i=j

(−1)i i + j + 1
m + j

(
m− i− 2

n− 2

)(
m + j
n− 1

)[
i
j

]
q(

j+1
2 )

(1− q)m−n , (42)

S2[m, n] =
n

∑
j=0

m−n

∑
i=j

(−1)i i + j + 1
m + 1

(
m + 1

n + i + 1

)(
m + 1
n− j

)[
i
j

]
q(

j+1
2 )

(1− q)m−n ; (43)

where the binomial coefficient (m
n) is modified by two initial values (−1

−1) = (−2
−2) = 1.

They satisfy both the recurrence relation (12)

S1[m + n, n] =
m

∑
k=0

(
m + n
m + k

)(
m− n
m− k

)
S1[m + k, k], (44)

S2[m + n, n] =
m

∑
k=0

(
m + n
m + k

)(
m− n
m− k

)
S2[m + k, k]; (45)
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and the reciprocal relation (23) with the exception of alternating signs

S1[m + n, n] =
m

∑
k=0

(−1)m+k
(

m + n + k− 1
m + k

)(
2m + n
m− k

)
S2[m + k, k], (46)

S2[m + n, n] =
m

∑
k=0

(−1)m+k
(

m + n + k− 1
m + k

)(
2m + n
m− k

)
S1[m + k, k]. (47)

However, their exponential generating functions are not reciprocal ones as (5) and (15).
In fact, the author failed to determine them explicitly.

5. arcsin and Multifold Euler Sums

This section will be devoted to examining the reciprocal function pair sin and arcsin.
Define the connection coefficients by exponential generating functions as follows

(sin x)n

n!
=

∞

∑
m=0

x2m+n

(2m + n)!
V(2m + n, n),

(arcsin x)n

n!
=

∞

∑
m=0

x2m+n

(2m + n)!
V(2m + n, n);

(48)

which can be expressed as

V(2m + n, n) =
(2m + n)!

n!
[x2m+n](sin x)n,

V(2m + n, n) =
(2m + n)!

n!
[x2m+n](arcsin x)n.

(49)

It is routine to check for all the m, n ∈ N, the following values

V(2m + n− 1, n) = V(2m + n− 1, n) = 0.

and
(−1)mV(2m + n, n), V(2m + n, n) ∈ N.

5.1. Explicit Formula of V(m, n)

By means of the binomial theorem, we can manipulate the generating function

V(2m + n, n) =
(2m + n)!

n!
[x2m+n](sin x)n

=
(2m + n)!

n!
[x2m+n]

{
ex
√
−1 − e−x

√
−1

2
√
−1

}n

=
(2m + n)!

n!

n

∑
k=0

(−1)k

(2
√
−1)n

(
n
k

)
[x2m+n]e(n−2k)x

√
−1,

which results in the explicit formula

V(2m + n, n) =
n

∑
k=0

(−1)m+k
(

n
k

)
(n− 2k)2m+n

2n · n!
. (50)
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5.2. Explicit Formula of V(m, n)

According to (24), we have the reciprocal formulae:

V(2m + n, n) =
2m

∑
k=0

(
4m + n
2m− k

)(
−n

2m + k

)
V(2m + k, k),

V(2m + n, n) =
2m

∑
k=0

(
4m + n
2m− k

)(
−n

2m + k

)
V(2m + k, k).

(51)

Instead, there exist the following shorter relations:

V(2m + n, n) =
m

∑
k=0

(
3m + n
m− k

)(
−n

2m + k

)
V(2m + k, k),

V(2m + n, n) =
m

∑
k=0

(
3m + n
m− k

)(
−n

2m + k

)
V(2m + k, k).

(52)

The first relation is shown below and the second one can be done similarly. By specifying
f (y) = sin y in (20), we obtain

V(2m + n, n) =
(2m + n− 1)!

(n− 1)!
[y2m]

( y
sin y

)2m+n
.

Then, the last coefficient can be determined by

[y2m]
( y

sin y

)2m+n
= [y2m]

{
1−

(
1− sin y

y

)}−2m−n

=
m

∑
j=0

(−1)j
(
−2m− n

j

)
[y2m]

(
1− sin y

y

)j

=
m

∑
j=0

(−1)j
(
−2m− n

j

) j

∑
k=0

(−1)k
(

j
k

)
[y2m]

( sin y
y

)k

=
m

∑
k=0

(
−2m− n

k

)
[y2m+k] sink y

m

∑
j=k

(−1)j−k
(
−2m− n− k

j− k

)

=
m

∑
k=0

k!
(2m + k)!

(
−2m− n

k

)(
3m + n
m− k

)
V(2m + k, k).

By simplifying the binomial product

k!(2m + n− 1)!
(n− 1)!(2m + k)!

(
−2m− n

k

)(
3m + n
m− k

)
=

(
3m + n
m− k

)(
−n

2m + k

)
,

we confirm the first alternative expression displayed in (52).
Substituting (50) into (52), we derive the explicit formula below

V(2m + n, n) =
m

∑
k=0

(
3m + n
m− k

)(
−n

2m + k

) k

∑
j=0

(−1)m+j
(

k
j

)
(k− 2j)2m+k

2k · k!
, (53)

which is equivalent to the one obtained by Chu and Marini [35]. In addition, it is not hard
to verify that the above double sum has the same value as the next one

V(2m + n, n) =
(3m + n)!
m!(n− 1)!

m

∑
k=0

k

∑
j=0

(−1)m+k+j

2m + n + k

(
m
k

)(
k
j

)
(k− 2j)2m+k

2k(2m + k)!
. (54)
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5.3. Multiple Zeta Series and Asymptotics

The above expression simplifies significantly the following multiple sum representa-
tions derived by Borwein and Chamberland [36] (see also Muzaffar [37])

(arcsin y)2n+1

(2n + 1)!
=

∞

∑
m=n

y2m+1(2m
m )

4m+n(2m + 1) ∑
1≤m1<m2<···<mn≤m

n

∏
i=1

1
(mi − 1

2 )
2

, [Gn(m)];

(arcsin y)2n+2

(2n + 2)!
=

∞

∑
m=n

4m−ny2m+2

(2m+2
m+1 )(m + 1)2 ∑

1≤m1<m2<···<mn≤m

n

∏
i=1

1
m2

i
, [Hn(m)];

which can be derived by making use of the hypergeometric series (cf. [38]):

2F1

[
x
2 , − x

2
1
2

∣∣∣ y2

]
= cos(x arcsin y),

2F1

[
1+x

2 , 1−x
2
3
2

∣∣∣ y2

]
=

sin(x arcsin y)
xy

.

By comparing these power series, we find two evaluations of multiple sums:

∑
1≤m1<m2<···<mn≤m

n

∏
i=1

1
(mi − 1

2 )
2
=

4m+nm!2

(2m)!2
V(2m + 1, 2n + 1),

∑
1≤m1<m2<···<mn≤m

n

∏
i=1

1
m2

i
=

4n−m

m!2
V(2m + 2, 2n + 2).

The two exceptional cases corresponding to n = 0

V(2m + 1, 1) =
(2m)!2

4mm!2
and V(2m + 2, 2) = 4mm!2

yield two novel interesting binomial identities:

m

∑
i=0

i

∑
j=0

(−1)m+i+j

2m + i + 1

(
m
i

)(
i
j

)
(i− 2j)2m+i

2i(2m + i)!
=

4mm!( 1
2 )

2
m

(3m + 1)!
, (55)

m

∑
i=0

i

∑
j=0

(−1)m+i+j

2m + i + 2

(
m
i

)(
i
j

)
(i− 2j)2m+i

2i(2m + i)!
=

4mm!3

(3m + 2)!
. (56)

Recall the infinite products

sin πx
πx

=
∞

∏
n=1

{
1− x2

n2

}
and cos πx =

∞

∏
n=1

{
1− x2

(n− 1
2 )

2

}
.

By extracting the coefficient of x2n, we recover the two infinite series identities (now called
multifold Euler sums, see [39,40]), where the first one is due to Zagier [41]:

∑
1≤m1<m2<···<mn<∞

n

∏
i=1

1
m2

i
=

π2n

(2n + 1)!
,

∑
1≤m1<m2<···<mn<∞

n

∏
i=1

1
(mi − 1

2 )
2
=

π2n

(2n)!
.
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From these multiple zeta evaluations, we find, as m→ ∞, two asymptotic formulae:

V(2m + 1, 2n + 1) ≈ (2m)!2

4m+nm!2
π2n

(2n)!
,

V(2m + 2, 2n + 2) ≈ m!2

4n−m
π2n

(2n + 1)!
.

By putting them in conjunction with (54), we find, after the replacement m→ m + n,
the following two equivalent limiting relations:

π2n

22n = lim
m→∞

(1 + 3m + 2n)!
4m+nm!( 1

2 )
2
m+n

×
m

∑
i=0

i

∑
j=0

(−1)i+j+m

1 + 2m + 2n + i

(
m
i

)(
i
j

)
(i− 2j)2m+i

2i(2m + i)!
,

π2n

22n = lim
m→∞

(2 + 3m + 2n)!
4m+nm!(m + n)!2

×
m

∑
i=0

i

∑
j=0

(−1)i+j+m

2 + 2m + 2n + i

(
m
i

)(
i
j

)
(i− 2j)2m+i

2i(2m + i)!
.

An intriguing question is how to prove them directly and independently.

6. arctan and Multiple Zeta Values

We shall examine, in this section, the reciprocal function pair tan and arctan. Define
the connection coefficients by exponential generating functions as follows

(tan x)n

n!
=

∞

∑
m=0

x2m+n

(2m + n)!
T(2m + n, n),

(arctan x)n

n!
=

∞

∑
m=0

x2m+n

(2m + n)!
T (2m + n, n);

(57)

which can be expressed as

T(2m + n, n) =
(2m + n)!

n!
[x2m+n](tan x)n,

T (2m + n, n) =
(2m + n)!

n!
[x2m+n](arctan x)n.

(58)

It is routine to check that for all the m, n ∈ N, the following is true

T (2m + n− 1, n) = T(2m + n− 1, n) = 0.

and
T(2m + n, n), (−1)mT (2m + n, n) ∈ N.

6.1. Explicit Formulae of T(m, n) and T (m, n)

The explicit formulae of T(m, n) and T (m, n) can be stated as

T(2m + n, n) =
(−4)m

n!

2m

∑
k=0

(n + k)!
2k

(
−n
k

)
S2(2m + n, k + n),

T (2m + n, n) = (−1)m
2m

∑
k=0

(−2)k (2m + n)!
(n + k)!

(
−n− k
2m− k

)
S1(k + n, n).

(59)
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These two formulae are equivalent to those for the hyperbolic tanh and arctanh that
appear in [42]. For different properties and recurrence relations, the reader can consult
Comtet [2] (Chapter 6: Exercise 11), Cvijovic [43], Hardtke [44], and Lomont [45].

Proof. In terms of the exponential function, we have

(tan x)n = (
√
−1)n

{
1− e2x

√
−1

1 + e2x
√
−1

}n

= (
√
−1)n

{
(1− e2x

√
−1)/2

1− (1− e2x
√
−1)/2

}n

= (
√
−1)n

∞

∑
k=0

(−1)k
(
−n
k

)
(1− e2x

√
−1)n+k

2n+k .

Then, we can rewrite the coefficient as

T(2m + n, n) =
(2m + n)!

n!
[x2m+n](tan x)n

=
(2m + n)!

n!
(
√
−1)n

2m

∑
k=0

(−1)k
(
−n
k

)
[x2m+n]

(1− e2x
√
−1)n+k

2n+k .

Observing further that

[x2m+n]
(e2x

√
−1 − 1)n+k

2n+k =
(2
√
−1)2m+n

2n+k
(k + n)!
(2m + n)!

S2(2m + n, k + n),

we derive the first formula in terms of the Stirling numbers of the second kind

T(2m + n, n) =
(−4)m

n!

2m

∑
k=0

(n + k)!
2k

(
−n
k

)
S2(2m + n, k + n). (60)

At the same time, according to the expansion

(arctan x)n =
(√−1

2

)n
lnn
(

1− 2x
√
−1

1 + x
√
−1

)
=
(√−1

2

)n ∞

∑
k=0

n!
(n + k)!

(
−2x
√
−1

1 + x
√
−1

)n+k

S1(k + n, n),

the coefficient T (2m + n, n) can be computed as follows:

T (2m + n, n) =
(2m + n)!

n!
[x2m+n](arctan x)n

=
(√−1

2

)n 2m

∑
k=0

(2m + n)!
(n + k)!

S1(k + n, n)[x2m+n]

(
−2x
√
−1

1 + x
√
−1

)n+k

= (−1)m
2m

∑
k=0

(−2)k (2m + n)!
(n + k)!

(
−n− k
2m− k

)
S1(k + n, n).

This completes the proof of two formulae displayed in (59).
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6.2. Multiple Harmonic Numbers H〈n〉
m

Milgram [46] found and then Chen [47] rederived the following expansion in terms
of multiple harmonic numbers

arctann x
n!

=
∞

∑
m=0

(−1)m x2m+n

2m + n
H〈n−1〉

m = ∑
0≤m1≤m2≤···≤mn<∞

(−1)mn x2mn+n

∏n
j=1(2mj + j)

, (61)

where the multiple harmonic number is defined by

H〈n〉m = ∑
0≤m1≤m2≤···≤mn≤m

n

∏
j=1

1
2mj + j

.

Here, we offer a simpler proof by induction. When n = 1, the result is true because

arctan x =
∞

∑
m=0

(−1)m x2m+1

2m + 1

which also follows from that

1
1 + x2 = Dx arctan x =

∞

∑
m=0

(−1)mx2m.

For n = 2, it can be checked as follows. Observing that

arctan2 x
2

=
∫ x

0
Dx

arctan2 x
2

dx =
∫ x

0

arctan x
1 + x2 dx

we have

arctan x
1 + x2 =

∞

∑
k=0

(−1)k x2k+1

2k + 1

∞

∑
i=0

(−1)ix2i

=
∞

∑
m=0

(−1)mx2m+1
m

∑
k=0

1
2k + 1

=
∞

∑
m=0

(−1)mx2m+1H〈1〉m .

This leads us to the expression

arctan2 x
2

=
∫ x

0

arctan x
1 + x2 dx =

∞

∑
m=0

(−1)m x2m+2

2m + 2
H〈1〉m .

Supposing the Formula (61) is valid for n− 1, we can analogously proceed for n in the
following manner:

arctann x
n!

=
∫ x

0
Dx

arctann x
n!

dx =
∫ x

0

arctann−1 x
(n− 1)!(1 + x2)

dx

=
∫ x

0

∞

∑
k=0

(−1)k x2k+n

2k + n
H〈n−1〉

k

∞

∑
i=0

(−1)ix2i

=
∫ x

0

∞

∑
m=0

(−1)mx2m+n
m

∑
k=0

H〈n−1〉
k

2k + n

=
∞

∑
m=0

(−1)m x2m+n+1

2m + n + 1

m

∑
k=0

H〈n−1〉
k

2k + n
.
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Consequently, (61) follows from the recurrence relation below:

m

∑
k=0

H〈n−1〉
k

2k + n
= H〈n〉m .

Furthermore, by comparing (59) with (61), we obtain the identity

H〈n−1〉
m = (−1)m T(2m + n, n)

(2m + n− 1)!

=
2m

∑
k=0

(−2)k 2m + n
(n + k)!

(
−n− k
2m− k

)
S1(k + n, n).

The first two cases for n = 1 and n = 2 result in two binomial sums

2m

∑
k=0

(−2)k 2m + 1
(k + 1)!

(
−k− 1
2m− k

)
S1(k + 1, 1) = 1,

2m

∑
k=0

(−2)k 2m + 2
(k + 2)!

(
−k− 2
2m− k

)
S1(k + 2, 2) = H2m+1 −

Hm

2
;

where Hm is the usual harmonic number. Their proofs are not difficult because

S1(k + 1, 1) = k!(−1)k and S1(k + 2, 2) = (−1)k(k + 1)!Hk+1.

7. Composite Series Pairs

As we mentioned previously that if { f , g} and (F, G) are two reciprocal pairs, then
both {− f (−x),−g(−x)} and

{
F( f ), g(G)

}
are again reciprocal pairs. Some pairs of com-

positional series will be considered now.

7.1. tan and arctan

Consider the inverse pair given by

F(x) =
x√

1− x2
and G(x) =

x√
1 + x2

.

Their connection coefficients are determined by( x√
1− x2

)n
=

∞

∑
m=0

(−1)m
(
− n

2
m

)
x2m+n,

( x√
1 + x2

)n
=

∞

∑
m=0

(
− n

2
m

)
x2m+n.

(62)

Because f (x) = sin x and g(x) = arcsin x are another inverse pair, we have the
following compositional inverse pair:

tan x = F( f (x)) and arctan x = g(G(x)).
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The connection coefficients can be expressed as

T(2m + n, n) =
btann x; 2m + ne

n!

=
m

∑
k=0

⌊( x√
1− x2

)n
; 2k + n

⌉⌊sin2k+n x; 2m + n
⌉

n!(2k + n)!

=
m

∑
k=0

(−1)k (2k + n)!
n!

(
− n

2
k

)
V(2m + n, 2k + n);

T (2m + n, n) =
barctann x; 2m + ne

n!

=
m

∑
k=0

barcsinn x; 2k + ne
n!(2k + n)!

⌊( x√
1 + x2

)2k+n
; 2m + n

⌉
=

m

∑
k=0

(2m + n)!
(2k + n)!

(
−k− n

2
m− k

)
V(2k + n, n).

Then, we have the following expressions of double and triple sums:

T(2m + n, n) =
m

∑
k=0

n+2k

∑
i=0

(−1)m−i
(
− n

2
k

)(
n + 2k

i

)
(n + 2k− 2i)2m+n

2n+2kn!
, (63)

T (2m + n, n) =
(2m + n)!
(n− 1)!

m

∑
k=0

k

∑
i=0

i

∑
j=0

(−1)k+i+j

2k + n + i

(
−k− n

2
m− k

)
(64)

×
(

3k + n
k

)(
k
i

)(
i
j

)
(i− 2j)2k+i

2i(2k + i)!
.

7.2. Bernoulli Numbers of Higher Orders

Bernoulli numbers of higher orders are defined by(
x

ex − 1

)n

=
∞

∑
m=0

xm

m!
Bn

m and
x
2

coth
x
2
=

∞

∑
m=0

x2m

(2m)!
B2m. (65)

There exist numerous research papers around these numbers. The interested reader can
refer, for example, to [42,48–53].

Let ϕ(x) = ex−1
x . It is crucial to check that the series f (x) = x/ϕ(x) determines im-

plicitly its inverse series g(x). Then, { f (x), g(x)} form a reciprocal pair with the following
connection coefficients:

Bn
m = m!〈 f n; m + n〉 and Bn

m = m!〈gn; m + n〉.

These coefficients satisfy Bn
m > 0 and Bn

m ∈ Q and admit the explicit formulae

Bn
m =

m

∑
k=0

n!k!
(n + k)!

S1(n + k, n)S2(m, k), (66)

Bn
m =

n
m + n

m!(m + n)!
(2m + n)!

S2(2m + n, m + n). (67)

The first one extends the Worpitzky formula [54] (1883) for Bernoulli numbers

Bm =
m

∑
k=0

(−1)k k!
k + 1

S2(m, k).
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Proof. Observing the composite function

x
ex − 1

=
ln(1 + y)

y
and y = ex − 1

we can manipulate the series

Bn
m = m!〈 f n; m + n〉 = m!

〈
xn

(ex − 1)n ; m
〉

= m!
m

∑
k=0

〈
lnn(1 + x)

xn ; k
〉〈

(ex − 1)k; m
〉

=
m

∑
k=0

n!k!
(n + k)!

S1(n + k, n)S2(m, k),

which gives rise to the first formula. Instead, the “dual Bernoulli numbers of order n” are
easier to handle by taking into account the Lagrange expansion Formula (1)

Bn
m = m!〈gn; m + n〉 = m!n

m + n

〈
(ex − 1)m+n

xm+n ; m
〉

=
n

m + n
m!(m + n)!
(2m + n)!

S2(2m + n, m + n),

and the exponential generating function of Stirling numbers of the second kind.

These numbers satisfy the recurrence relations (13)

Bn
m =

m

∑
k=0

(
n
k

)(
m− n
m− k

)
Bk

m and Bn
m =

m

∑
k=0

(
n
k

)(
m− n
m− k

)
Bk

m

as well as the reciprocal relations (21)

Bn
m =

n
m + n

m

∑
k=0

(
−m− n

k

)(
2m + n
m− k

)
Bk

m, (68)

Bn
m =

n
m + n

m

∑
k=0

(
−m− n

k

)(
2m + n
m− k

)
Bk

m. (69)

7.3. Euler Numbers of Higher Orders

Euler numbers of higher orders are defined by(
2ex

e2x + 1

)n

=
∞

∑
m=0

xm

m!
En

m, (70)

where En
m = 0 for odd m ∈ N, since sech x is an even function. More information about

these numbers can be found in [53,55–59].
Let ϕ(x) = cosh x. It is trivial to check that the series f (x) = x/ϕ(x) determines

implicitly its inverse series g(x). Then, the reciprocal pair { f (x), g(x)} gives rise to the
following connection coefficients

En
m = m!〈 f n; m + n〉 and En

m = m!〈gn; m + n〉
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with (−1)mEn
2m ∈ N and En

2m ∈ N, as well as the explicit formulae

En
2m =

m

∑
k=0

21+2m−2k
(−n

2
k

) k

∑
i=0

(−1)i
(

2k
i

)
(k− i)2m, (71)

En
2m =

n
2m + n

2m+n

∑
k=0

(
2m + n

k

)
(2m + n− 2k)2m

22m+n . (72)

Proof. Observing the composite function

sech x =
1√

1 + y2
and y = sinh x

we can manipulate the series

En
2m = (2m)!〈 f n; 2m + n〉 = (2m)!〈sechnx; 2m〉

= (2m)!
m

∑
k=0

〈
(1 + x2)−n/2; 2k

〉〈
sinh2k x; 2m

〉
=

m

∑
k=0

(−1)m−k
(−n

2
k

)
(2k)!V(2m, 2k),

where we have employed, according to (50), the fact that

〈sinhn x; 2m + n〉 = n!(−1)m

(2m + n)!
V(2m + n, n).

This proves Formula (71). The “dual Euler numbers of order n” is evaluated by making use
of the Lagrange inversion Formula (1):

En
2m = (2m)!〈gn; 2m + n〉 = (2m)!n

2m + n

〈
cosh2m+n x; 2m

〉
=

(2m)!n
2m + n

2m+n

∑
k=0

(
2m + n

k

)
(2m + n− 2k)2m

22m+n(2m)!
.

The ultimate coefficient has been evaluated as follows:〈
cosh2m+n x; 2m

〉
= [x2m]

(ex + e−x)2m+n

22m+n

=
2m+n

∑
k=0

(
2m + n

k

)
[x2m]

22m+n ex(2m+n−2k)

=
2m+n

∑
k=0

(
2m + n

k

)
(2m + n− 2k)2m

22m+n(2m)!
,

which is justified by the binomial expansion and the Maclaurin series.

These numbers satisfy the recurrence relations (13)

En
2m =

2m

∑
k=0

(
n
k

)(
2m− n
2m− k

)
Ek

2m and En
2m =

2m

∑
k=0

(
n
k

)(
2m− n
2m− k

)
E k

2m
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as well as the reciprocal relations (21)

En
2m =

n
2m + n

2m

∑
k=0

(
−2m− n

k

)(
4m + n
2m− k

)
E k

2m, (73)

En
2m =

n
2m + n

2m

∑
k=0

(
−2m− n

k

)(
4m + n
2m− k

)
Ek

2m. (74)

7.4. Cauchy Numbers of the First Kind

The Cauchy numbers of the first kind (see Comtet [2] (p. 294) and [60,61]) are defined
by the integral and the generating function:

Cn =
∫ 1

0
〈x〉ndx with

x
ln(1 + x)

=
∞

∑
n=0

xn

n!
Cn.

Their higher-order counterparts (see Zhao [62]) are given by(
x

ln(1 + x)

)n

=
∞

∑
m=0

xm

m!
Cn

m. (75)

Let ϕ(x) = ln(1+x)
x . It is trivial to check that the series f (x) = x/ϕ(x) determines

implicitly its inverse series g(x). Then, the reciprocal pair { f (x), g(x)} produces the
following connection coefficients

Cn
m = m!〈 f n; m + n〉 and Cn

m = m!〈gn; m + n〉

with (−1)mCn
m > 0 and (−1)mCn

m ∈ Q, as well as the explicit formulae

Cn
m =

m

∑
k=0

n!k!
(n + k)!

S1(m, k)S2(n + k, n), (76)

Cn
m =

n
m + n

m!(m + n)!
(2m + n)!

S1(2m + n, m + n). (77)

These numbers resemble the Bernoulli numbers of higher orders in the sense that the
Stirling numbers of first and second kind exchange their roles.

Proof. Observing the composite function

x
ln(1 + x)

=
ey − 1

y
and y = ln(1 + x),

we can manipulate the series

Cn
m = m!〈 f n; m + n〉 = m!

〈
xn

lnn(1 + x)
; m
〉

= m!
m

∑
k=0

〈
(ex − 1)n

xn ; k
〉〈

lnk(1 + x); m
〉

=
m

∑
k=0

n!k!
(n + k)!

S1(m, k)S2(n + k, n),
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which gives the first formula. The “dual Cauchy numbers of the first kind of order n” are
obtained by making use of the Lagrange inversion Formula (1)

Cn
m = m!〈gn; m + n〉 = m!n

m + n

〈
lnm+n(1 + x)

xm+n ; m
〉

=
n

m + n
m!(m + n)!
(2m + n)!

S1(2m + n, m + n),

and the exponential generating function of Stirling numbers of the first kind.

These numbers satisfy the recurrence relations (13)

Cn
m =

m

∑
k=0

(
n
k

)(
m− n
m− k

)
Ck

m and Cn
m =

m

∑
k=0

(
n
k

)(
m− n
m− k

)
Ck

m

as well as the reciprocal relations (21)

Cn
m =

n
m + n

m

∑
k=0

(
−m− n

k

)(
2m + n
m− k

)
Ck

m, (78)

Cn
m =

n
m + n

m

∑
k=0

(
−m− n

k

)(
2m + n
m− k

)
Ck

m. (79)

7.5. Cauchy Numbers of the Second Kind

The Cauchy numbers of the second kind (see Comtet [2] (p. 294) and [61,63]) are
defined by the integral and the generating function:

Kn =
∫ 1

0
(x)ndx with

x
(x− 1) ln(1− x)

=
∞

∑
n=0

xn

n!
Kn.

Their higher-order counterparts can be analogously given by(
x

(x− 1) ln(1− x)

)n

=
∞

∑
m=0

xm

m!
Kn

m. (80)

Let ϕ(x) = (x−1) ln(1−x)
x . It is trivial to check that the series f (x) = x/ϕ(x) deter-

mines implicitly its inverse series g(x). Then, { f (x), g(x)} form a reciprocal pair with the
following connection coefficients:

Kn
m = m!〈 f n; m + n〉 and Kn

m = m!〈gn; m + n〉.

For these numbers, we have also Kn
m > 0 and Kn

m ∈ Q, as well as the explicit formulae

Kn
m =

m

∑
k=0

(−1)m−k n!k!
(n + k)!

S1(m, k)S2(n + k, n), (81)

Kn
m = (−1)m m!n

m + n

m+n

∑
k=n

(m + n)!
(m + k)!

(
m + n

k

)
S1(m + k, m + n). (82)

It is curious that the explicit formulae for the higher-order Cauchy numbers of the two
kinds differ only in the alternating sign in their summands.

Proof. Observing the composite function

x
(x− 1) ln(1− x)

=
ey − 1

y
and y = − ln(1− x),
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we can manipulate the series

Kn
m = m!〈 f n; m + n〉 = m!

〈
xn

(x− 1)n lnn(1− x)
; m
〉

= m!
m

∑
k=0

(−1)k
〈
(ex − 1)n

xn ; k
〉〈

lnk(1− x); m
〉

=
m

∑
k=0

(−1)m−k n!k!
(n + k)!

S1(m, k)S2(n + k, n),

which gives the first formula. The “dual Cauchy numbers of the second kind of order n” is
derived by making use of the Lagrange expansion formula

Kn
m = m!〈gn; m + n〉 = m!n

m + n

〈
(x− 1)m+n lnm+n(1− x)

xm+n ; m
〉

=
m!n

m + n
〈
(x− 1)m+n lnm+n(1− x); 2m + n

〉
= (−1)m m!n

m + n

m+n

∑
k=n

(m + n)!
(m + k)!

(
m + n

k

)
S1(m + k, m + n),

and the generating function of Stirling numbers of the second kind.

According to (13), these numbers satisfy the recurrence relations

Kn
m =

m

∑
k=0

(
n
k

)(
m− n
m− k

)
Kk

m and Kn
m =

m

∑
k=0

(
n
k

)(
m− n
m− k

)
Kk

m

as well as the reciprocal relations (21)

Kn
m =

n
m + n

m

∑
k=0

(
−m− n

k

)(
2m + n
m− k

)
Kk

m, (83)

Kn
m =

n
m + n

m

∑
k=0

(
−m− n

k

)(
2m + n
m− k

)
Kk

m. (84)

8. Further Exploration

In mathematics, a Sheffer sequence (or poweroid, see [64] §4.3) is a polynomial se-
quence {Pn(x)}n≥0 in which the index of each polynomial equals its degree and character-
ized by its exponential generating function

φ(y)exλ(y) =
∞

∑
n=0

yn

n!
Pn(x),

where φ(y) and λ(y) are power series in y.
Examples of polynomial sequences which are Sheffer sequences (see Roman [64]):

• The monomials, i.e., {xn : n = 0, 1, 2, · · · }:

exy =
∞

∑
n=0

yn

n!
xn.

• The Abel polynomials, i.e., Pn(x) = x(x− βn)n−1:

exτ =
∞

∑
n=0

x(x− βn)n−1 yn

n!
with y = τeβτ .
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• The Gould polynomials, i.e., Pn(x) = x
x−βn (

x−βn
n )

(1 + τ)x =
∞

∑
n=0

x
x− βn

(
x− βn

n

)
yn with y = τ(1 + τ)β.

• The Bernoulli polynomials (cf. [52]):

yexy

ey − 1
=

∞

∑
n=0

yn

n!
Bn(x).

• The Euler polynomials:
2exy

ey + 1
=

∞

∑
n=0

yn

n!
En(x).

• The central factorial polynomials:

e2x arcsinh(y/2) =
∞

∑
n=0

yn

n!
Zn(x).

• The Hermite polynomials:

e2xy−y2
=

∞

∑
n=0

yn

n!
Hn(x).

• The Charlier polynomials:

ey(1− y/a)x =
∞

∑
n=0

yn

n!
Cn(x, a).

• The Laguerre polynomials:

exp
( xy

y−1
)

(1− y)α+1 =
∞

∑
n=0

Lα
n(x)yn.

• The Mahler polynomials:

exp
(

x(1 + y− ey)
)
=

∞

∑
n=0

yn

n!
Gn(x).

• The Mott polynomials:

exp
(

x
√

1− y2 − 1
y

)
=

∞

∑
n=0

yn

n!
Qn(x).

• The Stirling polynomials (cf. [27,29]):

( yey

ey − 1

)1+x
=

∞

∑
n=0

yn

n!
Sn(x).

• Meixner polynomials:

(1− y/c)x

(1− y)β+x =
∞

∑
n=0

(β)nyn

n!
Mn(x, β, c).
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• Meixner–Pollaczek polynomials:

(1− yeφ
√
−1)−λ+x

√
−1(1− ye−φ

√
−1)−λ−x

√
−1 =

∞

∑
n=0

yn

n!
P(λ)

n (x, φ).

By exploring the above generating functions, it is possible to review orthogonality rela-
tions, recurrence relations, convolutions, and explicit formulae related to these polynomials.
We take the Stirling polynomials as an example to show how to derive, by connection
coefficients, the following two interesting explicit formulae:

Sn(x) =
(

x + n
n

) n

∑
k=0

(−1)n−k 1 + x + n
1 + x + k

n!2S2(n + k, k)
(n + k)!(n− k)!

=
n

∑
k=0

(−1)n−k (
x+k

k )(x+n+1
n−k )

(n+k
k )

S2(n + k, k),

Sn(x) =
(

x− n
n

) n

∑
k=0

(−1)k 1 + x
1 + x− n− k

n!2S1(n + k, k)
(n + k)!(n− k)!

=
1 + x

1 + x− n

n

∑
k=0

(−1)k (
1+x−n

k )(x−n−k
n−k )

(n+k
k )

S1(n + k, k).

Proof. Observe that

Sn(x) = n!
〈(1− e−y

y

)−1−x
; n
〉

= n!

〈{
1−

(
1− 1− e−y

y

)}−1−x

; n

〉

= n!
n

∑
i=0

(−1)i
(
−x− 1

i

)〈(
1− 1− e−y

y

)i
; n
〉

= n!
n

∑
i=0

(−1)i
(
−x− 1

i

) i

∑
k=0

(−1)k
(

i
k

)〈(1− e−y

y

)k
; n
〉

= n!
n

∑
i=0

(−1)i
(
−x− 1

i

) i

∑
k=0

(−1)n+k
(

i
k

)
k!

(n + k)!
S2(n + k, k)

=
n

∑
k=0

(−1)n
(
−x− 1

k

)
n!k!

(n + k)!
S2(n + k, k)

n

∑
i=k

(−1)i−k
(
−x− k− 1

i− k

)
.

Evaluating the last sum by

n

∑
i=k

(−1)i−k
(
−x− k− 1

i− k

)
= (−1)n−k

(
−x− k− 2

n− k

)
,

we obtain an expression equivalent to the first formula.
Now, for the two variables (τ, y) related by y = − ln(1− τ), define

y = f (τ) = τ/ϕ(τ) where ϕ(τ) =
−τ

ln(1− τ)
with ϕ(0) = 1.

Then, the inverse function of y = f (τ) is given by τ = g(y) = 1− e−y. Define the composite
function by

F(τ) =
{

ln(1− τ)

−τ

}x+1

=

{
y

1− e−y

}x+1

.
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According to the Lagrange expansion Formula (1), we can extract its coefficient:

Sn(x) = n!
〈( y

1− e−y

)x+1
; n
〉

= n!
〈( ln(1− τ)

−τ

)x+1
; n
〉

= (n− 1)!
〈

F′(τ)ϕn(τ); n− 1
〉
= (n− 1)!

〈
ϕn(τ)

d
dτ

ϕ−x−1(τ); n− 1
〉

=
(1 + x)(n− 1)!

1 + x− n

〈
d

dτ
ϕn−x−1(τ); n− 1

〉
=

(1 + x)n!
1 + x− n

〈
ϕn−x−1(τ); n

〉
.

For the last coefficient, we can compute it similarly by

〈
ϕn−x−1(τ); n

〉
=

〈{
1−

(
1− 1

ϕ(τ)

)}1+x−n

; n

〉

=
n

∑
k=0

(−1)n−k
(

1 + x− n
k

)(
x− n− k

n− k

)〈
ϕ−k(τ); n

〉
=

n

∑
k=0

(−1)k
(

1 + x− n
k

)(
x− n− k

n− k

)
k!

(n + k)!
S1(n + k, k).

By substitution, we have the expression below

Sn(x) =
1 + x

1 + x− n

n

∑
k=0

(−1)k (
1+x−n

k )(x−n−k
n−k )

(n+k
k )

S1(n + k, k),

which confirms the second formula.

There exists a known, but slightly different formula, as shown below:

Sn(x) =
(

x− n
n

) n

∑
k=0

(−1)k x− 2n
x− n− k

n!2S1(n + k + 1, k + 1)
(n + k)!(n− k)!

=
n

∑
k=0

(−1)k (
x−n

k )(x−n−k−1
n−k )

(n+k
k )

S1(n + k + 1, k + 1).

The above formula is located in https://en.wikipedia.org/wiki/Stirling_polynomials (ac-
cessed on 1 November 2022) and simpler than the double sum expression that appears
in [27]. Further expressions of a similar type can be found in [65,66].

The above formula can be shown by constructing the Lagrange interpolating polyno-
mial for Sn(x) at {n + k}n

k=0 as follows

Sn(x) =
n

∑
k=0

Λk
〈x− n〉n
x− n− k

,

where the connection coefficients are determined by

Λk =
Sn(n + k)

∏n
ı=0
ı 6=k

(k− ı)
= (−1)n−k Sn(n + k)

k!(n− k)!

and

Sn(n + k) = (−1)nS1(n + k + 1, k + 1)
/(n + k

n

)
.

Finally, we record typical properties of the Stirling polynomials.

https://en.wikipedia.org/wiki/Stirling_polynomials
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• Extreme values:

Sn(n) = n! and Sn(0) = (−1)nBn,

Sn(1) = (−1)n−1{(n− 1)Bn + nBn−1
}

.

• Stirling numbers:

Sn(m) = (−1)nS1(1 + m, 1 + m− n)
/(m

n

)
,

Sn(−m) = S2(n + m− 1, m− 1)
/(−m

n

)
.

• Binomial convolution:

Sn(x + y− 1) =
n

∑
k=0

(
n
k

)
Sk(x− 1)Sn−k(y− 1).

• Linear relations:(
m + n

n

)
Sn(x + m) =

n

∑
k=0

(
m + n

k

)
S1(m, m− n + k)Sk(x),(

m + n
n

)
Sn(x−m) =

n

∑
k=0

(−1)n−k
(

m + n
k

)
S2(n− k + m, m)Sk(x).
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