

Article New Numerical Methods for Solving the Initial Value Problem Based on a Symmetrical Quadrature Integration Formula Using Hybrid Functions

Zainab J. Kadum and Noori Y. Abdul-Hassan *

Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah 61001, Iraq * Correspondence: noori.hassan@uobasrah.edu.iq

Abstract: In this study, we construct new numerical methods for solving the initial value problem (IVP) in ordinary differential equations based on a symmetrical quadrature integration formula using hybrid functions. The proposed methods are designed to provide an efficient and accurate solution to IVP and are more suitable for problems with non-smooth solutions. The key idea behind the proposed methods is to combine the advantages of traditional numerical methods, such as Runge–Kutta and Taylor's series methods, with the strengths of modern hybrid functions. Furthermore, we discuss the accuracy and stability analysis of these methods. The resulting methods can handle a wide range of problems, including those with singularities, discontinuities, and other non-smooth features. Finally, to demonstrate the validity of the proposed methods, we provide several numerical examples to illustrate the efficiency and accuracy of these methods.

Keywords: initial value problem; numerical method; hybrid function; local truncation errors; stability analysis

Citation: Kadum, Z.J.; Abdul-Hassan, N.Y. New Numerical Methods for Solving the Initial Value Problem Based on a Symmetrical Quadrature Integration Formula Using Hybrid Functions. *Symmetry* **2023**, *15*, 631. https://doi.org/10.3390/ sym15030631

Academic Editors: Omar Bazighifan and Sergei D. Odintsov

Received: 11 December 2022 Revised: 6 February 2023 Accepted: 8 February 2023 Published: 2 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Differential equations are a fundamental tool in many fields of pure and applied science and are used to model a wide range of real-world phenomena [1,2]. While analytic methods exist for solving differential equations, many of the equations encountered in practice are too complex for a closed-form solution. Even when a solution formula is available, it may involve integrals that can only be approximated numerically. In such cases, numerical methods provide an alternative tool for solving differential equations under specified initial conditions. Initial value problems, which take the form of ordinary differential equations [3], are commonly encountered in science and engineering, and can be written in the form:

$$y' = f(x, y(x)), y(x_0) = y_0$$
 (1)

To solve the problem (1), various numerical methods with varying orders of convergence have been described and developed (see references [4–10]). The Runge–Kutta method is one of the most commonly used numerical methods for this purpose among the existing methods and has seen a growing interest in its development in recent years. The general m-stage Runge–Kutta method is given as follows:

$$y_{n+1} = y_n + h \varnothing(x_n, y_n; h)$$
⁽²⁾

where

and

$$c_i = \sum_{j=1}^{i-1} a_{ij}, \ i = 2, 3, \dots, m.$$

In this paper, we propose two new numerical methods for solving initial value problems in ordinary differential equations. These methods are based on Newton's theorem in calculus, Taylor's series expansion, and the quadrature integration formula using hybrid functions [11]. We demonstrate that these methods have a second- and third-order convergence rate and are stable. We provide a comparison of these new methods with other relevant existing methods. Additionally, we present two specific initial value problems in ordinary differential equations to illustrate the efficiency of our proposed methods.

2. Derivation of New Methods

Consider the following formula of Newton's theorem of integration:

$$y(x) = y(x_n) + \int_{x_n}^x y'(t)dt$$
 (3)

In Equation (3), we approximate the definite integral using the hybrid quadrature integration rule [11], as follows:

$$\int_{x_n}^x y'(t)dt \cong \frac{x - x_n}{m} \sum_{i=1}^m y'(x_n + (x - x_n)(\frac{2i - 1}{2m}))$$
(4)

From Equations (1)–(4), we define the standard form of our proposed methods as:

$$y_{n+1} = y_n + h \varnothing(x_n, y_n; h)$$
⁽⁵⁾

where

$$\emptyset(x_n, y_n; h) = \sum_{i=1}^m w_i k_i \tag{6}$$

١

with

$$k_{1} = f(x_{n}, y_{n}), \ k_{i} = f\left(x_{n} + c_{i}h, y_{n} + \sum_{\substack{j=1\\j \neq i}}^{i-1} a_{ij}k_{j}\right), \ i = 2, 3, \dots m$$
(7)

and

$$\sum_{j=1}^{i-1} a_{ij} = c_i = \left(\frac{2i-1}{2m}\right), i = 2, 3, \dots m$$
(8)

In the following, we present several numerical methods for solving Equation (1) using different values of *m*.

2.1. Method Based on Hybrid Quadrature Formula with Taylor's Expansion at m = 1

1

By using m = 1 in Equations (4)–(8), we define:

$$y_{n+1} = y_n + hw_1k_2 (9)$$

where

$$k_1 = f(x_n, y_n), k_2 = f\left(x_n + \frac{1}{2}h, y_n + a_1hk_1\right).$$
 (10)

In Equation (9), the unknowns, w_1 and $a_1 = a_{21}$, must be determined for the equation to agree with Taylor's series expansion to the highest possible order, see [12]. For this purpose, using Taylor's series expansion of $y(x_{n+1})$, we obtain:

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + \frac{h^4}{24}y''''(x_n)\dots$$
 (11)

By expressing the derivatives of y in terms of f in Equation (1), we obtain:

$$y(x_{n+1}) = y_n + hf + h^2 \left(\frac{1}{2}f_x + \frac{1}{2}ff_y\right) + h^3 \left(\frac{1}{6}f_{xx} + \frac{1}{3}ff_{xy} + \frac{1}{6}f^{23y}f_{yy} + \frac{1}{6}f_xf_y + \frac{1}{64nd(1)orsereise}ff_y^2\right) + \dots$$
(12)
From Equation (10) and using Taylor's series expansions of k, and k, we obtain:

From Equation (10), and using Taylor's series expansions of k_1 and k_2 , we obtain: $k_1 = f$

$$k_{2} = f + h\left(\frac{1}{2}f_{x} + a_{1}k_{1}f_{y}\right) + \frac{\hbar^{2}}{2}\left(\frac{1}{4}f_{xx} + a_{1}k_{1}f_{xy} + a_{1}^{2}k_{1}^{2}f_{yy}\right) + \frac{\hbar^{3}}{6}\left(\frac{1}{8}f_{xxx} + \frac{3}{4}a_{1}k_{1}f_{xxy} + \frac{3}{2}a_{1}^{2}k_{1}^{2}f_{xyy} + a_{1}^{3}k_{1}^{3}f_{yyy}\right) + \dots$$
(14)

Substituting Equations (13) and (14) into Equation (9), we obtain:

$$y_{n+1} = y_n + hfw_1 + \frac{h^2}{2}w_1\left(\frac{1}{2}f_x + 2a_1ff_y\right) + h^3w_1\left(\frac{1}{8}f_{xx} + \frac{1}{2}a_1ff_{xy} + \frac{1}{2}a_1^2f^2f_{yy}\right) + \dots$$
(15)

By comparing Equation (15) with Equation (12), we have $w_1 = 1$ and $a_1 = \frac{1}{2}$. As a result, we obtain a special case, which is called the modified Euler's (midpoint integration) method [1,7,13–15], which is given by:

$$\left.\begin{array}{l}
y_{n+1} = y_n + hk_2, \\
k_1 = f(x_n, y_n), \\
k_2 = f\left(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1\right).\end{array}\right\}$$
(16)

2.2. Method Based on Hybrid Quadrature Formula with Taylor's Expansion at m = 2

By using m = 2 in Equations (4)–(8), we define:

$$y_{n+1} = y_n + h(w_1k_2 + w_2k_3) \tag{17}$$

where

$$k_{1} = f(x_{n}, y_{n}), k_{2} = f\left(x_{n} + \frac{1}{4}h, y_{n} + a_{1}hk_{1}\right), k_{3} = f\left(x_{n} + \frac{3h}{4}, y_{n} + h(a_{2}k_{1} + a_{3}k_{2})\right).$$
(18)

Furthermore, Equation (17) must be such that $w_1, w_2, a_1 = a_{21}, a_2 = a_{31}$, and $a_3 = a_{32}$ are determined so that it is consistent with the highest possible order of Taylor's series expansion, see [12].

From Equation (18), using Taylor's series expansions of k_i , i = 1, 2, and 3, we have:

$$k_1 = f \tag{19}$$

$$k_{2} = f + h\left(\frac{1}{4}f_{x} + a_{1}k_{1}f_{y}\right) + \frac{h^{2}}{2!}\left(\frac{1}{16}f_{xx} + \frac{1}{2}a_{1}k_{1}f_{xy} + a_{1}^{2}k_{1}^{2}f_{yy}\right) + \frac{h^{3}}{3!}\left(\frac{1}{64}f_{xxx} + \frac{3}{16}a_{1}k_{1}f_{xxy} + \frac{3}{4}a_{1}^{2}k_{1}^{2}f_{xyy} + a_{1}^{3}k_{1}^{3}f_{yyy}\right) + \dots$$

$$(20)$$

and

$$k_{3} = f + h\left(\frac{3}{4}f_{x} + (a_{2}k_{1} + a_{3}k_{2})f_{y}\right) + \frac{h^{2}}{2!}\left(\frac{91}{16}f_{xx} + \frac{6}{4}(a_{2}k_{1} + a_{3}k_{2})f_{xy} + (a_{2}k_{1} + a_{3}k_{2})^{2}f_{yy}\right) + \frac{h^{3}}{3!}\left(\frac{27}{64}f_{xxx} + \frac{27}{16}(a_{2}k_{1} + a_{3}k_{2}k_{2})f_{xxy} + \frac{9}{4}(a_{2}k_{1} + a_{3}k_{2})^{2}f_{xyy} + (a_{2}k_{1} + a_{3}k_{2})^{3}f_{yyy}\right) + \dots$$

$$(21)$$

By plugging Equations (19)–(21) into Equation (17), we obtain:

$$y_{n+1} = y_n + hf(w_1 + w_2) + h^2(((a_2 + a_3)w_2 + a_1w_1)ff_y + \frac{1}{4}f_x(w_1 + 3w_2)) + h^3(\frac{1}{32}(16f_{yy}(a_2 + a_3)^2f^2 + ((32a_1f_y^2 + 24f_{xy})a_3 + 24f_{xy}a_2)f + 8a_3f_xf_y + 9f_{xx})w_2 + \frac{1}{2}(\frac{1}{16}f_{xx} + \frac{1}{2}f_{xy}a_1f + a_1^2f^2f_{yy})w_1) + \dots$$
(22)

By comparing the coefficients of h, h^2 , and h^3 in Equation (22) with their counterparts in Equation (12), we obtain the following system of equations:

$$hf: w_1 + w_2 = 1 \tag{23}$$

$$h^2 f_x : 3w_2 + w_1 = 2 \tag{24}$$

$$h^2 f f_y : w_2 a_2 + w_2 a_3 + w_1 a_1 = \frac{1}{2}$$
⁽²⁵⁾

$$h^3 f_{xx} : 9w_2 + w_1 = \frac{16}{3} \tag{26}$$

$$h^3 f f_{xy} : 3w_2 a_2 + 3w_2 a_3 + w_1 a_1 = \frac{4}{3}$$
⁽²⁷⁾

$$h^{3}f^{2}f_{yy}: w_{2}a_{2}^{2} + 2w_{2}a_{2}a_{3} + w_{2}a_{3}^{2} + w_{1}a_{1}^{2} = \frac{1}{3}$$
(28)

$$h^3 f_x f_y : w_2 a_3 = \frac{2}{3} \tag{29}$$

$$h^3 f f_y^2 : w_2 a_1 a_3 = \frac{1}{6} \tag{30}$$

By solving the above system of equations [16], we have $w_1 = \frac{1}{2}$, $w_2 = \frac{1}{2}$, $a_1 = \frac{1}{4}$, $a_2 = \frac{-7}{12}$, and $a_3 = \frac{4}{3}$. Consequently, the proposed method (17), referred to as HTM2, can be formulated as follows:

$$y_{n+1} = y_n + \frac{n}{2}(k_2 + k_3), \tag{31}$$

where

$$k_{1} = f(x_{n}, y_{n}), k_{2} = f\left(x_{n} + \frac{1}{4}h, y_{n} + \frac{1}{4}hk_{1}\right), k_{3} = f\left(x_{n} + \frac{h}{2}, y_{n} + h\left(\frac{-7}{12}k_{1} + \frac{4}{3}k_{2}\right)\right).$$
(32)

2.3. Method Based on Hybrid Quadrature Formula with Taylor's Expansion at m = 3

By using m = 3 in Equations (4)–(8), we define:

$$y_{n+1} = y_n + h(w_1k_2 + w_2k_3 + w_3k_4)$$
(33)

where

$$k_{1} = f(x_{n}, y_{n}), k_{2} = f\left(x_{n} + \frac{1}{6}h, y_{n} + a_{1}hk_{1}\right), k_{3} = f\left(x_{n} + \frac{3h}{6}, y_{n} + h(a_{2}k_{1} + a_{3}k_{2})\right), k_{4} = f\left(x_{n} + \frac{5h}{6}, y_{n} + h(a_{4}k_{1} + a_{5}k_{2} + a_{6}k_{3})\right).$$

$$(34)$$

To obtain the new formula, we must find the constants a_i , (i = 1, ..., 6) and w_j , (j = 1, 2, 3), which are required to ensure that Equation (33) satisfies Taylor's expansion to the highest possible order. For that k_j , j = 1, 2, 3, and 4 in Equation (34) were expanded using Taylor's series, and the following was obtained:

 k_1

$$=f$$
(35)

$$k_{2} = f + h\left(\frac{1}{6}f_{x} + a_{1}k_{1}f_{y}\right) + \frac{h^{2}}{2!}\left(\frac{1}{36}f_{xx} + \frac{1}{3}a_{1}k_{1}f_{xy} + a_{1}^{2}k_{1}^{2}f_{yy}\right) + \frac{h^{3}}{3!}\left(\frac{1}{216}f_{xxx} + \frac{1}{12}a_{1}k_{1}f_{xxy} + \frac{1}{2}a_{1}^{2}k_{1}^{2}f_{xyy} + a_{1}^{3}k_{1}^{3}f_{yyy}\right) + \dots$$
(36)

$$k_{3} = f + h(\frac{3}{6}f_{x} + (a_{2}k_{1} + a_{3}k_{2})f_{y}) + \frac{h^{2}}{2!}(\frac{9}{36}f_{xx} + (a_{2}k_{1} + a_{3}k_{2})f_{xy} + (a_{2}k_{1} + a_{3}k_{2})^{2}f_{yy}) + \frac{h^{3}}{3!}(\frac{27}{216}f_{xxx} + \frac{27}{36}(a_{2}k_{1} + a_{3}k_{2}k_{2})f_{xxy} + \frac{3}{2}(a_{2}k_{1} + a_{3}k_{2})^{2}f_{xyy} + (a_{2}k_{1} + a_{3}k_{2})^{3}f_{yyy}) + \dots$$
(37)

and

$$k_{4} = f + h(\frac{5}{6}f_{x} + (a_{4}k_{1} + a_{5}k_{2} + a_{6}k_{3})f_{y}) + \frac{h^{2}}{2!}(\frac{25}{36}f_{xx} + \frac{5}{3}(a_{4}k_{1} + a_{5}k_{2} + a_{6}k_{3})f_{xy} + (a_{4}k_{1} + a_{5}k_{2} + a_{6}k_{3})^{2}f_{yy}) + \frac{h^{3}}{3!}(\frac{125}{216}f_{xxx} + \frac{75}{36}(a_{4}k_{1} + a_{5}k_{2} + a_{6}k_{3})f_{xxy} + \frac{(^{2}}{9}f_{xyy} + (a_{2}k_{1} + a_{3}k_{2})^{3}f_{yyy}) + \dots$$
(38)

By substituting Equations (35)–(38) into Equation (33) to obtain an expression for y_{n+1} , we obtain:

$$y_{n+1} = y_n + hf(w_1 + w_2 + w_3) + h^2(f((a_4 + a_5 + a_6)w_3 + (a_2 + a_3)w_2 + w_1a_1)f_y + \frac{5}{6}(w_3 + \frac{1}{5}w_1 + \frac{3}{5}w_2)f_x) + h^3(\frac{1}{2}f_{yy}((a_4 + a_5 + a_6)^2w_3 + (a_2 + a_3)^2w_2 + a_1^2w_1)f^2 + \frac{1}{72}((72a_2 + 72a_3)a_6 + 72a_1a_5)f_y^2 + 60f_{xy}(a_4 + a_5 + a_6)w_3 + (72f_y^2a_1a_3 + 36f_{xy}(a_2 + a_3)w_2 + 12f_{xy}a_1w_1)f + \frac{1}{72}(12f_xf_y(a_5 + 3a_6) + 25f_{xx})w_3 + \frac{1}{27}(12a_3f_xf_y + 9f_{xx})w_2 + \frac{1}{72}w_1f_{xx}) + \dots$$
(39)

By setting $a_2 + a_3 = \frac{1}{2}$ and $a_4 + a_5 + a_6 = \frac{5}{6}$, and by comparing the coefficients of h^r , r = 1, 2, and 3, in Equation (39) with their equivalents in Equation (12), we obtain:

$$hf: w_1 + w_2 + w_3 = 1 \tag{40}$$

$$h^2 f_x : 5w_3 + w_1 + 3w_2 = 3 \tag{41}$$

$$h^{2}ff_{y}: w_{3}a_{4} + w_{3}a_{5} + w_{3}a_{6} + w_{2}a_{2} + w_{2}a_{3} + w_{1}a_{1} = \frac{1}{2}$$
(42)

$$h^3 f_{xx} : w_1 + 9w_2 + 25w_3 = 12 \tag{43}$$

$$h^{3}ff_{xy}: 60(a_{4}+a_{5}+a_{6})w_{3}+36w_{2}(a_{2}+a_{3})+12w_{1}a_{1}=24$$
(44)

$$h^{3}f^{2}f_{yy}:(a_{4}+a_{5}+a_{6})^{2}w_{3}+w_{2}(a_{2}+a_{3})^{2}+a_{1}^{2}w_{1}=\frac{1}{3}$$
(45)

$$h^3 f_x f_y : 12(a_5 + 3a_6)w_3 + 12w_2a_3 = 12$$
(46)

$$h^{3}ff_{y}^{2}:((72a_{2}+72a_{3})a_{6}+72a_{1}a_{5})w_{3}+72a_{1}a_{5}w_{2}=12$$
(47)

Solving these equations simultaneously, the nine parameters are given as follows:

$$w_1 = \frac{3}{8}, w_2 = \frac{2}{8}, w_3 = \frac{3}{8} \text{ and } a_1 = \frac{1}{6}, a_2 = \frac{-7}{2}, a_3 = 4, a_4 = \frac{5}{6}, a_5 = 0, \text{ and } a_6 = 0$$

Therefore, from Equation (33), the proposed new method, referred to as HTM3, can be written as follows:

$$y_{n+1} = y_n + \frac{h}{8}(3k_2 + 2k_3 + 3k_4) \tag{48}$$

where

$$k_{1} = f(x_{n}, y_{n}), k_{2} = f\left(x_{n} + \frac{1}{6}h, y_{n} + \frac{1}{6}hk_{1}\right), k_{3} = f\left(x_{n} + \frac{h}{2}, y_{n} + h\left(\frac{-7}{2}k_{1} + 4k_{2}\right)\right), k_{4} = f\left(x_{n} + \frac{5h}{6}, y_{n} + \frac{5h}{6}k_{1}\right).$$

$$(49)$$

3. Accuracy of New Methods

In this section, we analyze the local truncation error (L.T.E.) of the newly proposed methods. The local truncation error of numerical methods used to solve Equation (1) is defined as:

$$L.T.E. = y(x_{n+1}) - y_{n+1}$$
(50)

where $y(x_{n+1})$ is the exact solution and y_{n+1} is the approximate solution.

3.1. Accuracy of HTM2 Method

From Equation (32), and by using Taylor's series expansion of k_j , j = 1, 2, and 3, we have:

$$k_1 = f, (51)$$

$$k_{2} = f + h\left(\frac{1}{4}f_{x} + \frac{1}{4}ff_{y}\right) + \frac{h^{2}}{2}\left(\frac{1}{16}f_{xx} + \frac{1}{8}ff_{xy} + \frac{1}{16}f^{2}f_{yy}\right) + \frac{h^{3}}{6}\left(\frac{1}{64}f_{xxx} + \frac{3}{64}ff_{xxy} + \frac{3}{64}f^{2}f_{xyy} + \frac{1}{64}f^{3}f_{yyy}\right) + \dots$$
(52)

$$k_{3} = f + h(\frac{3}{4}f_{x} + \frac{3}{4}ff_{y}) + \frac{h^{2}}{2}(\frac{9}{32}f_{xx} + \frac{1}{96}(32f_{y}^{2} + 54f_{xy})f + \frac{1}{3}f_{x}f_{y} + \frac{9}{32}f^{2}f_{yy}) + h^{3}(\frac{9}{128}f_{xxx} + \frac{1}{384}(112f_{y}f_{yy} + 81f_{xyy})f^{2} + \frac{1}{384}(96f_{x}f_{yy} + 128f_{xy}f_{y} + 81f_{xxy})f + \frac{1}{4}f_{xy}f_{x} + \frac{1}{24}f_{y}f_{xx} + \frac{9}{128}f^{3}f_{yyy}) + \dots$$
(53)

Substituting Equations (51)–(53) into Equation (31), we have:

$$y_{n+1} = y_n + hf + h^2 \left(\frac{1}{2}f_x + \frac{1}{2}ff_y\right) + h^3 \left(\frac{1}{6}f_y f_x + \frac{1}{6}ff_y^2 + \frac{5}{35}f_{xx} + \frac{5}{16}ff_{xy} + \frac{5}{32}f^2 f_{yy}\right) + \dots$$
(54)

By subtracting Equation (54) from Equation (12), we have:

$$L.T.E. = h^3 \left(\frac{1}{96} f_{xx} + \frac{1}{48} f f_{xy} + \frac{1}{96} f^2 f_{yy} \right) + o\left(h^4\right)$$
(55)

As per Equation (55), the form of the HTM2 method is of second-order, with a local truncation error of third-order.

3.2. Accuracy of HTM3 Method

From Equation (49), and by using Taylor's series expansion of k_j , j = 1, 2, 3, and 4, we obtain:

$$k_1 = f \tag{56}$$

$$k_{2} = f + h\left(\frac{1}{6}f_{x} + \frac{1}{6}ff_{y}\right) + \frac{h^{2}}{2}\left(\frac{1}{36}f_{xx} + \frac{1}{18}ff_{xy} + \frac{1}{36}f^{2}f_{yy}\right) + \frac{h^{3}}{6}\left(\frac{1}{216}f_{xxx} + \frac{1}{72}ff_{xxy} + \frac{1}{72}f^{2}f_{xyy} + \frac{1}{216}f^{3}f_{yyy}\right) + \dots$$
(57)

$$k_{3} = f + h(\frac{1}{2}f_{x} + \frac{1}{2}ff_{y}) + \frac{h^{2}}{2}(\frac{1}{8}f_{xx} + \frac{1}{24}(16f_{y}^{2} + 9f_{xy})f + \frac{2}{3}f_{x}f_{y} + \frac{1}{8}f^{2}f_{yy}) + h^{3}(\frac{1}{48}f_{xxx} + \frac{1}{144}(56f_{y}f_{yy} + 9f_{xyy})f^{2} + \frac{1}{144}(48f_{x}f_{yy} + 64f_{xy}f_{y} + 9f_{xxy})f + \frac{1}{3}f_{xy}f_{x} + \frac{1}{18}f_{y}f_{xx} + \frac{1}{48}f^{3}f_{yyy}) + \dots$$
(58)

$$k_{4} = f + h\left(\frac{5}{6}f_{x} + \frac{5}{6}f_{y}\right) + h^{2}\left(\frac{25}{72}f_{xx} + \frac{25}{36}f_{xy} + \frac{25}{72}f^{2}f_{yy}\right) + h^{3}\left(\frac{125}{1296}f_{xxx} + \frac{125}{432}f_{xxy} + \frac{125}{432}f^{2}f_{xyy} + \frac{125}{1296}f^{3}f_{yyy}\right) + \dots$$
(59)

When we substitute Equations (56)–(59) into Equation (48), we obtain:

$$y_{n+1} = y_n + hf + h^2 \left(\frac{1}{2}f_x + \frac{1}{2}ff_y\right) + h^3 \left(\frac{1}{6}f^2 f_{yy} + \frac{1}{6}\left(f_y^2 + 2f_{xy}\right)f + \frac{1}{6}f_y f_x + \frac{1}{6}f_{xx}\right) + h^4 \left(\frac{1}{24}f^3 f_{yyy} + \frac{1}{72}(7f_y f_{yy} + 9f_{xyy})f^2 + \frac{1}{72}(6f_x f_{yy} + 8f_{xy}f_y + 9f_{xxy})f + \frac{1}{12}f_{xy}f_x + \frac{1}{72}f_y f_{xx} + \frac{1}{24}f_{xxx}\right) + \dots$$

$$(60)$$

The local truncation error defined by Equation (50) can be evaluated by subtracting Equation (60) from Equation (12), resulting in:

$$L.T.E. = h^4 \left(\frac{1}{24} f f_y^3 + \frac{1}{24} f_x f_y^2 + \frac{1}{72} \left(5 f^2 f_{yy} + 7 f f_{xy} + 2 f_{xx} \right) f_y + \frac{1}{24} f_x \left(f f_{yy} + f_{xy} \right) \right) + o(h^5)$$
(61)

Thus, our new method, HTM3, has a convergence rate of third-order, indicating that the local truncation error is of the order $o(h^4)$.

4. Stability Analysis

In this section, we investigate the stability region of the newly proposed methods using Dahlquist's test problem, see [17]:

$$y' = \lambda y_n$$
, $y(x_0) = y_0$

where the solution is given by $y = e^{\lambda y_n}$, and λ is a complex variable.

4.1. Absolute Stability of HTM2 Method

To study the absolute stability of the proposed method, HTM2, we employ Equation (32) to become the following:

$$k_{1} = \lambda y_{n}, k_{2} = \lambda y_{n} \left(1 + \frac{h\lambda}{4} \right), k_{3} = \lambda y_{n} \left(1 + \frac{3h\lambda}{4} + \frac{h^{2}\lambda^{2}}{3} \right).$$
(62)

By substituting (62) in (31), we obtain:

$$y_{n+1} = y_n + h\lambda y_n \left[1 + \frac{h\lambda}{2} + \frac{h^2\lambda^2}{6} \right]$$
(63)

By evaluating $\frac{y_{n+1}}{y_n}$ from (63) and setting $z = h\lambda$, one can obtain the stability polynomial of the proposed method as:

$$R(z) = \frac{y_{n+1}}{y_n} = \left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!}\right) + o(z^4)$$
(64)

Using MATLAB software, Figure 1 below shows that the stability region of the HTM2 method is wider than that of the other methods that have the same order.

Figure 1. Absolute stability region of HTM2.

4.2. Absolute Stability of HTM3 Method

To study the absolute stability of the proposed method of HTM3, we employ Equation (49) to become the following:

$$k_{1} = \lambda y_{n},$$

$$k_{2} = \lambda y_{n} \left(1 + \frac{h\lambda}{6}\right),$$

$$k_{3} = \lambda y_{n} \left(1 - \frac{7h\lambda}{2} + 4h\lambda + \frac{2h^{2}\lambda^{2}}{3}\right),$$

$$k_{4} = \lambda y_{n} \left(1 + \frac{5h\lambda}{6}\right).$$
(65)

By substituting Equation (65) in Equation (48) and setting $z = h\lambda$, we obtain:

$$y_{n+1} = y_n \left[1 + z + \frac{z^2}{2} + \frac{z^3}{6} \right]$$
(66)

Thus, the stability polynomial of the proposed method becomes:

$$R(z) = \frac{y_{n+1}}{y_n} = \left[1 + z + \frac{z^2}{2} + \frac{z^3}{6}\right] + o\left(z^4\right)$$
(67)

Utilizing the MATLAB software, the stability region of the above formula can be shown graphically in Figure 2 below:

Figure 2. Absolute stability region of HTM3.

5. Numerical Experiments

In this section, we solve two initial value problems from the references [18,19] to demonstrate the accuracy and efficiency of the proposed methods in comparison to other relevant methods. We compare the proposed HTM2 method, which is a second-order method, with the RK2 method [15,20], Ralston's method [15,20,21], Heun's method [1,15], and Midpoint method [1,15,22]. In addition, we compare the proposed HTM3 method, which is a third-order method, with Ralston's method [15,20], RK3 method [15,21], and Heun's method [15,23], using different step sizes (*h*).

Problem 1. Consider the IVP $y' = \frac{y}{4}(1 - \frac{y}{20})$, y(0) = 1, with the exact solution

$$y = \frac{20}{1 + 19e^{\frac{-x}{4}}}, \ 0 \le x \le 1.$$

To provide a comprehensive evaluation of the proposed methods, HTM2 and HTM3, Tables 1–3 and Tables 4–6 for different step sizes provide a numerical comparison of the exact solutions and approximate solutions of the new methods with other related methods of the same order of convergence. A numerical comparison of the absolute errors of our new methods with other relevant methods of the same order of convergence is presented in Tables 7–9 and Tables 10–12 using different step sizes h = 0.1, h = 0.05, and h = 0.025, respectively. The graphical representation of these results in the Figures 3–8 serves to supplement the numerical results and provide additional insight into the performance of the proposed methods.

x_i	Exact Solution	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0	0
0.1	1.024018962351867	1.024016952473958	1.024016923095703	1.024016834960938	1.024017011230469	1.024018966423752
0.2	1.048582996382734	1.048578896534070	1.048578835761557	1.048578653444039	1.048579018079106	1.048583005159566
0.3	1.073702928838884	1.073696657191696	1.073696562908939	1.073696280060730	1.073696845757242	1.073702942998442
0.4	1.099389726731484	1.099381199729522	1.099381069716590	1.099380679677929	1.099381459755449	1.099389746998454
0.5	1.125654495329782	1.125643627697525	1.125643459626485	1.125642955413594	1.125643963839717	1.125654522478015
0.6	1.152508475906471	1.152495180661248	1.152494972091990	1.152494346384571	1.152495597799943	1.152508510761309
0.7	1.179963043224405	1.179947231691585	1.179946980067549	1.179946225195960	1.179947734939917	1.179963086665087
0.8	1.208029702753715	1.208011284585090	1.208010987228892	1.208010095161021	1.208011879297848	1.208029755715844
0.9	1.236720087608148	1.236698970803669	1.236698624912622	1.236697587240450	1.236699662586248	1.236720151086232
1.0	1.266045955189318	1.266022046122342	1.266021648763880	1.266020456689755	1.266022840839900	1.266046030239382

Table 1. Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (*h* = 0.1).

Table 2. Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (*h* = 0.05).

x _i	Exact Solution	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0	0
0.1	1.024018962351867	1.024018455637443	1.024018448167912	1.024018425759318	1.024018470576506	1.024018964748139
0.2	1.048582996382734	1.048581962772757	1.048581947321444	1.048581900967507	1.048581993675384	1.048583001384183
0.3	1.073702928838884	1.073701347715753	1.073701323745033	1.073701251832879	1.073701395657195	1.073702936666439
0.4	1.099389726731483	1.099387577042795	1.099387543988666	1.099387444826288	1.099387643151058	1.099389737618628
0.5	1.125654495329782	1.125651755590691	1.125651712861745	1.125651584674923	1.125651841048592	1.125654509523097
0.6	1.152508475906471	1.152505124202791	1.152505071179159	1.152504912108291	1.152505230250067	1.152508493666189
0.7	1.179963043224405	1.179959057216482	1.179958993248755	1.179958801345611	1.179959185151955	1.179963064824991
0.8	1.208029702753716	1.208025059681107	1.208024984089226	1.208024757313632	1.208025210864895	1.208029728484451
0.9	1.236720087608148	1.236714764295145	1.236714676367269	1.236714412583710	1.236714940150929	1.236720117773737
1.0	1.266045955189318	1.266039928051356	1.266039827042708	1.266039524016851	1.266040130068695	1.266045990110506

x_i	Exact Solution	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0	0
0.1	1.024018962351867	1.024018835138843	1.024018833255648	1.024018827606067	1.024018838905230	1.024018963125439
0.2	1.048582996382734	1.048582736891561	1.048582732996068	1.048582721309593	1.048582744682544	1.048582997988505
0.3	1.073702928838884	1.073702531894975	1.073702525851689	1.073702507721835	1.073702543981544	1.073702931338594
0.4	1.099389726731484	1.099389187051215	1.099389178717997	1.099389153718346	1.099389203717649	1.099389730190115
0.5	1.125654495329782	1.125653807521091	1.125653796748901	1.125653764432330	1.125653829065472	1.125654499815693
0.6	1.152508475906471	1.152507634469638	1.152507621102265	1.152507581000150	1.152507661204383	1.152508481491529
0.7	1.179963043224405	1.179962042553033	1.179962026426831	1.179961978048225	1.179962074805438	1.179963049984132
0.8	1.208029702753716	1.208028537135910	1.208028518079512	1.208028460910319	1.208028575248708	1.208029710767429
0.9	1.236720087608148	1.236718751227908	1.236718729061944	1.236718662564059	1.236718795559836	1.236720096959107
1.0	1.266045955189318	1.266044442128150	1.266044416664960	1.266044340275396	1.266044493054533	1.266045965964875

Table 3. Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (*h* = 0.025).

Table 4. Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (*h* = 0.1).

x _i	Exact Solution	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0	0
0.1	1.024018962351867	1.024018951072459	1.024018949714177	1.024018951961812	1.024018953256430
0.2	1.048582996382734	1.048582973405348	1.048582970599488	1.048582975242551	1.048582977917067
0.3	1.073702928838884	1.073702893737675	1.073702889390857	1.073702896583903	1.073702900727513
0.4	1.099389726731484	1.099389679073476	1.099389673088104	1.099389682992669	1.099389688698611
0.5	1.125654495329782	1.125654434675028	1.125654426949154	1.125654439733982	1.125654447099669
0.6	1.152508475906471	1.152508401808229	1.152508392235414	1.152508408076681	1.152508417203833
0.7	1.179963043224405	1.179962955229337	1.179962943698518	1.179962962780061	1.179962973774839
0.8	1.208029702753715	1.208029600402102	1.208029586797452	1.208029609310995	1.208029622284133
0.9	1.236720087608148	1.236719970434119	1.236719954634907	1.236719980780295	1.236719995847236
1.0	1.266045955189318	1.266045822721111	1.266045804601567	1.266045834586991	1.266045851868019

	Table 5. Comparison of Analyti	cal and Approximate Solutions I	or HTMS and Relevant Methods	$\ln r roblem 1 (n = 0.05).$	
x_i	Exact Solution	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0	0
0.1	1.024018962351867	1.024018960929323	1.024018960759068	1.024018961041800	1.024018961208012
0.2	1.048582996382734	1.048582993484895	1.048582993133194	1.048582993717242	1.048582994060601
0.3	1.073702928838884	1.073702924412083	1.073702923867236	1.073702924772033	1.073702925303975
0.4	1.099389726731483	1.099389720721158	1.099389719970937	1.099389721216793	1.099389721949271
0.5	1.125654495329782	1.125654487680494	1.125654486712123	1.125654488320255	1.125654489265756
0.6	1.152508475906471	1.152508466561927	1.152508465362070	1.152508467354628	1.152508468526188
0.7	1.179963043224405	1.179963032127484	1.179963030682225	1.179963033082322	1.179963034493546
0.8	1.208029702753716	1.208029689846496	1.208029688141323	1.208029690973061	1.208029692638139
0.9	1.236720087608148	1.236720072831934	1.236720070851721	1.236720074140224	1.236720076073946
1.0	1.266045955189318	1.266045938484675	1.266045936213665	1.266045939985103	1.266045942202880

Table 5. Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (h = 0.05).

Table 6. Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (*h* = 0.025).

x _i	Exact Solution	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0	0
0.1	1.024018962351867	1.024018962173255	1.024018962151945	1.024018962187397	1.024018962208452
0.2	1.048582996382734	1.048582996018889	1.048582995974869	1.048582996048102	1.048582996091597
0.3	1.073702928838884	1.073702928283070	1.073702928214875	1.073702928328326	1.073702928395708
0.4	1.099389726731484	1.099389725976853	1.099389725882953	1.099389726039167	1.099389726131950
0.5	1.125654495329782	1.125654494369377	1.125654494248174	1.125654494449812	1.125654494569575
0.6	1.152508475906471	1.152508474733226	1.152508474583051	1.152508474832888	1.152508474981283
0.7	1.179963043224405	1.179963041831152	1.179963041650263	1.179963041951197	1.179963042129945
0.8	1.208029702753716	1.208029701133186	1.208029700919767	1.208029701274820	1.208029701485716
0.9	1.236720087608148	1.236720085752975	1.236720085505133	1.236720085917455	1.236720086162370
1.0	1.266045955189318	1.266045953092043	1.266045952807807	1.266045953280678	1.266045953561562

x_i	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0
0.1	$2.0099 imes 10^{-6}$	$2.0393 imes 10^{-6}$	$2.1274 imes 10^{-6}$	$1.9511 imes 10^{-6}$	$4.0719 imes 10^{-9}$
0.2	$4.0998 imes10^{-6}$	$4.1606 imes 10^{-6}$	$4.3429 imes 10^{-6}$	$3.9783 imes 10^{-6}$	$8.7768 imes 10^{-9}$
0.3	$6.2716 imes 10^{-6}$	$6.3659 imes 10^{-6}$	$6.6488 imes 10^{-6}$	$6.0831 imes 10^{-6}$	$1.4160 imes 10^{-8}$
0.4	$8.5270 imes 10^{-6}$	$8.6570 imes 10^{-6}$	$9.0471 imes 10^{-6}$	$8.2670 imes 10^{-6}$	$2.0267 imes 10^{-8}$
0.5	$1.0868 imes 10^{-5}$	$1.1036 imes 10^{-5}$	$1.1540 imes 10^{-5}$	$1.0531 imes 10^{-5}$	$2.7148 imes10^{-8}$
0.6	$1.3295 imes10^{-5}$	$1.3504 imes10^{-5}$	$1.4130 imes 10^{-5}$	$1.2878 imes 10^{-5}$	$3.4855 imes 10^{-8}$
0.7	$1.5812 imes10^{-5}$	$1.6063 imes 10^{-5}$	$1.6818 imes 10^{-5}$	$1.5308 imes 10^{-5}$	$4.3441 imes10^{-8}$
0.8	$1.8418 imes 10^{-5}$	$1.8716 imes 10^{-5}$	$1.9608 imes 10^{-5}$	$1.7823 imes 10^{-5}$	$5.2962 imes 10^{-8}$
0.9	$2.1117 imes 10^{-5}$	$2.1463 imes 10^{-5}$	$2.2500 imes 10^{-5}$	$2.0425 imes 10^{-5}$	$6.3478 imes 10^{-8}$
1.0	$2.3909 imes 10^{-5}$	$2.4306 imes 10^{-5}$	$2.5498 imes 10^{-5}$	$2.3114 imes 10^{-5}$	$7.5050 imes 10^{-8}$

Table 7 Abashat oblom 1 using UTM2 and oth othese for h = 0.16.

Table 8. Absolute errors for problem 1 using HTM2 and other methods for h = 0.05.

x_i	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0
0.1	$5.0671 imes 10^{-7}$	$5.1418 imes 10^{-7}$	$5.3659 imes 10^{-7}$	$4.9178 imes 10^{-7}$	$2.3963 imes 10^{-9}$
0.2	$1.0336 imes 10^{-6}$	$1.0491 imes 10^{-6}$	$1.0954 imes 10^{-6}$	$1.0027 imes 10^{-6}$	$5.0014 imes 10^{-9}$
0.3	1.5811×10^{-6}	$1.6051 imes 10^{-6}$	$1.6770 imes 10^{-6}$	1.5332×10^{-6}	$7.8276 imes 10^{-9}$
0.4	$2.1497 imes 10^{-6}$	$2.1827 imes 10^{-6}$	$2.2819 imes 10^{-6}$	$2.0836 imes 10^{-6}$	$1.0887 imes 10^{-8}$
0.5	$2.7397 imes 10^{-6}$	$2.7825 imes 10^{-6}$	$2.9107 imes 10^{-6}$	$2.6543 imes 10^{-6}$	$1.4193 imes 10^{-8}$
0.6	$3.3517 imes 10^{-6}$	$3.4047 imes 10^{-6}$	$3.5638 imes 10^{-6}$	$3.2457 imes 10^{-6}$	$1.7760 imes 10^{-8}$
0.7	3.9860×10^{-6}	$4.0500 imes 10^{-6}$	$4.2419 imes 10^{-6}$	$3.8581 imes 10^{-6}$	$2.1601 imes 10^{-8}$
0.8	$4.6431 imes 10^{-6}$	$4.7187 imes 10^{-6}$	$4.9454 imes 10^{-6}$	$4.4919 imes10^{-6}$	$2.5731 imes 10^{-8}$
0.9	$5.3233 imes 10^{-6}$	$5.4112 imes 10^{-6}$	$5.6750 imes 10^{-6}$	$5.1475 imes 10^{-6}$	$3.0166 imes 10^{-8}$
1.0	$6.0271 imes 10^{-6}$	$6.1281 imes 10^{-6}$	$6.4312 imes 10^{-6}$	$5.8251 imes 10^{-6}$	$3.4921 imes 10^{-8}$

	Table 9. Absolute errors for problem 1 using H1M2 and other methods for $h = 0.025$.							
x_i	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method			
0	0	0	0	0	0			
0.1	1.2721×10^{-7}	$1.2910 imes 10^{-7}$	$1.3475 imes 10^{-7}$	$1.2345 imes 10^{-7}$	$7.7357 imes 10^{-10}$			
0.2	$2.5949 imes 10^{-7}$	$2.6339 imes 10^{-7}$	$2.7507 imes 10^{-7}$	$2.5170 imes 10^{-7}$	$1.6058 imes 10^{-9}$			
0.3	$3.9694 imes 10^{-7}$	$4.0299 imes 10^{-7}$	$4.2112 imes 10^{-7}$	$3.8486 imes 10^{-7}$	$2.4997 imes 10^{-9}$			
0.4	$5.3968 imes 10^{-7}$	$5.4801 imes 10^{-7}$	$5.7301 imes 10^{-7}$	$5.2301 imes 10^{-7}$	$3.4586 imes 10^{-9}$			
0.5	$6.8781 imes 10^{-7}$	$6.9858 imes 10^{-7}$	$7.3090 imes 10^{-7}$	$6.6626 imes 10^{-7}$	$4.4859 imes 10^{-9}$			
0.6	$8.4144 imes10^{-7}$	$8.5480 imes 10^{-7}$	$8.9491 imes 10^{-7}$	$8.1470 imes 10^{-7}$	$5.5851 imes 10^{-9}$			
0.7	$1.0007 imes 10^{-6}$	$1.0168 imes 10^{-6}$	$1.0652 imes 10^{-6}$	$9.6842 imes 10^{-7}$	$6.7597 imes 10^{-9}$			
0.8	$1.1656 imes 10^{-6}$	$1.1847 imes 10^{-6}$	$1.2418 imes 10^{-6}$	$1.1275 imes 10^{-6}$	$8.0137 imes 10^{-9}$			
0.9	$1.3364 imes 10^{-6}$	$1.3585 imes 10^{-6}$	$1.4250 imes 10^{-6}$	$1.2920 imes 10^{-6}$	$9.3510 imes 10^{-9}$			
1.0	1.5131×10^{-6}	$1.5385 imes 10^{-6}$	1.6149×10^{-6}	$1.4621 imes 10^{-6}$	$1.0776 imes 10^{-8}$			

T-1-1-0 Al-. 0.005 . . . 1 .1 1 6 .

Table 10. Absolute errors for problem 1 using HTM3 and other methods for h = 0.1.

x_i	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0
0.1	$1.1279 imes 10^{-8}$	$1.2638 imes 10^{-8}$	$1.0390 imes 10^{-8}$	$9.0954 imes 10^{-9}$
0.2	$2.2977 imes 10^{-8}$	2.5783×10^{-8}	$2.1140 imes 10^{-8}$	$1.8466 imes 10^{-8}$
0.3	$3.5101 imes 10^{-8}$	$3.9448 imes 10^{-8}$	$3.2255 imes 10^{-8}$	$2.8111 imes 10^{-8}$
0.4	$4.7658 imes 10^{-8}$	$5.3643 imes 10^{-8}$	$4.3739 imes 10^{-8}$	$3.8033 imes 10^{-8}$
0.5	$6.0655 imes 10^{-8}$	$6.838 imes 10^{-8}$	$5.5596 imes 10^{-8}$	$4.8230 imes 10^{-8}$
0.6	$7.4098 imes 10^{-8}$	$8.3671 imes 10^{-8}$	$6.7830 imes 10^{-8}$	$5.8703 imes 10^{-8}$
0.7	$8.7995 imes 10^{-8}$	9.9526×10^{-8}	$8.0444 imes 10^{-8}$	$6.9450 imes 10^{-8}$
0.8	$1.0235 imes 10^{-7}$	$1.1596 imes 10^{-7}$	$9.3443 imes10^{-8}$	$8.0470 imes 10^{-8}$
0.9	$1.1717 imes 10^{-7}$	$1.3297 imes 10^{-7}$	$1.0683 imes 10^{-7}$	$9.1761 imes 10^{-8}$
1.0	$1.3247 imes10^{-7}$	$1.5059 imes 10^{-7}$	$1.2060 imes 10^{-7}$	$1.0332 imes10^{-7}$

x_i	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0
0.1	$1.4225 imes 10^{-9}$	$1.5928 imes 10^{-9}$	$1.3101 imes 10^{-9}$	$1.1439 imes 10^{-9}$
0.2	$2.8978 imes 10^{-9}$	$3.2495 imes 10^{-9}$	$2.6655 imes 10^{-9}$	$2.3221 imes 10^{-9}$
0.3	$4.4268 imes 10^{-9}$	$4.9716 imes 10^{-9}$	$4.0669 imes 10^{-9}$	$3.5349 imes 10^{-9}$
0.4	$6.0103 imes 10^{-9}$	$6.7605 imes 10^{-9}$	$5.5147 imes 10^{-9}$	$4.7822 imes 10^{-9}$
0.5	$7.6493 imes 10^{-9}$	$8.6177 imes 10^{-9}$	$7.0000 imes 10^{-9}$	$6.0640 imes 10^{-9}$
0.6	$9.3445 imes10^{-9}$	$1.0544 imes10^{-9}$	$8.5518 imes 10^{-9}$	$7.3803 imes 10^{-9}$
0.7	$1.1097 imes10^{-8}$	$1.2542 imes10^{-8}$	$1.0142 imes10^{-8}$	$8.7309 imes 10^{-9}$
0.8	$1.2907 imes 10^{-8}$	$1.4612 imes10^{-8}$	$1.1781 imes 10^{-8}$	$1.0116 imes10^{-8}$
0.9	$1.4776 imes 10^{-8}$	$1.6756 imes 10^{-8}$	$1.3468 imes10^{-8}$	$1.1534 imes10^{-8}$
1.0	$1.6705 imes 10^{-8}$	$1.8976 imes 10^{-8}$	$1.5204 imes10^{-8}$	$1.2986 imes 10^{-8}$

Table 11. Absolute errors for problem 1 using HTM3 and other methods for h = 0.05.

Table 12. Absolute errors for problem 1 using HTM3 and other methods for h = 0.025.

x_i	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0
0.1	$1.7861 imes 10^{-10}$	$1.9992 imes 10^{-10}$	$1.6447 imes 10^{-10}$	$1.4342 imes10^{-10}$
0.2	$3.6385 imes 10^{-10}$	$4.0786 imes 10^{-10}$	$3.3463 imes 10^{-10}$	$2.9114 imes 10^{-10}$
0.3	$5.5581 imes 10^{-10}$	$6.2401 imes 10^{-10}$	$5.1056 imes 10^{-10}$	$4.4318 imes 10^{-10}$
0.4	$7.5463 imes 10^{-10}$	$8.4853 imes 10^{-10}$	$6.9232 imes 10^{-10}$	$5.9953 imes 10^{-10}$
0.5	$9.6041 imes 10^{-10}$	$1.0816 imes 10^{-9}$	$8.7997 imes 10^{-10}$	$7.6021 imes 10^{-10}$
0.6	$1.1732 imes 10^{-9}$	$1.3234 imes 10^{-9}$	$1.0736 imes 10^{-9}$	$9.2519 imes 10^{-10}$
0.7	$1.3933 imes 10^{-9}$	1.5741×10^{-9}	$1.2732 imes 10^{-9}$	$1.0945 imes 10^{-9}$
0.8	$1.6205 imes 10^{-9}$	$1.8339 imes 10^{-9}$	$1.4789 imes 10^{-9}$	1.2680×10^{-9}
0.9	$1.8552 imes 10^{-9}$	$2.1030 imes 10^{-9}$	$1.6907 imes 10^{-9}$	$1.4458 imes 10^{-9}$
1.0	$2.0973 imes 10^{-9}$	$2.3815 imes 10^{-9}$	$1.9086 imes 10^{-9}$	$1.6278 imes 10^{-9}$

Figure 3. Comparison of HTM2 method with relevant methods for problem 1 at h = 0.1.

Figure 4. Comparison of HTM2 method with relevant methods for problem 1 at h = 0.05.

Figure 5. Comparison of HTM2 method with relevant methods for problem 1 at h = 0.025.

Figure 6. Comparison of HTM3 method with relevant methods for problem 1 at h = 0.1.

Figure 7. Comparison of HTM3 method with relevant methods for problem 1 at h = 0.05.

Figure 8. Comparison of HTM3 method with relevant methods for problem 1 at h = 0.025.

Problem 2. Consider the IVP $y' = 80 - \frac{45y}{(2000-5x)}$, y(0) = 100, with the exact solution

$$y = 2(2000 - 5x) - \frac{3900}{(2000)^9}(2000 - 5x)^9, \ 0 \le x \le 1$$

Tables 13–18 provide a numerical comparison of the exact solutions and approximate solutions of the proposed methods, HTM2 and HTM3, with other related methods of the same order of convergence using different step sizes h = 0.1, h = 0.05 and h = 0.025, respectively. In addition, the numerical comparison of the absolute errors of the proposed methods, HTM2 and HTM3, and other relevant methods of the same order of convergence is presented in Tables 19–24. Furthermore, Figures 9–14 show the graphical representations of these results, which provide additional support to the numerical results.

Figure 9. Comparison of HTM2 method with relevant methods for problem 2 at h = 0.1.

Figure 10. Comparison of HTM2 method with relevant methods for problem 2 at h = 0.05.

x _i	Exact Solution	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0	0
0.1	$1.077662301168311 \times 10^{2}$	$1.077662235372562 \times 10^{2}$	$1.077662233543790 \times 10^{2}$	$1.077662228057014 \times 10^{2}$	$1.077662239029879 \times 10^{2}$	$1.077662302115619 \times 10^{2}$
0.2	$1.155149409193027\!\times\!10^2$	$1.155149277848099\!\times\!10^2$	$1.155149274197407\!\times\!10^2$	$1.155149263244417\!\times\!10^2$	$1.155149285149027\!\times\!10^2$	$1.155149411084106{\times}10^2$
0.3	$1.232461630508842 \times 10^{2}$	$1.232461433860695\!\times\!10^2$	$1.232461428394920 \times 10^{2}$	$1.232461411996225 \times 10^{2}$	$1.232461444791564 \times 10^{2}$	$1.232461633340158 \times 10^{2}$
0.4	$1.309599271090915 \times 10^{2}$	$1.309599009384900 \times 10^{2}$	$1.309599002110860 \times 10^{2}$	$1.309598980286920 \times 10^2$	$1.309599023932070 \times 10^{2}$	$1.309599274858934 \times 10^{2}$
0.5	$1.386562636455415 \times 10^{2}$	$1.386562309936298 \times 10^{2}$	$1.386562300860797 \times 10^{2}$	$1.386562273632022 \times 10^{2}$	$1.386562328086166 \times 10^2$	$1.386562641156632 \times 10^{2}$
0.6	$1.463352031660152 \times 10^2$	$1.463351640572091\!\times\!10^2$	$1.463351629701914 \times 10^{2}$	$1.463351597088663 \times 10^2$	$1.463351662311085 \times 10^2$	$1.463352037291060 \times 10^{2}$
0.7	$1.539967761305115 \times 10^{2}$	$1.539967305891663 \times 10^{2}$	$1.539967293233580 \times 10^{2}$	$1.539967255256163 \times 10^{2}$	$1.539967331206245 \times 10^{2}$	$1.539967767862210 \times 10^{2}$
0.8	$1.616410129533037 \times 10^{2}$	$1.616409610037156 \times 10^2$	$1.616409595597920 \times 10^2$	$1.616409552276596 \times 10^2$	$1.616409638913823 \times 10^2$	$1.616410137012834 \times 10^{2}$
0.9	$1.692679440029992 \times 10^{2}$	$1.692678856694046 imes 10^2$	$1.692678840480392 \times 10^{2}$	$1.692678791835372 \times 10^{2}$	$1.692678889119325 \times 10^2$	$1.692679448429009 \times 10^{2}$
1.0	$1.768775996025961\!\times\!10^2$	$1.768775349091707 \times 10^{2}$	$1.768775331110355 \times 10^{2}$	$1.768775277161798 \times 10^{2}$	$1.768775385052160 \times 10^{2}$	$1.768776005340717 \times 10^{2}$

Table 13. Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 (*h* = 0.1).

Table 14. Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 (h = 0.05).

x_i	Exact Solution	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0	0
0.1	$1.077662301168311 \times 10^{2}$	$1.077662284732696 \times 10^{2}$	$1.077662284276013 \times 10^{2}$	$1.077662282905904 \times 10^{2}$	$1.077662285646036 \times 10^2$	$1.077662301400763 \times 10^{2}$
0.2	$1.155149409193027 \times 10^{2}$	$1.155149376383397\!\times\!10^2$	$1.155149375471741\!\times\!10^2$	$1.155149372736659 \times 10^{2}$	$1.155149378206653 \times 10^2$	$1.155149409657066 \times 10^{2}$
0.3	$1.232461630508842 \times 10^{2}$	$1.232461581386640 \times 10^{2}$	$1.232461580021718\!\times\!10^2$	$1.232461575926784 \times 10^{2}$	$1.232461584116397\!\times\!10^2$	$1.232461631203599 \times 10^{2}$
0.4	$1.309599271090915\!\times\!10^2$	$1.309599205717424\!\times\!10^2$	$1.309599203900941\!\times\!10^2$	$1.309599198451264\!\times\!10^2$	$1.309599209350277\!\times\!10^2$	$1.309599272015514{\times}10^2$
0.5	$1.386562636455415 \times 10^{2}$	$1.386562554891789 \times 10^{2}$	$1.386562552625442 \times 10^2$	$1.386562545826120 \times 10^2$	$1.386562559424340 \times 10^{2}$	$1.386562637609003 \times 10^{2}$
0.6	$1.463352031660152 \times 10^2$	$1.463351933967384 \times 10^{2}$	$1.463351931252869 \times 10^2$	$1.463351923108986 \times 10^2$	$1.463351939396244 \times 10^2$	$1.463352033041868 \times 10^2$
0.7	$1.539967761305115 \times 10^{2}$	$1.539967647544044 \times 10^{2}$	$1.539967644383051\!\times\!10^2$	$1.539967634899678 \times 10^{2}$	$1.539967653865831 \times 10^{2}$	$1.539967762914094 \times 10^{2}$
0.8	$1.616410129533037 \times 10^{2}$	$1.616409999764360 \times 10^{2}$	$1.616409996158576 \times 10^2$	$1.616409985340773 \times 10^2$	$1.616410006975703 \times 10^{2}$	$1.616410131368426 \times 10^{2}$
0.9	$1.692679440029992 \times 10^2$	$1.692679294314255 \times 10^{2}$	$1.692679290265361 \times 10^2$	$1.692679278118176 \times 10^2$	$1.692679302411788 \times 10^{2}$	$1.692679442090935 \times 10^{2}$
1.0	$1.768775996025961\!\times\!10^2$	$1.768775834423550\!\times\!10^2$	$1.768775829933226\!\times\!10^2$	$1.768775816461693\!\times\!10^2$	$1.768775843403918\!\times\!10^2$	$1.768775998311597\!\times\!10^2$

Table 15. Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 ($h = 0.025$).	

x_i	Exact Solution	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0	0
0.1	$1.077662301168311 \times 10^{2}$	$1.077662297061071 \times 10^{2}$	$1.077662296946963 \times 10^2$	$1.077662296604634 \times 10^2$	$1.768772168318756\!\times\!10^2$	$1.077662301225877 \times 10^{2}$
0.2	$1.155149409193027\!\times\!10^2$	$1.155149400993944\!\times\!10^2$	$1.155149400766157\!\times\!10^2$	$1.155149400082781\!\times\!10^2$	$2.520298931317081\!\times\!10^2$	$1.155149409307948\!\times\!10^2$
0.3	$1.232461630508842 \times 10^{2}$	$1.232461618233270 \times 10^{2}$	$1.232461617892230 \times 10^{2}$	$1.232461616869088\!\times\!10^2$	$3.254880571751630 \times 10^{2}$	$1.232461630680901 \times 10^{2}$
0.4	$1.309599271090915 \times 10^{2}$	$1.309599254754162 \times 10^{2}$	$1.309599254300294 \times 10^{2}$	$1.309599252938663 \times 10^2$	$3.972812879500018 \times 10^{2}$	$1.309599271319889 \times 10^{2}$
0.5	$1.386562636455415 \times 10^{2}$	$1.386562616072772 \times 10^{2}$	$1.386562615506501\!\times\!10^2$	$1.386562613807653 \times 10^2$	$4.674387207720501\!\times\!10^2$	$1.386562636741100 \times 10^{2}$
0.6	$1.463352031660152 \times 10^{2}$	$1.463352007246861 \times 10^2$	$1.463352006568610 \times 10^2$	$1.463352004533817 \times 10^{2}$	$5.359890528448672 \times 10^2$	$1.463352032002334 \times 10^{2}$
0.7	$1.539967761305115 \times 10^{2}$	$1.539967732876376 \times 10^{2}$	$1.539967732086569 \times 10^{2}$	$1.539967729717097 \times 10^{2}$	$6.029605487635397 \times 10^{2}$	$1.539967761703577 \times 10^{2}$
0.8	$1.616410129533037 \times 10^{2}$	$1.616410097104022 \times 10^{2}$	$1.616410096203079\!\times\!10^2$	$1.616410093500192\!\times\!10^2$	$6.683810459630230 \times 10^2$	$1.616410129987570\!\times\!10^2$
0.9	$1.692679440029992 \times 10^{2}$	$1.692679403615832 \times 10^{2}$	$1.692679402604174\!\times\!10^2$	$1.692679399569134\!\times\!10^2$	$7.322779601114496\!\times\!10^2$	$1.692679440540384 \times 10^{2}$
1.0	$1.768775996025961\!\times\!10^2$	$1.768775955641741\!\times\!10^2$	$1.768775954519786\!\times\!10^2$	$1.768775951153851\!\times\!10^2$	$7.946782904488222\!\times\!10^2$	$1.768775996591993{\times}10^2$

Table 16. Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (*h* = 0.1).

x_i	Exact Solution	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0	0
0.1	$1.077662301168311 \times 10^{2}$	$1.077662301205557\!\times\!10^2$	$1.077662301209444 \times 10^{2}$	$1.077662301201518\!\times\!10^2$	$1.077662301195728 \times 10^{2}$
0.2	$1.155149409193027 \times 10^{2}$	$1.155149409267394 \times 10^{2}$	$1.155149409275154 \times 10^{2}$	$1.155149409259330 \times 10^{2}$	$1.155149409247769 \times 10^{2}$
0.3	$1.232461630508842 \times 10^{2}$	$1.232461630620198 \times 10^{2}$	$1.232461630631818 \times 10^{2}$	$1.232461630608124 \times 10^{2}$	$1.232461630590812 \times 10^{2}$
0.4	$1.309599271090915 \times 10^{2}$	$1.309599271239121\!\times\!10^2$	$1.309599271254587 \times 10^{2}$	$1.309599271223051\!\times\!10^2$	$1.309599271200008 \times 10^{2}$
0.5	$1.386562636455415 \times 10^{2}$	$1.386562636640352 \times 10^{2}$	$1.386562636659651 \times 10^2$	$1.386562636620299 \times 10^{2}$	$1.386562636591547 \times 10^{2}$
0.6	$1.463352031660152 \times 10^{2}$	$1.463352031881691\!\times\!10^2$	$1.463352031904810 \times 10^{2}$	$1.463352031857670 \times 10^{2}$	$1.463352031823227 \times 10^{2}$
0.7	$1.539967761305115 \times 10^{2}$	$1.539967761563123 \times 10^{2}$	$1.539967761590047 \times 10^{2}$	$1.539967761535147 \times 10^{2}$	$1.539967761495035 \times 10^{2}$
0.8	$1.616410129533037 \times 10^{2}$	$1.616410129827389 \times 10^{2}$	$1.616410129858106\!\times\!10^2$	$1.616410129795472 \times 10^{2}$	$1.616410129749710 \times 10^{2}$
0.9	$1.692679440029992 \times 10^{2}$	$1.692679440360560\!\times\!10^2$	$1.692679440395056\!\times\!10^2$	$1.692679440324717\!\times\!10^2$	$1.692679440273324 \times 10^{2}$
1.0	$1.768775996025961\!\times\!10^2$	$1.768775996392609\!\times\!10^2$	$1.768775996430871\!\times\!10^2$	$1.768775996352853\!\times\!10^2$	$1.768775996295850\!\times\!10^2$

	Table 177 Companyon	or mary dear and repproximate portatio	no for frittle and field with freuk	<i>as</i> in Problem 2 (<i>n</i> 0.00).	
<i>xi</i>	Exact Solution	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0	0
0.1	1.077662301168311	$\times 10^2$ 1.077662301172961 $\times 10^2$	$1.077662301173447 \times 10^{2}$	$1.077662301172457 \times 10^{2}$	$1.077662301171734 \times 10^{2}$
0.2	2 1.155149409193027	$\times 10^2$ 1.155149409202316 $\times 10^2$	$1.155149409203285 \times 10^{2}$	$1.155149409201309 \times 10^{2}$	$1.155149409199866\!\times\!10^2$
0.3	3 1.232461630508842	$\times 10^2$ 1.232461630522752 $\times 10^2$	$1.232461630524203 \times 10^{2}$	$1.232461630521245 \times 10^{2}$	$1.232461630519083 \times 10^{2}$
0.4	1.309599271090915	$\times 10^2$ 1.309599271109421 $\times 10^2$	$1.309599271111352 \times 10^{2}$	$1.309599271107414 \times 10^{2}$	$1.309599271104537 \times 10^{2}$
0.5	5 1.386562636455415	$\times 10^2$ 1.386562636478511 $\times 10^2$	$1.386562636480920 \times 10^{2}$	$1.386562636476007 \times 10^{2}$	$1.386562636472416 \times 10^{2}$
0.6	5 1.463352031660152	$\times 10^2$ 1.463352031687821 $\times 10^2$	$1.463352031690708 \times 10^{2}$	$1.463352031684822 \times 10^2$	$1.463352031680521\!\times\!10^2$
0.5	1.539967761305115	$\times 10^2$ 1.539967761337337 $\times 10^2$	$1.539967761340699 \times 10^{2}$	$1.539967761333844 \times 10^{2}$	$1.539967761328835 \times 10^{2}$
0.8	3 1.616410129533037	$\times 10^2$ 1.616410129569800 $\times 10^2$	$1.616410129573635 \times 10^{2}$	$1.616410129565815\!\times\!10^2$	$1.616410129560100\!\times\!10^2$
0.9	0 1.692679440029992	$\times 10^2$ 1.692679440071280 $\times 10^2$	$1.692679440075588 \times 10^{2}$	$1.692679440066805 \times 10^2$	$1.692679440060387 \times 10^{2}$
1.0	1.768775996025961	$\times 10^2$ 1.768775996071750 $\times 10^2$	$1.768775996076527 \times 10^{2}$	$1.768775996066786 \times 10^{2}$	$1.768775996059668 \times 10^{2}$

Table 17. Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (*h* = 0.05).

Table 18. Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (*h* = 0.025).

x_i	Exact Solution	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0	0
0.1	$1.077662301168311\!\times\!10^2$	$1.077662301168891 \times 10^{2}$	$1.077662301168951 \times 10^{2}$	$1.077662301168828 \times 10^2$	$1.077662301168737 \times 10^{2}$
0.2	$1.155149409193027 \times 10^{2}$	$1.155149409194189 \times 10^{2}$	$1.155149409194310 \times 10^{2}$	$1.155149409194063 \times 10^{2}$	$1.155149409193883 \times 10^{2}$
0.3	$1.232461630508842 \times 10^{2}$	$1.232461630510583\!\times\!10^2$	$1.232461630510764 \times 10^{2}$	$1.232461630510395 \times 10^{2}$	$1.232461630510124 \times 10^{2}$
0.4	$1.309599271090915\!\times\!10^2$	$1.309599271093224 \times 10^{2}$	$1.309599271093465 \times 10^{2}$	$1.309599271092973 \times 10^{2}$	$1.309599271092613\!\times\!10^2$
0.5	$1.386562636455415 \times 10^{2}$	$1.386562636458300 \times 10^{2}$	$1.386562636458600 \times 10^{2}$	$1.386562636457987 \times 10^{2}$	$1.386562636457538 \times 10^{2}$
0.6	$1.463352031660152 \times 10^{2}$	$1.463352031663611 \times 10^2$	$1.463352031663971 \times 10^2$	$1.463352031663236 \times 10^2$	$1.463352031662698 \times 10^2$
0.7	$1.539967761305115 \times 10^{2}$	$1.539967761309141\!\times\!10^2$	$1.539967761309561 \times 10^2$	$1.539967761308705 \times 10^{2}$	$1.539967761308079 \times 10^{2}$
0.8	$1.616410129533037 \times 10^{2}$	$1.616410129537632 \times 10^2$	$1.616410129538111\!\times\!10^2$	$1.616410129537134 \times 10^{2}$	$1.616410129536420 \times 10^{2}$
0.9	$1.692679440029992 \times 10^{2}$	$1.692679440035155\!\times\!10^2$	$1.692679440035693 \times 10^2$	$1.692679440034596 \times 10^{2}$	$1.692679440033793 \times 10^{2}$
1.0	$1.768775996025961\!\times\!10^2$	$1.768775996031681\!\times\!10^2$	$1.768775996032277\!\times\!10^2$	$1.768775996031060\!\times\!10^2$	$1.768775996030170\!\times\!10^2$

x_i	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0
0.1	$6.5796 imes 10^{-6}$	$6.7625 imes 10^{-6}$	$7.3111 imes 10^{-6}$	$6.2138 imes 10^{-6}$	$9.4731 imes 10^{-8}$
0.2	$1.3134 imes10^{-5}$	$1.3500 imes 10^{-5}$	$1.4595 imes 10^{-5}$	$1.2404 imes 10^{-5}$	$1.8911 imes 10^{-7}$
0.3	$1.9665 imes 10^{-5}$	$2.0211 imes 10^{-5}$	$2.1851 imes 10^{-5}$	$1.8572 imes 10^{-5}$	$2.8313 imes 10^{-7}$
0.4	$2.6171 imes 10^{-5}$	$2.6898 imes 10^{-5}$	$2.9080 imes 10^{-5}$	$2.4716 imes 10^{-5}$	$3.7680 imes 10^{-7}$
0.5	$3.2652 imes 10^{-5}$	$3.3559 imes 10^{-5}$	$3.6282 imes 10^{-5}$	$3.0837 imes 10^{-5}$	$4.7012 imes 10^{-7}$
0.6	$3.9109 imes 10^{-5}$	$4.0196 imes10^{-5}$	$4.3457 imes 10^{-5}$	$3.6935 imes 10^{-5}$	$5.6309 imes 10^{-7}$
0.7	$4.5541 imes 10^{-5}$	$4.6807 imes10^{-5}$	$5.0605 imes 10^{-5}$	$4.3010 imes 10^{-5}$	$6.5571 imes 10^{-7}$
0.8	$5.1950 imes 10^{-5}$	$5.3394 imes10^{-5}$	$5.7726 imes 10^{-5}$	$4.9062 imes 10^{-5}$	$7.4798 imes 10^{-7}$
0.9	$5.8334 imes10^{-5}$	$5.9955 imes 10^{-5}$	$6.4819 imes10^{-5}$	$5.5091 imes 10^{-5}$	$8.3990 imes 10^{-7}$
1.0	$6.4693 imes 10^{-5}$	$6.6492 imes 10^{-5}$	$7.1886 imes 10^{-5}$	$6.1097 imes 10^{-5}$	$9.3148 imes 10^{-7}$

Table 10 Abashut ~ - 1- 1 -. the de fam h 0.1

Table 20. Absolute errors for problem 2 using HTM2 and other methods for h = 0.05.

x_i	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0
0.1	$1.6436 imes 10^{-6}$	$1.6892 imes 10^{-6}$	$1.8262 imes 10^{-6}$	1.5522×10^{-6}	$2.3245 imes 10^{-8}$
0.2	$3.2810 imes 10^{-6}$	3.3721×10^{-6}	$3.6456 imes 10^{-6}$	$3.0986 imes 10^{-6}$	$4.6404 imes 10^{-8}$
0.3	$4.9122 imes 10^{-6}$	$5.0487 imes 10^{-6}$	$5.4582 imes 10^{-6}$	$4.6392 imes 10^{-6}$	$6.9476 imes 10^{-8}$
0.4	$6.5373 imes 10^{-6}$	$6.7190 imes 10^{-6}$	$7.2640 imes 10^{-6}$	$6.1741 imes 10^{-6}$	$9.2460 imes 10^{-8}$
0.5	$8.1564 imes 10^{-6}$	$8.3830 imes 10^{-6}$	$9.0629 imes 10^{-6}$	$7.7031 imes 10^{-6}$	$1.1536 imes 10^{-7}$
0.6	$9.7693 imes 10^{-6}$	$1.0041 imes 10^{-5}$	$1.0855 imes 10^{-5}$	$9.2264 imes 10^{-6}$	$1.3817 imes 10^{-7}$
0.7	$1.1376 imes 10^{-5}$	$1.1692 imes 10^{-5}$	$1.2641 imes 10^{-5}$	$1.0744 imes 10^{-5}$	$1.6090 imes 10^{-7}$
0.8	$1.2977 imes 10^{-5}$	$1.3337 imes 10^{-5}$	$1.4419 imes 10^{-5}$	1.2256×10^{-5}	$1.8354 imes 10^{-7}$
0.9	$1.4572 imes 10^{-5}$	$1.4976 imes 10^{-5}$	$1.6191 imes 10^{-5}$	1.3762×10^{-5}	$2.0609 imes 10^{-7}$
1.0	$1.6160 imes 10^{-5}$	$1.6609 imes 10^{-5}$	$1.7956 imes 10^{-5}$	$1.5262 imes 10^{-5}$	$2.2856 imes 10^{-7}$

x_i	RK2 Method	Ralston's Method	Heun's Method	Midpoint Method	HTM2 Method
0	0	0	0	0	0
0.1	$4.1072 imes 10^{-7}$	$4.2213 imes 10^{-7}$	$4.5637 imes 10^{-7}$	$3.8790 imes 10^{-7}$	5.7565×10^{-9}
0.2	$8.1991 imes 10^{-7}$	$8.4269 imes 10^{-7}$	$9.1102 imes 10^{-7}$	$7.7435 imes 10^{-7}$	$1.1492 imes10^{-8}$
0.3	$1.2276 imes 10^{-6}$	$1.2617 imes 10^{-6}$	$1.3640 imes 10^{-6}$	$1.1594 imes 10^{-6}$	$1.7206 imes 10^{-8}$
0.4	$1.6337 imes 10^{-6}$	$1.6791 imes 10^{-6}$	$1.8152 imes 10^{-6}$	$1.5429 imes 10^{-6}$	$2.2897 imes 10^{-8}$
0.5	$2.0383 imes 10^{-6}$	$2.0949 imes 10^{-6}$	$2.2648 imes 10^{-6}$	$1.9250 imes 10^{-6}$	$2.8569 imes 10^{-8}$
0.6	$2.4413 imes 10^{-6}$	$2.5092 imes 10^{-6}$	$2.7126 imes 10^{-6}$	$2.3057 imes 10^{-6}$	$3.4218 imes 10^{-8}$
0.7	$2.8429 imes 10^{-6}$	$2.9219 imes 10^{-6}$	$3.1588 imes 10^{-6}$	$2.6849 imes 10^{-6}$	$3.9846 imes 10^{-8}$
0.8	$3.2429 imes 10^{-6}$	$3.3330 imes 10^{-6}$	$3.6033 imes 10^{-6}$	3.0627×10^{-6}	$4.5453 imes 10^{-8}$
0.9	$3.6414 imes 10^{-6}$	$3.7426 imes 10^{-6}$	$4.0461 imes 10^{-6}$	$3.4391 imes 10^{-6}$	$5.1039 imes 10^{-8}$
1.0	$4.0384 imes10^{-6}$	$4.1506 imes 10^{-6}$	$4.4872 imes 10^{-6}$	$3.8140 imes 10^{-6}$	$5.6603 imes 10^{-8}$

1 (. 1

Table 22. Absolute errors for problem 2 using HTM3 and other methods for h = 0.1.

x_i	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0
0.1	$3.7246 imes 10^{-9}$	$4.1133 imes 10^{-9}$	$3.3207 imes 10^{-9}$	$2.7416 imes 10^{-9}$
0.2	$7.4366 imes 10^{-9}$	$8.2127 imes 10^{-9}$	$6.6303 imes 10^{-9}$	$5.4741 imes 10^{-9}$
0.3	$1.1136 imes 10^{-8}$	$1.2298 imes 10^{-8}$	$9.9282 imes 10^{-9}$	$8.1970 imes 10^{-9}$
0.4	$1.4821 imes 10^{-8}$	$1.6367 imes 10^{-8}$	$1.3214 imes 10^{-8}$	$1.0909 imes 10^{-8}$
0.5	$1.8494 imes 10^{-8}$	$2.0424 imes10^{-8}$	$1.6488 imes 10^{-8}$	$1.3613 imes 10^{-8}$
0.6	$2.2154 imes 10^{-8}$	$2.4466 imes 10^{-8}$	$1.9752 imes 10^{-8}$	$1.6308 imes 10^{-8}$
0.7	$2.5801 imes 10^{-8}$	$2.8493 imes 10^{-8}$	$2.3003 imes 10^{-8}$	$1.8992 imes 10^{-8}$
0.8	$2.9435 imes 10^{-8}$	$3.2507 imes 10^{-8}$	$2.6243 imes 10^{-8}$	$2.1667 imes 10^{-8}$
0.9	$3.3057 imes 10^{-8}$	$3.6506 imes 10^{-8}$	$2.9472 imes10^{-8}$	$2.4333 imes 10^{-8}$
1.0	$3.6665 imes 10^{-8}$	$4.0491 imes10^{-8}$	$3.2689 imes 10^{-8}$	$2.6989 imes 10^{-8}$

x_i	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0
0.1	$4.6501 imes 10^{-10}$	$5.1354 imes 10^{-10}$	$4.1457 imes 10^{-10}$	$3.4225 imes 10^{-10}$
0.2	$9.2889 imes 10^{-10}$	$1.0258 imes 10^{-9}$	$8.2821 imes 10^{-10}$	$6.8384 imes 10^{-10}$
0.3	$1.3910 imes 10^{-9}$	$1.5361 imes 10^{-9}$	$1.2403 imes 10^{-9}$	$1.0241 imes 10^{-9}$
0.4	$1.8506 imes 10^{-9}$	$2.0437 imes 10^{-9}$	$1.6499 imes 10^{-9}$	$1.3622 imes 10^{-9}$
0.5	$2.3096 imes 10^{-9}$	$2.5506 imes 10^{-9}$	$2.0592 imes 10^{-9}$	$1.7002 imes 10^{-9}$
0.6	$2.7670 imes 10^{-9}$	$3.0556 imes 10^{-9}$	$2.4671 imes 10^{-9}$	$2.0370 imes 10^{-9}$
0.7	$3.2222 imes 10^{-9}$	$3.5584 imes 10^{-9}$	$2.8729 imes 10^{-9}$	$2.3720 imes 10^{-9}$
0.8	$3.6763 imes 10^{-9}$	$4.0598 imes 10^{-9}$	$3.2778 imes 10^{-9}$	$2.7063 imes 10^{-9}$
0.9	$4.1288 imes 10^{-9}$	$4.5595 imes 10^{-9}$	$3.6813 imes 10^{-9}$	$3.0395 imes 10^{-9}$
1.0	$4.5789 imes 10^{-9}$	5.0566×10^{-9}	$4.0826 imes10^{-9}$	$3.3707 imes 10^{-9}$

Table 24. Absolute errors for problem 2 using HTM3 and other methods for h = 0.025.

x_i	Ralston's Method	RK3 Method	Heun's Method	HTM3 Method
0	0	0	0	0
0.1	5.7938×10^{-11}	6.4006×10^{-11}	5.1628×10^{-11}	$4.2590 imes 10^{-11}$
0.2	$1.1617 imes 10^{-10}$	$1.2828 imes 10^{-10}$	$1.0360 imes 10^{-10}$	8.5564×10^{-11}
0.3	$1.7408 imes 10^{-10}$	$1.9220 imes 10^{-10}$	$1.5525 imes 10^{-10}$	$1.2824 imes 10^{-10}$
0.4	$2.3087 imes 10^{-10}$	$2.5497 imes 10^{-10}$	$2.0580 imes 10^{-10}$	$1.6982 imes 10^{-10}$
0.5	$2.8851 imes 10^{-10}$	$3.1858 imes 10^{-10}$	$2.5724 imes 10^{-10}$	$2.1231 imes 10^{-10}$
0.6	$3.4589 imes 10^{-10}$	$3.8193 imes 10^{-10}$	$3.0846 imes 10^{-10}$	$2.5466 imes 10^{-10}$
0.7	$4.0254 imes 10^{-10}$	$4.4454 imes10^{-10}$	$3.5894 imes 10^{-10}$	$2.9632 imes 10^{-10}$
0.8	$4.5941 imes 10^{-10}$	$5.0736 imes 10^{-10}$	$4.0967 imes 10^{-10}$	$3.3825 imes 10^{-10}$
0.9	$5.1622 imes 10^{-10}$	$5.7003 imes 10^{-10}$	$4.6035 imes 10^{-10}$	$3.8011 imes 10^{-10}$
1.0	$5.7196 imes 10^{-10}$	$6.3162 imes 10^{-10}$	$5.0994 imes 10^{-10}$	$4.2095 imes 10^{-10}$

Figure 11. Comparison of HTM2 method with relevant methods for problem 2 at h = 0.025.

Figure 12. Comparison of HTM3 method with relevant methods for problem 2 at h = 0.1.

Figure 13. Comparison of HTM3 method with relevant methods for problem 2 at h = 0.05.

Figure 14. Comparison of HTM3 method with relevant methods for problem 2 at h = 0.025.

6. Discussion and Conclusions

In this section, we discuss and conclude the two new methods for solving first-order ordinary differential equations presented in the previous section: the second-order HTM2 method and the third-order HTM3 method. Both methods were based on Newton's theorem in calculus, Taylor's series expansion, and the quadrature integration formula using hybrid functions. To demonstrate the competency of these new methods, we used two examples. It is worth mentioning that the numerical results, tables, and figures were obtained using the software MATLAB (R2022a) on a specific computer machine with the following specifications: Windows 11 Pro has an 11th Gen Intel(R) Core (TM) i7-11800H @ 2.30 GHz processor and 16.0 GB RAM storage (15.7 GB usable).

In the comparison of numerical results obtained from solving the two initial value problems, Problem 1 and Problem 2, it was observed that the HTM2 method outperformed its corresponding methods in terms of proximity to the analytical solution for various step sizes (h = 0.1, h = 0.05, and h = 0.025). This is evident from the comparison of the approximate and analytical solutions presented in Tables 1–3 and Tables 7–9 for Problem 1. Similarly, the HTM3 method was found to be more efficient than its counterparts in terms of closeness to the exact solution, as demonstrated in Tables 13–15 and Tables 19–21 for Problem 2, for the same step sizes. These results indicate that the proposed methods, HTM2 and HTM3, are highly competent in solving the initial value problems.

The results obtained from solving the two initial value problems, Problem 1 and Problem 2, as shown in Tables 4–6 and Tables 10–12, respectively, demonstrate the advantage of the HTM2 method over other relevant methods in terms of lower absolute error for different step sizes (h = 0.1, h = 0.05, and h = 0.025). This is further validated by the plots in Figures 3–5 and Figures 6–8, which show a clear preference of the HTM2 method over other relevant methods. Additionally, the numerical results in Tables 16–18 and Tables 22–24, and the plots in Figures 9–11 and Figures 12–14, demonstrate the superiority of the HTM3 method over Ralston's method, RK3 method, and Heun's method. It is also observed that as the step size decreases, the error approaches zero, indicating that reducing the step size leads to greater accuracy. The stability region of the new second-order HTM2 method, as shown in Figure 1, is wider than the stability regions of other relevant methods, while the stability region of the new third-order HTM3 method, as indicated in Figure 2, is the same as that of other corresponding methods.

We conclude the new methods presented in the paper are more efficient and accurate for solving IVPs in ordinary differential equations compared to other known and relevant methods. In addition, these methods will provide a new computational tool for solving IVPs in ordinary differential equations and can be applied in various fields of science and engineering. Further research can be conducted to improve these methods and apply them to more complex problems.

Author Contributions: Conceptualization, Z.J.K. and N.Y.A.-H.; formal analysis, Z.J.K. and N.Y.A.-H.; investigation, Z.J.K. and N.Y.A.-H.; methodology, Z.J.K. and N.Y.A.-H.; software, Z.J.K. and N.Y.A.-H.; supervision, N.Y.A.-H.; writing—original draft, Z.J.K.; writing—review and editing, N.Y.A.-H. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received no direct funding for this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers: With Software and Programming Applications, 4th ed.; McGraw-Hill: New York, NY, USA, 2002.
- 2. Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Brooks/Cole Publishing Company: Salt Lake City, UT, USA, 2011.
- Olaniyan, A.S.; Awe, S.G.; Akanbi, M.A. Improved Third-Order Runge- Kutta Methods Based on the Convex Combination. J. Math. Comput. Sci. 2021, 3, 410–1413.
- 4. Akanbi, M.A.; Okunuga, S.A.; Sofoluwe, A.B. Error Bounds for 2-Stage Multiderivative Explicit Runge-Kutta Methods. *Adv. Model. Anal.* 2008, 45, 57–72.
- 5. Ehiemua, M.E.; Agbeboh, G.U.; Ataman, J.O. On the derivation and implementation of a four-stage harmonic Runge-Kutta scheme for solving initial value problems in ordinary differential equations. *Abacus (Math. Sci. Ser.)* **2020**, *47*, 311–318.
- 6. Evans, D.J. New Runge-Kutta Methods for Initial Value Problems. *Appl. Math. Lett.* **1989**, *2*, 25–28. [CrossRef]
- Kamruzzaman, M.; Nath, M.C. A Comparative Study on Numerical Solution of Initial Value Problem by Using Euler's Method, Modified Euler's Method, and Runge-Kutta Method. J. Comput. Math. Sci. 2018, 9, 493–500.
- 8. Muhammad, I. A Weighted Fourth-Order Runge-Kutta Method Based on Contra-Harmonic Mean. J. Math. Comput. Sci. 2016, 6, 989–1001.
- Olaniyan, A.S.; Bakre, O.F.; Akanbi, M.A. A 2-Stage Implicit Runge-Kutta Method Based on Heronian Mean for Solving Ordinary Differential Equations. *Pure Appl. Math. J.* 2020, *9*, 84–90. [CrossRef]
- 10. Sharmila, R.G.; Suvitha, S.; Sunithy, M.S. A Third Order Runge-Kutta Method Based on a Linear Combination of Arithmetic Mean, Geometric Mean, and Centroidal Mean for First Order Differential Equation. *Adv. Appl. Math.* **2020**, 2261, 1–8.
- 11. Aziz, I.; Siraj-ul-Islam; Khan, W. Quadrature Rules for Numerical Integration Based on Haar Wavelets and Hybrid Functions. *Comput. Math. Appl.* **2011**, *61*, 2770–2781. [CrossRef]
- Ali, A.H.; Pales, Z.S. Taylor-type Expansions in Terms of Exponential Polynomials. *Math. Inequalities Appl.* 2022, 25, 1123–1141. [CrossRef]
- 13. Ahmad, N.; Charan, S. A Comparative Study on Numerical Solution of Ordinary Differential Equation By Different Method with Initial Value Problem. *Int. J. Recent Sci. Res.* 2017, *8*, 21134–21139.
- Akanbi, M.A. Third Order Euler Method for the Numerical Solution of Ordinary Differential Equations. *ARPN J. Eng. Appl. Sci.* 2010, *5*, 42–49.
- 15. Hatun, M.; Vatansever, F. Differential Equation Solver Simulator for Runge-Kutta Methods. *Uludağ Univ. J. Fac. Eng.* **2016**, 21, 145–162.
- 16. Abdul-Hassan, N.Y.; Ali, A.H.; Park, C. A New Fifth-Order Iterative Method Free from Second Derivative for Solving Nonlinear Equations, J. *Appl. Math. Comput.* **2022**, *68*, 2877–2886. [CrossRef]
- 17. Corless, R.M.; Kaya, C.; Moir, R.H.C. Optimal Residuals and the Dahlquist Test Problem. *Numer. Algorithms* **2019**, *81*, 1253–1274. [CrossRef]
- Chandru, M.; Ponalagusamy, R.; Alphonse, P. A New Fifth-Order Weighted Runge-Kutta Algorithm Based on Heronian Mean for Initial Value Problems in Ordinary Differential Equations. J. Appl. Math. Inform. 2017, 35, 191–204. [CrossRef]
- Omar, Z.; Adeyeye, O. Numerical Solution of First Order Initial Value Problems Using a Self-Starting Implicit Two-Step Obrechkoff-Type Block Method. J. Math. Stat. 2016, 12, 127–134. [CrossRef]
- 20. Ralston, A. Runge-Kutta Methods with Minimum Error Bounds. Math. Comput. 1962, 16, 431-437. [CrossRef]

- 21. Ralston, A.; Rabinowitz, P. A First Course in Numerical Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978.
- 22. Ram, T.; Solangi, M.A.; Sanghah, A.A. A Hybrid Numerical Method with Greater Efficiency for Solving Initial Value Problems. *Math. Theory Model.* **2020**, *10*, 1–7.
- 23. Butcher, J.C. The Numerical Analysis of Ordinary Differential Equations. In *Runge-Kutta Methods;* John Wiley & Sons Ltd.: New York, NY, USA, 2000.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.