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Abstract: In practical applications, the basic fuzzy set is used via symmetric uncertainty variables. In
the research field, it is comparatively rare to discuss two-fold uncertainty due to its complication.
To deal with the multi-polar uncertainty in real life problems, m-polar (multi-polar) fuzzy (m-PF)
sets are put forward. The main objective of this paper is to explore the idea of m-PF sets, which
is a generalization of bipolar fuzzy (BPF) sets, in ternary semirings. The major aspects and novel
distinctions of this work are that it builds any multi-person, multi-period, multi-criteria, and complex
hierarchical problems. The main focus of this study is to confine generalization of some important
results of BPF sets to the results of m-PF sets. In this research, the notions of m-polar fuzzy ternary
subsemiring (m-PFSS), m-polar fuzzy ideal (m-PFI), m-polar fuzzy generalized bi-ideal (m-PFGBI),
m-polar fuzzy bi-ideal (m-PFBI), and m-polar fuzzy quasi-ideal (m-PFQI) in ternary semirings are
introduced. Moreover, this paper deals with several important properties of m-PFIs and characterizes
regular and intra-regular ternary semiring in terms of these ideals.

Keywords: m-polar fuzzy ternary subsemiring; m-polar fuzzy ideals; regular ternary semiring;
intra-regular ternary semiring

1. Introduction

High-ranking organization makes native decisions in every field with multiple aspects
of a situation. This concept can also be applied to create a formalized model system for
conducting fair elections. For the growth and development of democratic countries, free
and fair elections are required. Since Pakistan is a multi-party democratic country where,
in the national and provincial assemblies, political parties compete for seats. Specifically,
in district Gujrat, the political parties are PMLQ, PPP, PMLN, PTI, and any independent
candidates. There is always a fierce competition between them. It a big challenge in Gujrat
as well as in Pakistan. To handle the hard problems occurring in elections, we can use the
model based on the m-polar fuzzy set to select the appropriate candidate conveniently.
This would increase the reliability of that selected party between its followers and the
voters. If we choose a leader without any rigging, then we can build a peaceful society
based on justice. In the same way, all illegal activities can be stopped and soon the country
can move forward. It is a lasting solution for the government and citizens to conflict and
insecurity. With regards to this, the idea of m-polar (multi-polar) fuzzy set, which is the
generalization of bi-polar fuzzy set, is explored. In the study of m-polar fuzzy set, we
need to evaluate the existence of multi-polar information about the given set. When have
assigned the membership degree to many objects according to multi-polar information,
then the m-polar fuzzy set will work successfully. The m-PF set is an extension of the BPF
set. Fuzzy set is an appropriate theory for handling the uncertainties of world problems.
The theory of the fuzzy set is well established, it has a wide range of applications in
various disciplines containing medical diagnosis, computer networks, artificial intelligence,
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social sciences, management sciences, decision making problems, and many more. A
membership function with a unit interval [0, 1] range demonstrates a fuzzy set. The degree
of belongingness of entries to a set is known as the membership degree. In 1965, Zadeh
proposed the idea of fuzzy set for the first time [1]. The structure of the fuzzy group was
first introduced by Rosenfeld in 1971 [2]. There have been several different types of fuzzy
set extensions over the years, such as interval-valued fuzzy sets, intuitionistic fuzzy sets,
and so on. It is difficult to express the distinction between irrelevant and contrary elements
in a fuzzy set by using membership degrees ranging from 0 to 1 based on these studies.
Zhang [3] introduced the concept of BPF set. The BPF set is in fact an extension of the
fuzzy set with membership degree [−1, 1]. The membership degree 0 indicates that element
does not belong to the corresponding property, the membership degree (0, 1] shows that
elements fulfil the property to a certain extent, and the membership degree [−1, 0] shows
that elements fulfil the implicit counter property to a certain extent in a BPF set. For the
importance of BPF set, see [4–8].

The BPF set and 2-polar fuzzy set are cryptomorphic mathematical concepts that can
be obtained briefly from one another. Actually, a natural one-to-one correspondence exists
between BPF set and 2-polar fuzzy set. By using this idea of one-to-one correspondence,
the BPF set is extended to m-PF set. Sometimes, different objects have been monitored
in different ways. This led to the study of m-PF set. The concept that lies behind such
description is linked with the existence of multi-polar information about the given set. The
m-PF set works successfully to assign the membership degrees to several objects regarding
multi-polar information. Here, no membership degree will be assumed as negative as m-PF
set provides only a positive degree of memberships of each element [9].

An m-PF set can be considered as m different fuzzy sets, similar to the case of BPF
set. Therefore, in this condition every input is represented by an m-dimentional vector of
numbers from the unit interval [0, 1], all indicate a confidence degree. Assume that the set
K = {1, 2, . . . , m} is the set of context. Then, for each κ ∈ K, an m-PF set will represent the
element’s satisfaction degree regarding to kth context [10]. For example, if we take a fuzzy
set “good person” then there are different interpretations among the people of a particular
area.

We have noticed that we face many problems in real world having multipolar infor-
mation from multi-agents. For instance, [0, 1]n (n ≈ 7 × 109) contains the exact degree of
mankind’s telecommunication safety due to monitoring of different person in different
times. There are many other instances, such as degree of inclusion (rough measures, fuzzi-
ness measures, accuracy measures, decision performance evaluations, and approximation
qualities), ordering results of universities, and ordering results of magazines. The objective
of this study is to make extension of bipolar fuzzy ideals into m-PFIs, because we have
uncertainty and vagueness of data involving multi-attributes and multi-agents in real life
problems.

1.1. Innovative Contribution

A semiring is an algebraic structure that is very useful in mathematics and used in en-
gineering, physics, computer, coding, topological space, automata theory, formal languages,
modelling, and graph theory. There are numerous structures that are not handled by using
binary multiplication of semiring, which is a reason for the existence of ternary framework.
Lehmer [11] was the first to propose the idea of a ternary algebraic structure to deal with
such types of problems. For example, Z is a ring that is essential in ring theory and its
subset Z+ is a subsemiring of Z, but Z− is not closed under binary product, therefore, it is
not a subsemiring of Z. While Z− is closed under ternary multiplication. In this paper, we
initiate the study of m-PFIs in ternary semirings.

1.2. Related Works

Kar and Dutta created the idea of ternary semiring, and they studied the characteristics
of ternary semirings in [12,13]. Kavikumar and Khamis studied fuzzy ideals and fuzzy
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quasi-ideals in ternary semirings [14] and Kavikumar et al. studied fuzzy bi-ideals in
ternary semirings [15]. The study of m-PF algebraic structure began with the concept of
m-PF Lie subalgebras [16]. Later on, the theory of m-PF Lie ideals was studied in Lie
algebras [17]. The idea of the m-PF graphs was given in [18,19]. In 2019, Ahmad and
Al-Masarwah introduced the concept of m-PF (commutative) ideals and m-polar (α, β)-
fuzzy ideals [20,21] in BCK/BCI-algebras. By continuing this work, they introduced a
new form of generalized m-PFIs in [22] and studied normalization of m-PF subalgebras
in [23]. In 2021, Shabir et al. [24] studied m-PFIs in terms of LA-semigroups. In 2021,
m-PFIs of semigroup introduced by Bashir [25]. Recently, Bashir et al. [26] have worked on
multi-polar fuzzy ideals of ternary semigroup.

1.3. Organization of the Paper

This paper is organized as follows: in Section 2, we give the basic concept of m-PF
ternary semiring. Section 3 is the main section of this paper in which m-PF subsets, m-PFIs,
m-PFGBIs, m-PFBIs, and m-PFQIs of ternary semirings are discussed. In Section 4, we
have characterized regular ternary semiring by the properties of m-PFIs. In Section 5, a
comparison of this paper to past work is provided. In the last, we provide the conclusions
of our research as well as our future plans. The list of acronyms is given in Table 1.

Table 1. List of acronyms.

Acronyms Representation

m-PF m-Polar fuzzy
BFS Bipolar fuzzy set
RI (resp, LI, MI) Right ideal (resp. Left ideal, Lateral ideal)
GBI (resp. BI, QI) Generalized bi-ideal (resp. Bi-ideal, Quasi ideal)
m-PFTS m-Polar fuzzy ternary subsemiring
m-PFI m-Polar fuzzy ideal
m-PFLI m-Polar fuzzy left ideal
m-PFRI m-Polar fuzzy right ideal
m-PFMI m-Polar fuzzy lateral ideal
m-PFGBI m-Polar fuzzy generalized bi-ideal
m-PFBI m-Polar fuzzy bi-ideal
m-PFQI m-Polar fuzzy quasi-ideal

2. Preliminaries

This section includes some basic and necessary definitions, preliminaries, and results
based on ternary semirings that are important in their own right. These are prerequisites
for later sections. A non-empty set E with the dual operations ‘+’ (usual addition) and
‘∗′ (ternary product) is stated as ternary semiring if E is abelian monoid under ‘+′ and
semigroup under ternary multiplication and distributive laws of ternary multiplication
over addition holds. Identity of the ternary semiring is an element ‘e’ such that eet =
tee = ete = t for all t ∈ E [27,28]. Throughout this paper, E will represent a ternary
semiring except otherwise specified. An additive subsemigroup Y of E is called a ternary
subsemiring of E if Y1Y2Y3 ⊆ Y for all Y1, Y2, Y3 ⊆ Y. If Y is a non-empty subset of E, then
it is called LI (resp. MI, RI) of E if Y is closed under binary addition and EEY ⊆ Y (resp.
EYE ⊆ Y, YEE ⊆ Y). In this paper, subset means non-empty subset. A ternary subsemiring
Y of E is called BI of E if YEYEY ⊆ Y [15]. Let (Y,+) be an additive subsemigroup of E
then Y is called QI of E if YEE ∩ (EYE + EEYEE) ∩ EEY ⊆ Y [14].

An m-PF subset (or a [0, 1]m-set) on E is a mapping ψ : E→ [0, 1]m . An m-PF set
is the m-tuple of membership degree function of E that is ψ = (ψ1, ψ2, . . . , ψm) where
ψκ : E→ [0, 1] is a mapping for all κ ∈ {1, 2, . . . , m}. Now, we express operations ψ∧µ∧γ
and ψ ∨ µ ∨ γ on three m-PF subsets ψ = (ψ1, ψ2, . . . , ψm), µ = (µ1, µ2, . . . , µm) and
γ = (γ1, γ2, . . . , γm) of E.(ψ ∧ µ ∧ γ)(s) = ψ(s) ∧ µ(s) ∧ γ(s) and (ψ ∨ µ ∨ γ)(s) = ψ(s) ∨
µ(s) ∨ γ(s), that is (ψκ ∧ µκ ∧ γκ)(s) = ψκ(s) ∧ µκ(s) ∧ γκ(s) and (ψκ ∨ µκ ∨ γκ)(s) =
ψκ(s) ∨ µκ(s) ∨ γκ(s), for all s ∈ E and κ ∈ {1, 2, . . . , m}. Let ψ = (ψ1, ψ2, . . . , ψm),
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µ = (µ1, µ2, . . . , µm) and γ = (γ1, γ2, . . . , γm) be m-PF subsets of E. Then product ψ ◦ µ ◦
γ = (ψ1 ◦ µ1 ◦ γ1, ψ2 ◦ µ2 ◦ γ2, . . . , ψκ ◦ µκ ◦ γκ) and addition ψ + µ = (ψ1 + µ1, ψ2 + µ2,
. . . , ψκ + µκ) is defined by

(ψκ ◦ µκ ◦ γκ)(x) =

{
∨

x=rst
{ψκ(r) ∧ µκ(s) ∧ γκ(t)}, if x = rst;

0 otherwise;

for some r, s, t ∈ E, and for all κ ∈ {1, 2, . . . , m}.

(ψκ + µκ)(x) =

{
∨

x=r+s
{ψκ(r) ∧ µκ(s)}, if x = r + s;

0 otherwise;

for some r, s ∈ E, and for all κ ∈ {1, 2, . . . , m}.
The next Example shows the product and addition of m-PF subsets ψ, µ and γ of E

for m = 3.

Example 1. Let E = {0, v, w} be a ternary semiring under the operations given in Tables 2–5.

Table 2. Addition.

+ 0 v w

0 0 v w
v v v w
w w v w

Table 3. Multiplication under 0.

0 0 v w

0 0 0 0
v 0 0 0
w 0 0 0

Table 4. Multiplication under v.

v 0 v w

0 0 0 0
v 0 w v
w 0 v w

Table 5. Multiplication under w.

w 0 v w

0 0 0 0
v 0 v w
w 0 w v

We define 3-PF subset ψ = (ψ1, ψ2, ψ3), µ = (µ1, µ2, µ3) and γ = (γ1, γ2, γ3) as
follows:

ψ(0) = (0.1, 0.9, 0.7), ψ(v) = (0.5, 0.2, 0.8), ψ(w) = (0.2, 0.4, 0.6);

µ(0) = (0.3, 0.5, 0.4), µ(v) = (0.3, 0.4, 0.8), µ(w) = (0.6, 0.8, 0.4)

γ(0) = (0.3, 0.4, 0.1), γ(v) = (0.6, 0.9, 0.7), γ(w) = (0.7, 0.2, 0.5).
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By definition we have

(ψ1 ◦ µ1 ◦ γ1)(0) = (0.3), (ψ1 ◦ µ1 ◦ γ1)(v) = (0.5), (ψ1 ◦ µ1 ◦ γ1)(w) = (0.5);

(ψ2 ◦ µ2 ◦ γ2)(0) = (0.8), (ψ2 ◦ µ2 ◦ γ2)(v) = (0.4), (ψ2 ◦ µ2 ◦ γ2)(w) = (0.4);

(ψ3 ◦ µ3 ◦ γ3)(0) = (0.7), (ψ3 ◦ µ3 ◦ γ3)(v) = (0.6), (ψ3 ◦ µ3 ◦ γ3)(w) = (0.7).

Hence, the product of ψ = (ψ1, ψ2, ψ3), µ = (µ1, µ2, µ3) and γ = (γ1, γ2, γ3) is
defined by (ψ ◦ µ ◦ γ)(0) = (0.3, 0.4, 0.7), (ψ ◦ µ ◦ γ)(v) = (0.5, 0.4, 0.6), (ψ ◦ µ ◦ γ)(w) =
(0.5, 0.4, 0.7).

Also, (ψ1 + µ1)(0) = (0.1), (ψ1 + µ1)(v) = (0.3), (ψ1 + µ1)(w) = (0.5); (ψ2 + µ2)(0)
= (0.5), (ψ2 + µ2)(v) = (0.4), (ψ2 + µ2)(w) = (0.8); (ψ3 + µ3)(0) = (0.4), (ψ3 + µ3)(v) =
(0.8), (ψ3 + µ3)(w) = (0.4);

Hence, addition of ψ = (ψ1, ψ2, ψ3) and µ = (µ1, µ2, µ3) is defined by

(ψ + µ)(0) = (0.1, 0.5, 0.4), (ψ + µ)(v) = (0.3, 0.4, 0.8), (ψ + µ)(w) = (0.5, 0.8, 0.4).

3. Characterization of Ternary Semirings by m-Polar Fuzzy Sets

This is the most essential portion, because here we make our major contributions with
the help of several lemmas, theorems, and examples, the notions of m-PFTSs and m-PFIs of
ternary semirings are explained in this section. For semigroups and ternary semigroups,
Bashir et al. [24–26] have proven the results we have generalized the results in ternary
semirings. Throughout the paper, δ is the m-PF subset of E mapping every element of E on
(1, 1, . . . , 1).

Definition 1. Let ψ = (ψ1, ψ2, . . . , ψm) be an m-PF subset of E.

(1) Then for all t = (t1, t2, . . . , tm) ∈ (0, 1]m, the set ψt = {s ∈ E|ψ(s) ≥ t} that is ψκ ≥ tk
for all κ ∈ {1, 2, . . . , m}, is called a t-cut or a level set.

(2) The support of ψ : E→ [0, 1]m is defined to be the set Supp(ψ) = {s ∈ E|ψ(s) ≥
(0, 0, . . . , 0) m−tuple} that is ψκ(s) ≥ 0 for all κ ∈ {1, 2, . . . , m}.

3.1. m-Polar Fuzzy Ternary Subsemirings and Ideals in Ternary Semirings

Here, we define the m-PFTS and m-PFIs of a ternary semirings with examples and
explain the related lemmas.

Definition 2. An m-PF subset ψ = (ψ1, ψ2, . . . , ψm) of E is called an m-PFTS of E if for all
r, s, t ∈ E, it satisfies the following conditions:

(1) ψ(r + s) ≥ ψ(r) ∧ ψ(s) that is ψκ(r + s) ≥ ψκ(r) ∧ ψκ(s);
(2) ψ(rst) ≥ ψ(r)∧ψ(s)∧ψ(t) that is ψκ(rst) ≥ ψκ(r)∧ψκ(s)∧ψκ(t) for all κ ∈ {1, 2, . . . , m}.

Definition 3. An m-PF subset ψ = (ψ1, ψ2, . . . , ψm) of E is called an m-PFRI(resp. m-PFLI,
m-PFMI) of E if for all r, s, t ∈ E:

(1) ψκ(r + s) ≥ ψκ(r) ∧ ψκ(s);
(2) ψκ(rst) ≥ ψκ(r) (resp. ψκ(rst) ≥ ψκ(t), ψκ(rst) ≥ ψκ(s)) for all κ ∈ {1, 2, . . . , m}.

If an m-PF subset ψ is m-PFRI, m-PFLI and m-PFMI of E, then ψ is called m-PFI.
The following Example is of 3-PFI.

Example 2. Let E = {0, v, w} be a ternary semiring given as in Tables 2–5 of Example 1. We
define a 3-PF subset ψ = (ψ1, ψ2, ψ3) of E as follows:
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ψ(0) = (0.7, 0.7, 0.6), ψ(v) = ψ(w) = (0.6, 0.5, 0.4). Clearly, ψ = (ψ1, ψ2, ψ3) is a
3-PFRI, 3-PFLI and 3-PFMI of E. Hence, ψ is 3-PFI of E.

Definition 4. Let Y be a subset of E. Then the m-polar characteristic function CY : Y → [0, 1]m

of Y is defined as

CY(s) =
{
(1, 1, . . . , 1), m−tuple if s ∈ Y;
(0, 0, . . . , 0), m−tuple if s /∈ Y.

Lemma 1. Let X, Y and Z be subsets of E. Then the following hold.

(1) CX ∧ CY ∧ CZ = CX∩Y∩Z;
(2) CX ◦ CY ◦ CZ = CXYZ;
(3) CX + CY = CX+Y.

Proof. Obviously hold. �

Lemma 2. Let Y be subset of E. Then the following hold.

(1) Y is a ternary subsemiring of E if and only if CY is an m-PFTS of E;
(2) Y is a LI (resp. MI, RI) of E if and only i CY is an m-PFLI (resp. m-PFMI, m-PFRI) of E.

Proof. (1) : Let Y be a teranry subsemiring of E. We have to show that CY(r + s) ≥
min{CY(r), CY(s)} and CY(rst) ≥ min{CY(r), CY(s), CY(t)} for all r, s, t ∈ E. We consider
the following cases:

Case 1: Let r, s ∈ Y. Then CY(r) = (1, 1, . . . , 1) = CY(s). Since Y is ternary subsemiring
of E. So r + s ∈ Y implies that CY(r + s) = (1, 1, . . . , 1). Hence, CY(r + s) ≥ CY(r) ∧ CY(s).

Case 2: Let r ∈ Y, s /∈ Y. Then CY(r) = (1, 1, . . . , 1) and CY(s) = (0, 0, . . . , 0). Clearly,
CY(r + s) ≥ (0, 0, . . . , 0) = CY(r) ∧ CY(s). Hence, CY(r + s) ≥ CY(r) ∧ CY(s).

Case 3: Let r, s /∈ Y. This implies that CY(r) = CY(s) = (0, 0, . . . , 0). Clearly,
CY(r + s) ≥ (0, 0, . . . , 0) = CY(r) ∧ CY(s). Hence, CY(r + s) ≥ CY(r) ∧ CY(s).

Also, Case 1: Let r, s, t ∈ Y. Then CY(r) = CY(s) = CY(t) = (1, 1, . . . , 1). Since
Y is ternary subsemiring of E. So rst ∈ Y implies that CY(rst) = (1, 1, . . . , 1). Hence,
CY(rst) ≥ CY(r) ∧ CY(s) ∧ CY(t).

Case 2: Let r ∈ Y and s, t /∈ Y. Then CY(r) = (1, 1, . . . , 1). CY(s) = CY(t) =
(0, 0, . . . , 0). Clearly, CY(rst) ≥ (0, 0, . . . , 0) = CY(r) ∧ CY(s) ∧ CY(t). Hence, CY(rst) ≥
CY(r) ∧ CY(s) ∧ CY(t).

Case 3: Let r /∈ Y, and s, t ∈ Y. Then, CY(r) = (0, 0, . . . , 0) and CY(s) = CY(t) =
(1, . . . . . . , 1). Clearly, CY(rst) ≥ (. . . 0, . . . , 0) = CY(r) ∧ CY(s) ∧ CY(t). Hence, CY(rst) ≥
CY(r) ∧ CY(s) ∧ CY(t).

Case 4: Let r, s, t /∈ Y. Then CY(r) = CY(s) = CY(t . . . 0, 0, . . . , 0). Clearly,CY(rs . . .) ≥
(0, 0, . . . , 0) = CY(r) ∧ CY(s) ∧ CY(t). Hence, CY(rst) ≥ CY(r) ∧ CY(s) ∧ CY(t).

Conversely, assume that CY is an m-PF ternary subsemiring of E. Let r, s, t ∈ Y. Then,
CY(r) = CY(s) = . . . (t) = (1, 1, . . . , 1). By definition, CY(rst) ≥ CY(r) ∧ CY(s) ∧ . . . (t) =
(. . . 1, . . . , 1 . . . 1, 1, . . . . . .) ∧ (1, 1, . . . , 1) = (1, 1, . . . , 1), we have CY(rst) = (1, 1, . . . , 1).
This implies that rst ∈ Y. Also, CY(r + s) ≥ . . . (r) ∧ . . . (s) = (. . . 1, . . . , 1) ∧ (1, 1, . . . , 1) =
(1, 1, . . . , 1), we have CY(r + s) = (1, 1, . . . , 1).

This implies that r + s ∈ Y. So, Y is ternary subsemiring of E.
(2) : Suppose Y is LI of E. We show that CY is an m-PFLI of E i.e., (CY(r + s) ≥

min{CY(r), CY(s)} and CY(rst) ≥ CY(t).
Case 1: Let t . . . and r, s ∈ E. Then CY(t) = (1, 1, . . . , 1). Since Y is LI of E, So r . . . ∈ Y.

Implies that CY(rst) = (1, 1, . . . , 1). Hence, CY(rst) ≥ CY(t).
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Case 2: Let t /∈ Y, and r, s ∈ E. Then CY(t) = (0, 0, . . . , 0). Clearly CY(rst) ≥
(0, 0, . . . , 0) = CY(t). Hence, CY(rst) ≥ CY(t). Now we show that CY(r + s) ≥ min{CY(r),
CY(s)}.

Conversely, assume that CY is an m-PFLI of E. Let t ∈ Y and r, s ∈ E. Then CY(t) =
(1, 1, . . . , 1). By definition CY(rst) ≥ CY(t) = (1, 1, . . . , 1). We have CY(rst) = (1, 1, . . . , 1).
This implies that rst ∈ Y. Also, Let r, s ∈ Y. Then CY(r) = (1, 1, . . . , 1) and CY(s) =
(1, 1, . . . , 1). By definition, CY(r + s) ≥ CY(r) ∧ CY(s) = (1, 1, . . . , 1). This implies that
r + s ∈ Y. So Y is LI of E.

In the similar way we can prove for RI and MI. �

Lemma 3. Let ψ = (ψ1, ψ2, . . . ψm) be an m-PF subset of E. Then the following properties hold.

(1) ψ is an m-PFTS of E if and only if ψ ◦ ψ ◦ ψ ≤ ψ and ψ + ψ ≤ ψ;
(2) ψ is an m-PFLI of E if and only if δ ◦ δ ◦ ψ ≤ ψ and ψ + ψ ≤ ψ;
(3) ψ is an m-PFRI of E if and only if ψ ◦ δ ◦ δ ≤ ψ and ψ + ψ ≤ ψ;
(4) ψ is an m-PFMI of E if and only if δ ◦ ψ ◦ δ ≤ ψ, δ ◦ δ ◦ ψ ◦ δ ◦ δ ≤ ψ and ψ + ψ ≤ ψ.

Proof. (1) : Let ψ = (ψ1, ψ2, . . . , ψm) is an m-PFTS of E that is ψκ(r + s) ≥ min{ψκ(r), ψκ(s)}
and ψκ(rst) ≥ min{ψκ(r), ψκ(s), ψκ(t)} for all r, s, t ∈ E and κ ∈ {1, 2, . . . , m}. Let a ∈ E
if a is not expressible as a = ghi for some g, h, i ∈ E. Then (ψ ◦ ψ ◦ ψ)(a) = 0. Hence,
(ψ ◦ ψ ◦ ψ)(a) ≤ ψ(a). But if a is expressible as a = rst for some r, s, t ∈ E, then

(ψκ ◦ ψκ ◦ ψκ)(a) = ∨
a=rst
{ψκ(r) ∧ ψκ(s) ∧ ψκ(t)}

≤ ∨
a=rst
{ψκ(rst)} = ψκ(a) for all κ ∈ {1, 2, . . . , m}.

Hence, ψ ◦ ψ ◦ ψ ≤ ψ. Also, let a ∈ E, if a is not expressible as a = r + s for some
r, s ∈ E. Then (ψ + ψ)(u) = 0. Hence, (ψ + ψ)(a) ≤ ψ(a). But if u is expressible as
a = r + s for some r, s ∈ E then

(ψ + ψ)(a) = ∨
a=r+s

{ψκ(r) ∧ ψκ(s)}

≤ ∨
a=r+s

{ψκ(r + s)} = ψκ(a) for all κ ∈ {1, 2, . . . , m}.

Hence, ψ + ψ ≤ ψ. Conversely, let ψ ◦ ψ ◦ ψ ≤ ψ and ψ + ψ ≤ ψ. We show that ψ is an
m-PF ternary subsemiring of E. Let r, s, t ∈ E then,

ψκ(rst) ≥ (ψ ◦ ψ ◦ ψ)(rst)

= ∨
rst=uvw

{ψκ(u) ∧ ψκ(v) ∧ ψκ(w)}

≥ ψκ(r) ∧ ψκ(s) ∧ ψκ(t)

So, ψκ(rst) ≥ ψκ(r) ∧ ψκ(s) ∧ ψκ(t).
Also, ψk(r + s) ≥ (ψk + ψk)(r + s)

= ∨
r+s=u+v

{ψk(u) ∧ ψk(v)} ≥ {ψk(r) ∧ ψk(s)} for all κ ∈ {1, 2, . . . , m}.

So, ψκ(r + s) ≥ ψκ(r) ∧ ψκ(s). Hence proved.
(2) Let ψ = (ψ1, ψ2, . . . , ψm) be an m-PFLI of E that is ψκ(r + s) ≥ ψκ(r) ∧ ψκ(s) and

ψκ(rst) ≥ ψκ(t) for all κ ∈ {1, 2, . . . , m} and r, s, t ∈ E. Let a ∈ E. If a is not expressible



Symmetry 2023, 15, 591 8 of 16

as a = lmr for some l, m, r ∈ E. Then (δ ◦ δ ◦ ψ)(a) = 0. Hence, (δ ◦ δ ◦ ψ)(a) ≤ ψ(a).
Although if a is expressible as a = rst for some r, s, t ∈ E, then

(δκ ◦ δκ ◦ ψκ)(a) = ∨
a=rst
{δκ(r) ∧ δκ(s) ∧ ψκ(t)}

= ∨
a=rst
{1∧ 1∧ ψκ(t)}

≤ ∨
a=rst
{ψκ(rst)} = ψκ(a) for all κ ∈ {1, 2, . . . , m}.

Hence, δ ◦ δ ◦ ψ ≤ ψ. Additionally,
Let a ∈ E, if a is not expressible as a = u + w for some u, w ∈ E. Then (ψ + ψ)(a) = 0.

Hence (ψ + ψ)(a) ≤ ψ(a). Though if a is expressible as a = r + s for some r, s ∈ E then

(ψκ + ψκ)(a) = ∨
a=r+s

{ψκ(r) ∧ ψκ(s)} ≤ ∨
a=r+s

{ψκ(r + s)} = ψκ(a).

Hence, ψ + ψ ≤ ψ. Conversely, Let δ ◦ δ ◦ ψ ≤ ψ and ψ + ψ ≤ ψ. We show that ψ is m-
PFLI of E. Let r, s, t ∈ E. Then, ψκ(rst) ≥ (δ ◦ δ ◦ ψ)(rst) = ∨

rst=uvw
{δκ(u) ∧ δκ(v) ∧ ψκ(w)}

≥ δκ(r) ∧ δκ(s) ∧ ψκ(t) = ψκ(t) for all κ ∈ {1, 2, . . . , m}.
So, ψk(rst) ≥ ψk(t).
Additionally, ψκ(r + s) ≥ (ψκ + ψκ)(r + s) = ∨r+s=u+v{ψκ(u) ∧ ψκ(v)} ≥ {ψκ(r)∧

ψκ(s)}.
So, ψκ(r + s) ≥ ψκ(r) ∧ ψκ(s) for all κ ∈ {1, 2, . . . , m}.
Similarly, we can prove the parts (3) and (4). �

Lemma 4. The following assertions are true in E.

(1) Let ψ = (ψ1, ψ2, . . . , ψm), µ = (µ1, µ2, . . . , µm) and γ = (γ1, γ2, . . . , γm) be three m-PF
ternary subsemirings of E. Then ψ ∧ µ ∧ γ is also an m-PF ternary subsemiring of E;

(2) Let ψ = (ψ1, ψ2, . . . , ψm), µ = (µ1, µ2, . . . , µm) and γ = (γ1, γ2, . . . , γm) and be three
m-PFRI (resp. m-PFMI, m-PFLI) of E. Then ψ ∧ µ ∧ γ is also an m-PFLI ( resp. m-PFMI,
m-PFRI) of E.

Proof. Straightforward. �

Proposition 1. Let ψ = (ψ1, ψ2, . . . , ψm) be an m-PF subset of ternary semiring E. Then ψ is an
m-PFTS (resp. m-PFLI, m-PFMI, m-PFRI) of E if and only if ψt = {s ∈ E | ψ(s) ≥ t} 6= ϕ is a
ternary subsemiring (resp. LI, MI, RI) of E for all t = (t1, t2, . . . , tm) ∈ (0, 1]m.

Proof. Let ψ be an m-PFTS of E and r, s, t ∈ ψt, then ψκ(r) ≥ tk, ψκ(s) ≥ tk and ψκ(t) ≥ tk
for all κ ∈ {1, 2, . . . , m}. Since ψ is an m-PFTS of E. We have ψκ(r + s) ≥ ψκ(r) ∧ ψκ(s) ≥
tk ∧ tk ≥ tk for all k ∈ {1, 2, . . . , m}. Also, ψκ(rst) ≥ ψκ(r)∧ψκ(s)∧ψκ(t) ≥ tk ∧ tk ∧ tk ≥ tk
for all k ∈ {1, 2, . . . , m}. Hence, ψt is a ternary subsemiring of E.

Conversely, suppose that ψt is a ternary subsemiring of E. Let r, s, t ∈ E. Suppose
on contrary that ψt is an m-PFTS of E, such that ψκ(r + s) < ψκ(r) ∧ ψκ(s) and take
tk = ψκ(r)∧ ψκ(s). Then r, s ∈ ψt but r + s /∈ ψt. Hence ψκ(r + s) ≥ ψκ(r)∧ ψκ(s). Also for
ψκ(rst) ≥ ψκ(r) ∧ ψκ(s) ∧ ψκ(t) suppose on contrary that ψκ(rst) < ψκ(r) ∧ ψκ(s) ∧ ψκ(t)
and take tk ∈ [0, 1]m such that tk = ψκ(r) ∧ ψκ(s) ∧ ψκ(t), then r, s, t ∈ ψt. But rst /∈ ψt. So
ψκ(rst) ≥ ψκ(r) ∧ ψκ(s) ∧ ψκ(t). Thus ψ is an m-PFTS of E. �

3.2. m-Polar Fuzzy Generalized Bi-Ideals in Ternary Semirings

Here, we define m-PFGBI of ternary semirings.
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Definition 5. An m-PF subset ψ = (ψ1, ψ2, . . . , ψm) of E is called an m-PFGBI of E if for
all r, s, t, e1, e2 ∈ E it satisfies the following conditions ψEψEψ ≤ ψ that is ψκ(re1se2t) ≥
min{ψκ(r), ψκ(s), ψκ(t)} for all r, s, t, e1, e2 ∈ E and κ ∈ {1, 2, . . . , m}.

Lemma 5. A subset Y of E is a GBI of E if and only if CY is an m-PFGBI of E.

Proof. Similar to Lemma 2. �

Lemma 6. An m-PFTS of E is an m-PFGBI of E if and only if ψ ◦ δ ◦ ψ ◦ δ ◦ ψ ≤ ψ.

Proof. Let ψ = (ψ1, ψ2, . . . , ψm) be an m-PFGBI of E. Let a ∈ E. If a is not expressible as
a = lmn for some l, m, n ∈ E, then ψ ◦ δ ◦ ψ ◦ δ ◦ ψ ≤ ψ. But if a is expressible as a = rst
for some r, s, t ∈ E. Then for all κ ∈ {1, 2, . . . , m}. We have ((ψκ ◦ δκ ◦ ψκ) ◦ δκ ◦ ψκ)(a) =
∨a=rst{(ψκ ◦ δκ ◦ ψκ)(r) ∧ δκ(s) ∧ ψκ(t)} = ∨a=rst{∨r=uvw{ψκ(u) ∧ δκ(v) ∧ ψκ(w)} ∧ δκ(s)
∧ ψκ(t)} = ∨a=rst{∨r=uvw{ψκ(u) ∧ ψκ(v)} ∧ ψκ(w)} ≤ ∨a=rst ∨r=uvw {ψκ((uvw)st)} =
∨a=rst{ψκ(rst)} = ψκ(a) for all κ ∈ {1, 2, . . . , m}.

Conversely, let ψ ◦ δ ◦ ψ ◦ δ ◦ ψ ≤ ψ and re1se2t ∈ E. So

ψκ(re1se2t) ≥ ((ψκ ◦ δκ ◦ ψκ) ◦ δκ ◦ ψκ)(re1se2t)

= ∨re1se2t=uvw{(ψκ ◦ δκ ◦ ψκ)(u) ∧ δκ(v) ∧ ψκ(w)}

≥ {(ψκ ◦ δκ ◦ ψκ)(re1s) ∧ δκ(e2) ∧ ψκ(t)}

= ∨re1s=abc{ψκ(a) ∧ δκ(b) ∧ ψκ(c)} ∧ δκ(e2) ∧ ψκ(t)

≥ {ψκ(r) ∧ δκ(e1) ∧ ψκ(s)} ∧ δκ(e2) ∧ ψκ(t)

= ψκ(r) ∧ δκ(e1) ∧ ψκ(s)} ∧ δκ(e2) ∧ ψκ(t)

= ψκ(r) ∧ ψκ(s) ∧ ψκ(t) for all κ ∈ {1, 2, . . . , m}.

Hence, ψ(re1se2t) ≥ ψκ(r) ∧ ψκ(s) ∧ ψκ(t). �

Proposition 2. Let ψ = (ψ1, ψ2, . . . , ψm) be an m-PFTS of E. Then ψ is an m-PFGBI of E if and
only if ψt = {s ∈ E|ψ(s) ≥ t} is a GBI of E for all t = (t1, t2, . . . , tm) ∈ (0, 1]m.

Proof. Let ψ = (ψ1, ψ2, . . . , ψm) be an m-PFTS of E and ψ is an m-PFGBI of E. Let r, s, t ∈ ψt.
Then ψκ(r) ≥ tκ , ψκ(s) ≥ tκ and ψκ(t) ≥ tκ for all κ ∈ {1, 2, . . . , m). Since ψ is m-PFGBI
of E. So we have r, s, t ∈ ψt and e1, e2 ∈ E such that ψκ(re1se2t) ≥ ψκ(r) ∧ ψκ(s) ∧ ψκ(t) ≥
tκ ∧ tκ ∧ tκ ≥ tκ for all κ ∈ {1, 2, . . . , m}. Hence ψt is GBI of E. Conversely, suppose that ψt is
a GBI of E. On contrary suppose that ψ is not an m-PFGBI of E. Let r, s, t, e1, e2 ∈ E such that
ψκ(re1se2t) < ψκ(r) ∧ ψκ(s) ∧ ψκ(t). Take tκ = ψκ(r) ∧ ψκ(s) ∧ ψκ(t). Then r, e1, s, e2, t ∈ ψt
but re1se2t /∈ ψt which is contradiction. So, ψκ(re1se2t) ≥ ψκ(r) ∧ ψκ(s) ∧ ψκ(t). So ψ is an
m-PFGBI of E. �

3.3. m-Polar Fuzzy Bi-Ideals in Ternary Semirings

Here, we define m-PFBI of ternary semirings and explain some lemmas based on this
definition.

Definition 6. An m-PFTS ψ = (ψ1, ψ2, . . . , ψm) of E is called an m-PFBI of E if for all
r, s, t, e1, e2 ∈ E it satisfies the following conditions ψEψEψ ≤ ψ that is ψκ(re1se2t) ≥
min{ψκ(r), ψκ(s), ψκ(t)} for all r, s, t, e1, e2 ∈ E and κ ∈ {1, 2, . . . , m}.

Lemma 7. A subset Y of E is a BI of E if and only if CY is an m-PFBI of E.

Proof. Similar to Lemma 2 and Lemma 5. �



Symmetry 2023, 15, 591 10 of 16

Lemma 8. An m-PFTS of E is an m-PFBI of E if and only if

(1) ψ + ψ ≤ ψ;
(2) ψ ◦ ψ ◦ ψ ≤ ψ;
(3) ψ ◦ δ ◦ ψ ◦ δ ◦ ψ ≤ ψ.

Proof. Proof of (1) and (2) are follows from Lemma 3 and Proof of (3) follows from
Lemma 6. �

Proposition 3. Let ψ = (ψ1, ψ2, . . . , ψm) be an m-PFTS of E. Then ψ is an m-PFBI of E if and
only if ψt = {s ∈ E|ψ(s) ≥ t} is a BI of E for all t = (t1, t2, . . . , tm) ∈ (0, 1]m.

Proof. Follows from Proposition 2. �

3.4. m-Polar Fuzzy Quasi-Ideals in Ternary Semirings

Now, we define m-PFQI of ternary semirings and some its characteristics.

Definition 7. An m-PF additive subsemigroup ψ = (ψ1, ψ2, . . . , ψm) of E is called an m-PFQI
of E if ψEE∩ (EψE + EEψEE)∩ EEψ ≤ ψ i.e., ψ(x) ≥ min{(ψEE)(x), (EψE + EEψEE)(x),
EEψ(x)}, that is ψκEκEκ ∩ (EκψκEκ + EκEκψκEκEκ) ∩ EκEκψκ ≤ ψ i.e., ψ(x) ≥
min{(ψκEκEκ)(x), (EκψκEκ + EκEκψκEκEκ)(x), EκEκψκ(x)} for all κ ∈ {1, 2, . . . , m}.

Lemma 9. Let Y be an additive subsemigroup of E. Then Y is QI of E if and only if CY is an
m-PFQI of E.

Proof. Let Y is a quasi-ideal. Then obviously, CY is fuzzy subsemigroup of E.

CYEκEκ ∩ EκCYEκ + EκEκCYEκEκ ∩ EκEκCY
= CYCECE ∩ CECYCE + CECECYCECE ∩ CECECY

= CYEE ∩ C(EYE+EEYEE) ∩ CEEY

= CYEE∩(EYE+EEYEE)∩EEY

⊆ CY.

This means that CY is m-PFQI. Conversely, let s is any element of YEE ∩(EYE + EEYEE)
∩ EEY. Then we have

CY(s) ≥ {CYEE ∩ ECYE + EECYEE ∩ EECY}(s)

= min{CYEE(s), (ECYE + EECYEE)(s), EECY(s)}

= min
{

CYEE(s), C(EYE+EEYEE)(s), CEEY(s)
}

= CYEE∩(EYE+EEYEE)∩EEY(s) = (1, 1 . . . , 1).

This implies that s ∈ Y, and so YEE ∩ (EYE + EEYEE) ∩ EEY ⊆ Y. �

Proposition 4. Let ψ = (ψ1, ψ2, . . . , ψm be an m-PFTS of E. Then ψ is an m-PFQI of E if and
only if ψt = {s ∈ E|ψ(s) ≥ t} 6= ϕ is a QI of E for all t = (t1, t2, . . . , tm) ∈ (0, 1]m.

Proof. Let ψ is m-PFQI of E. Suppose that a ∈ ψtEE ∩ EψtE + EEψtEE ∩ EEψt, then a ∈
ψtEE an a ∈ EψtE + EEψtEE and a ∈ EEψt. So a = re1e2 and a = e1s1e2 + e1e2s2e1e2 and
a = e1e2t for some r, s1, s2, t ∈ ψt and e1, e2 ∈ E. Thus ψκ(r) ≥ tκ , ψκ(s1) ≥ tκ , ψκ(s2) ≥ tκ

and ψκ(t) ≥ tκ for all κ ∈ {1, 2, . . . , m}. Now (ψκEκEκ)(a) = ∨a=re1e2{ψκ(r)}(EκψκEκ +
EκEκψκEκEκ)(a) = ∨a=e1s1e2+e1e2s2e1e2{ψκ(s1) ∧ ψκ(s2)}(EκEκψκ)(a) = ∨a=e1e2t{ψκ(t)}.
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Thus, (ψκEκEκ ∩ (EκψκEκ + EκEκψκEκEκ) ∩ EκEκψκ)(a) = (ψκEκEκ)(a) ∧ (EκψκEκ+
EκEκψκEκEκ)(a) ∧ (EκEκψκ)(a) = tκ ∧ tκ ∧ tκ = tκ for all κ ∈ {1, 2, . . . , m}.

So (ψEE ∩ EψE + EEψEE ∩ EEψ) ≥ t. Since ψ(a) ≥ (ψEE ∩ EψE + EEψEE ∩ EEψ)
(a) ≥ t. This means that a ∈ ψt. So ψt is a QI of E. Additionally, as ψ is a m-PFQI of E that is
ψκ(r + s) ≥ ψκ(r) ∧ ψκ(s). Let r, s ∈ ψt, then ψκ(r) ≥ tκ , ψκ(s) ≥ tκ . So ψκ(r + s) ≥ tκ + tκ

and thus r, s ∈ ψt. Conversely, assume that ψ is not an m-PFQI of E. Let a ∈ E such that
ψκ(a) < (ψκEκEκ)(a) ∧ (EκψκEκ + EκEκψκEκEκ)(a) ∧ (EκEκψκ)(a) for all κ ∈ {1, 2, . . . , m}.
Choose tκ ∈ (0, 1] such that tκ = (ψκEκEκ)(a) ∧ (EκψκEκ + EκEκψκEκEκ)(a) ∧ (EκEκψκ)(a)
for all κ ∈ {1, 2, . . . , m}. This implies that a ∈ (ψκEκEκ)tκ

, a ∈ (EκψκEκ + EκEκψκEκEκ)tκ

and a ∈ (EκEκψκ)tκ
but a /∈ (ψκ)tκ for some κ. Hence a ∈ (ψEE)t, a ∈ (EψE + EEψEE)t and

a ∈ (EEψ)t but a /∈ ψt which is the contradiction. Hence ψ ≥ ψEE ∩ EψE + EEψEE ∩ EEψ.
�

Lemma 10. Let ψ = (ψ1, ψ2, . . . , ψm), µ = (µ1, µ2, . . . , µm) and γ = (γ1, γ2, . . . , γm) be
m-PFRI, m-PFMI and m-PFLI of E, respectively. Then ψ ∧ µ ∧ γ is an m-PFQI of E.

Proof. Let ψ = (ψ1, ψ2, . . . , ψm), γ = (γ1, γ2, . . . , γm) and µ = (µ1, µ2, . . . , µm) be m-PFRI,
m-PFMI and m-PFLI of E, respectively. Let x 6= ae1e2 = e1(b + e1ce2)e2 = e1e2d, where
a, b, c, d, e1, e2 ∈ E. Then (ψ ∧ µ ∧ γ)EE ∩ E(ψ ∧ µ ∧ γ)E + EE(ψ ∧ µ ∧ γ)EE ∩
EE(ψ ∧ µ ∧ γ) ≤ ψ∧µ∧γ. If x = re1e2 = e1(s1 + e1s2e2)e2 = e1e2t, where r, s1, s2, t, e1, e2 ∈
E. Then {(ψκ ∧ µκ ∧ γκ)EκEκ ∩ Eκ(ψκ ∧ µκ ∧ γκ)Eκ + EκEκ(ψκ ∧ µκ ∧ γκ)EκEκ ∩ EκEκ(ψκ∧
µκ ∧ γκ)}(x) = min{((ψκ ∧ µκ ∧ γκ)EκEκ)(x), (Eκ(ψκ ∧ µκ ∧ γκ)Eκ)(x) + (EκEκ(ψκ ∧ µκ ∧
γκ)EκEκ)(x), EκEκ(ψκ ∧ µκ ∧ γκ)} = min{∨x=re1e2(ψκ ∧ µκ ∧ γκ)(r),∨x=e1(s1+e1s2e2)e2

{(ψκ

∧µκ ∧ γκ)(s1) ∧ (ψκ ∧ µκ ∧ γκ)(s2)},∨x=e1e2t(ψκ ∧ µκ ∧ γκ)(t)} ≤ min{1, {(ψκ ∧ µκ ∧ γκ)
(x), 1} = (ψκ ∧ µκ ∧ γκ)(x). �

Hence, (ψ ∧ µ ∧ γ) is an m-PFQI of E.

Lemma 11. Every m-PFLI (resp. m-PFMI, m-PFRI) of E is an m-PFQI of E.

Proof. The Proof follows from Lemma 3. �

The next example shows that the converse of Lemma 11 may not be true.

Example 3. Consider a ternary semiring E = {p, q, r, s, t} under operations as given in
Tables 6 and 7.

Table 6. Addition ‘+′.

+ p q r s t

p p q r s t
q q p q r q
r r q p q r
s s r q p t
t t q r t p

Table 7. Ternary Multiplication ‘*’.

* p q r s t

p p p p p p
q q p p p p
r p p p p p
s p p p p p
t p q r s t
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Define a 3-PF subset ψ = (ψ1, ψ2, ψ3) of E as follows:
ψ(p) = ψ(q) = (0.7, 0.5, 0.6), ψ(r) = ψ(s) = (0, 0, 0) and ψ(t) = (0, 4, 0.3, 0.2). Then

simple calculation shows that ψt is a QI of E. Therefore, by using Proposition 3, ψ is a
3-PFQI of E. Now, ψ(r) = ψ(ttr) � ψ(t) = (0.4, 0.3, 0.2). So ψ is not a 3-PFRI of E.

Theorem 1. Every m-PFQI of E is an m-PFBI of E.

Proof. Suppose that ψ = (ψ1, ψ2, . . . , ψm) is an m-PFQI of E. Let r, s, t ∈ E. Then, ψκ(rst) ≥
((ψκ ◦ δκ ◦ δκ) ∧ (δκ ◦ ψκ ◦ δκ) ∧ (δκ ◦ δκ ◦ ψκ))(rst) = (ψκ ◦ δκ ◦ δκ)(rst)∧ (δκ ◦ ψκ ◦ δκ)(rst)
∧ (δκ ◦ δκ ◦ ψκ)(rst) = {∨rst=abc{ψκ(a) ∧ δκ(b) ∧ δκ(c)}}∧ {∨rst=de f {δκ(d) ∧ ψκ(e) ∧ δκ( f )

}}∧
{
∨rst−ghi{δκ(g) ∧ δκ(h) ∧ ψκ(i)}

}
≥ {ψκ(r) ∧ δκ(s) ∧ δκ(t),}∧{δκ(r) ∧ ψκ(s) ∧ δκ(t)}

∧ {δκ(r) ∧ δκ(s) ∧ ψκ(t)} = ψκ(r) ∧ ψκ(s) ∧ ψκ(t).
Also, ψκ(re1se2t) ≥ {(ψκ ◦ δκ ◦ δκ) ∧ (δκ ◦ δκ ◦ ψκ ◦ δκ ◦ δκ) ∧ (δκ ◦ δκ ◦ ψκ)}(re1se2t)

= (ψκ ◦ δκ ◦ δκ)(re1se2t) ∧(δκ ◦ δκ ◦ ψκ ◦ δκ ◦ δκ) (re1se2t) ∧ (δκ ◦ δκ ◦ ψκ)(re1se2t) =
{∨re1se2t=abc{ψκ(a) ∧ δκ(b) ∧ δκ(c)}} ∧ {∨re1se2t=pqruv{δκ(p) ∧ δκ(q) ∧ ψκ(r)} ∧ δκ(u)∧
δκ(v)}}∧ {∨re1se2t=ghi{δκ(g) ∧ δκ(h) ∧ ψκ(i)}} ≥ {ψκ(r) ∧ δκ(e1se2) ∧ δκ(t)} ∧ {δκ(r) ∧
δκ(e1) ∧ ψκ(s) ∧ δκ(e2) ∧ δκ(t)} ∧ {δκ(r) ∧ δκ(e1se2) ∧ ψκ(t)} = ψκ(r) ∧ ψκ(s) ∧ ψκ(t).

So, ψ(re1se2t) ≥ ψ(r) ∧ ψ(s) ∧ ψ(t). Hence, ψ is an m-PFBI of E. �

3.5. Applications of Proposed Work

The m-PF set has a broad variety of applications in real-life challenges regarding
multi-agent, multi-objects, multi-attributes, multi-index, and multi-polar information. The
m-PF sets can also be applied in decision-making, cooperative games, and diagnosis data,
among other applications. These sets may also be used to describe multi-relationships and
as a model for clustering or grouping. We will give an example to demonstrate it.

Let Z = {r, s, t, u} be the set of 4 persons. We characterized them as a good person
according to seven qualities in the form of 7-PF subset given in Table 8:

Table 8. Table of qualities with their membership values.

Honesty Loyalty Enthusiasm Cooperative Self-Control Maturity Courage

r 0.4 0.5 0 0.1 0.5 0.8 1
s 0 0.7 0.4 0.6 0.3 0.5 0.7
t 0.8 0.5 0.9 0.3 0.4 0.8 0.6
u 0.5 0.4 0.7 1 0.6 0.7 0.8

Thus, we get a 7-PF subset ψ : Z → [0, 1]7 such that

ψ(r) = (0.4, 0.5, 0, 0.1, 0.5, 0.8, 1)

ψ(s) = (0, 0.7, 0.4, 0.6, 0.3, 0.5, 0.7)

ψ(t) = (0.8, 0.5, 0.9, 0.3, 0.4, 0.8, 0.6)

ψ(u) = (0.5, 0.4, 0.7, 1, 0.6, 0.7, 0.8).

Here, is the graphical representation of a 7-PF subset shown in Figure 1.
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4. Characterization of Regular, and Intra-Regular Ternary Semirings by m-Polar
Fuzzy Ideals

This section presents many important results on regular and intra-regular ternary
semirings in terms of m-PFIs. Many results of Bashir et al. [25,26] were studied and
generalized in the structure of ternary semirings by m-PFIs.

Definition 8. An element ‘a’ of E is called regular if there exist elements r, s ∈ E such that
a = arasa [5].

Theorem 2. [15] A ternary semiring E is regular if and only if ψ ∗ µ ∗ γ = ψ ∩ µ ∩ γ for every
RI ψ, MI µ and LI γ of E.

Theorem 3. For E the following conditions are equivalent.

(1) E is regular;
(2) ψ ∧ µ ∧ γ = ψ ◦ µ ◦ γ for each m-PFRI ψ, m-PFMI µ and m-PFLI γ of E.

Proof. (1)⇒ (2) : Suppose that ψ = (ψ1, ψ2, . . . , ψm), µ = (µ1, µ2, . . . , µm) and γ =
(γ1, γ2, . . . , γm) be m-PFRI, m-PFMI, and m-PFLI of E, respectively. Let a ∈ E, we have
(ψκ ◦ µκ ◦ γκ)(a) = ∨a=rst{ψκ(r) ∧ µκ(s) ∧ γκ(t)} ≤ ∨a=rst{ψκ(rst) ∧ µκ(rst) ∧ γκ(rst)
= ψκ(a) ∧ µκ(a) ∧ γκ(a) = (ψκ ∧ µκ ∧ γκ)(a).

Hence, (ψκ ◦ µκ ◦ γκ)(a) ≤ (ψκ ∧ µκ ∧ γκ)(a) for all κ ∈ {1, 2, . . . , m}. Since E is regu-
lar so for each a ∈ E there exist an element r, s ∈ E such that a = arasa. (ψκ ∧ µκ ∧ γκ)(a) =
ψκ(a) ∧ µκ(a) ∧ γκ(a) ≤ ψκ(a) ∧ µκ(ras) ∧ γκ(a) = ∨a=rst{ψκ(r) ∧ µκ(s) ∧ γκ(t)} =
(ψκ ◦ µκ ◦ γκ)(a) for all κ ∈ {1, 2, . . . , m}. So, (ψκ ∧ γκ ∧ γκ) ≤ (ψκ ◦ γκ ◦ γκ). Therefore,
ψ ∧ µ ∧ γ = ψ ◦ µ ◦ γ.

(2)⇒ (1) : Let a ∈ E. Then L = aEE is a LI of E, R = EEa is a RI of E and T = EaE
is a lateral ideal of E. Then by using Lemma 2, CL, CR, CT the m-polar characteristic
functions of L, R, and T are m-PFLI, m-PFRI and m-PFMI of E, respectively. Then we have
CRTL = CR ◦ CT ◦ CL by Lemma 1 = CR ∧ CT ∧ CL = CR∩T∩L

Thus, R ∩ T ∩ L = RTL. Hence it follows from Theorem 1 that E is regular. �

Theorem 4. The following conditions are equivalent in E.

(1) E is regular;
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(2) ψ = ψ ◦ δ ◦ ψ ◦ δ ◦ ψ for every m-PFBI of E;
(3) ψ = ψ ◦ δ ◦ ψ ◦ δ ◦ ψ for every m-PFQI of E.

Proof. (1)⇒ (2) : Let ψ = (ψ1, ψ2, . . . , ψm) be m-PFBI of E. Let a ∈ E. As E is reg-
ular, so there exists elements r, s ∈ E such that a = arasa. We have for some r, s, t ∈ E
(ψκ ◦ δκ ◦ ψκ ◦ δκ ◦ ψκ)(a) = ∨a=rst{ψκ(r) ∧ (δκ ◦ ψκ ◦ δκ)(s) ∧ ψκ(t)} ≥ ψκ(a) ∧
(δκ ◦ ψκ ◦ δκ)(ras) ∧ ψκ(a) = ψκ(a) ∧ ∨ras=pqr{ψκ(p) ∧Λκ(q) ∧ ψκ(r)} ∧ ψκ(a) ≥ ψκ(a) ∧
{δκ(r) ∧ ψκ(a) ∧ δκ(s)} ∧ ψκ(a) = ψκ(a) for all κ ∈ {1, 2, . . . , m}.

So, (ψ ◦ δ ◦ ψ ◦ δ ◦ ψ) ≥ ψ.
Since ψ is m-PFBI of E. So we have for some r, s, t ∈ E (ψκ ◦ δκ ◦ ψκ ◦ δκ ◦ ψκ)(a) =

∨a=rst{(ψκ ◦ δκ ◦ ψκ(r)) ∧ δκ(s) ∧ ψκ(t)} = ∨a=rst{∨r=uvw{ψκ(u) ∧ δκ(v) ∧ ψκ(w)} ∧ δκ(s)
∧ ψκ(t)} = ∨a=rst{∨r=uvw{ψκ(u) ∧ ψκ(w)} ∧ ψκ(t)} ≤ ∨a=rst{∨r=uvwψκ(uvwst)} =
∨a=rst{ψκ(rst)} = ψκ(a) for all κ ∈ for all κ ∈ {1, 2, . . . , m}. So, (ψ ◦ δ ◦ ψ ◦ δ ◦ ψ) ≤ ψ.
Thus ψ = (ψ ◦ δ ◦ ψ ◦ δ ◦ ψ).

(2)⇒ (3) : It is obvious.
(3)⇒ (1) : Let ψ, µ and γ be m-PFLI, m-PFMI and m-PFRI of E, respectively. Then

ψ ∧ µ ∧ γ is m-PFQI of E. Hence by hypothesis (ψκ ∧ µκ ∧ γκ) ≤ (ψκ ∧ µκ ∧ γκ) ◦ δκ ◦
(ψκ ∧ µκ ∧ γκ) ◦ δκ ◦ (ψκ ∧ µκ ∧ γκ) ≤ ψκ ◦ δκ ◦ µκ ◦ δκ ◦ γκ = ψκ ◦ µκ ◦ γκ .

So, ψκ ∧ µκ ∧ γκ ≤ ψκ ◦ µκ ◦ γκ . But ψκ ◦ µκ ◦ γκ ≤ ψκ ∧ µκ ∧ γκ always hold. Hence
ψκ ◦ µκ ◦ γκ = ψκ ∧ µκ ∧ γκ that is ψ ◦ µ ◦ γ = ψ ∧ µ ∧ γ. Thus, by Theorem 3, E is regular.
�

Definition 9. [5] An element ‘a’ of E is stated as intra-regular if there exist r, s ∈ E such that
a = ra5s.

Theorem 5. [5] A ternary semiring E is intra-regular if and only if X ∩Y ∩ Z ⊆ XYZ for every
LI X, MI Y and every RI Z of E.

Theorem 6. E is intra-regular if and only if (ψκ ∧ µκ ∧ γκ) ≤ ψκ ◦ µκ ◦ γκ for every m-PFLI ψκ ,
m-PFMI µκ and m-PFRI ideal γκ of E.

Proof. Let E be intra-regular ternary semiring. Let ψ = (ψ1, ψ2, . . . , ψm), µ = (µ1, µ2, . . . , µm)
and γ = (γ1, γ2, . . . , γm) be three m-PFRI ψ, m-PFMI µ and m-PFLI γ of E, respectively.
Let a ∈ E then there exist r, s ∈ E such that a = ra5s. (ψκ ◦ µκ ◦ γκ)(a) = ∨a=ra5s{ψκ(raa)∧
µκ(a) ∧ γκ(aas)} ≥ ∨a=rst{ψκ(a) ∧ µκ(a) ∧ γκ(a)} ≥ ψκ(a) ∧ µκ(a) ∧ γκ(a) = (ψκ ∧ µκ∧
γκ)(a) for all κ ∈ {1, 2, . . . , m}. Hence, (ψκ ∧ µκ ∧ γκ) ≤ ψκ ◦ µκ ◦ γκ .

Conversely, let (ψκ ∧ µκ ∧ γκ) ≤ (ψκ ◦ µκ ◦ γκ) for m-PFLI ψκ , m-PFMI µκ and m-PFRI
ideal γκ of E. Let X, Y and Z be LI, MI and RI, respectively. Then CX, CY and CZ are m-
PFLI, m-PFMI and m-PFRI of E, respectively. Now by our supposition CX ∧ CY ∧ CZ ≤
CX ◦ CY ◦ CZ implies CX∩Y∩Z ≤ CXYZ, then X ∩ Y ∩ Z ⊆ XYZ. So E is intra-regular by
Theorem 5. �

5. Comparative Study

In this section, we have described how this research work is better and related to previ-
ous work. Shabir and Bashir [24–26] used m-PF ideals for the characterization of the regular
LA-semigroup, semigroups and ternary semigroups, respectively. Our work is superior to
Shabir and Bashir [24–26], as there are numerous structures that cannot be handled by using
binary operations, such as the fact that Z− is not a semiring but it is a ternary semiring. Sim-
ilarly, Q− (the set o f negative rational numbers) and R−(the set o f negative real numbers)
are ternary semirings under ternary multiplication. To get over this problem, we have
applied the ternary operation and generalized entire results of Shabir & Bashir [24–26] in
the ternary semirings. Several results are generalized, and new results are found. As a
result, our methodology offers a broad variety of applications than Shabir & Bashir [24–26].
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In existing techniques, the alternatives are used directly and they are time consuming
and error-based.

In the result, the existing methods do not give precise outcomes. The bipolar fuzzy
environment minimizes this problem due to pairwise comparison and m-polar fuzzy
environment is much better environment to minimize this issue because of presence of
multi-attributes based data on real world problems. Our technique may achieve efficiently
the precise outcomes.

6. Conclusions

The m-PF set theory is a beneficial mathematical tool for resolving uncertainty. In
this paper, the definition of m-PF set is applied on the structure of ternary semiring. We
converted the fundamental algebraic structure of Shabir and Bashir [24–26] into a ternary
semiring from the LA-semigroup, ternary semigroup, and semiring. Most significantly,
we have proven some results related to ternary semirings in terms of m-PFIs, m-PFGBIs,
m-PFBIs, and m-PFQIs. This paper has a vast range of applications of m-PF set theory.
Additionally, we have studied the characterization of regular and intra-regular ternary
semirings in terms of m-PFIs. In future, we may work on regular and intra-regular ternary
semirings regarding intuitionistic fuzzy ideals, picture fuzzy ideals, interval-valued fuzzy
ideals, cubic fuzzy ideals, and many other extensions of fuzzy ideals. We hope that this
research work will be a basis for further study of the ternary semiring theory.
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