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Abstract: In this article, we present a new statistical modification of the Weibull model for up-
dating the flexibility, called the generalized Weibull-Weibull distribution. The new modification
of the Weibull model is defined and studied in detail. Some mathematical and statistical functions are
studied, such as the quantile function, moments, the information generating measure, the Shannon
entropy and the information energy. The joint distribution functions of the two marginal univariate
models via the Copula model are provided. The unknown parameters are estimated using the maxi-
mum likelihood method and Bayesian method via Monte Carlo simulations. The Bayesian approach
is discussed using three different loss functions: the quadratic error loss function, the LINEX loss
function, and the general entropy loss function. We perform some numerical simulations to show
how interesting the theoretical results are. Finally, the practical application of the proposed model is
illustrated by analyzing two applications in the actuarial and engineering fields using corporate data
to show the elasticity and advantage of the proposed generalized Weibull-Weibull model. The practi-
cal applications show that proposed model is very suitable for modeling actuarial and technical data
sets and other related fields.

Keywords: Weibull distribution; family of generalized Weibull; maximum likelihood estimation;
bayesian estimation; statistical modeling

1. Introduction:

Statistical methods play a crucial role in analysis of measurement system errors [1],
test data [2], sports data [3], reliability [4], medical data [5], robust analysis [6], educational
data [7], risk assessment [8], social data [9], and other important fields in the tech world.
In addition to the areas already mentioned, the application of statistical methods to data
analysis in the world of engineering [10] and actuarial data [11] has attracted the inter-
est of researchers. Due to the crucial role that statistical models play in data analysis
in the technology industry, many new statistical approaches have been proposed and im-
plemented. These methods are very useful to update the distribution elasticity for statistical
distributions [12].

Many applications in the world need statistical description to be more understandable
to the reader, but there is no specific statistical distribution that describes all these phe-
nomena. Recently, many attempts have aroused the interest of researchers in the statistical
literature to define new flexible distributions for modeling and analyzing data in different
domains. Thus, several families have been proposed in the statistical literature that generate
novel models by adding one or more parameters to improve other flexible models [13–19].
These distributions are usually derived from existing distributions by introducing new
parameters or making some modifications to the existing probability density functions.
Each of these distributions has its own advantages and disadvantages and can be used
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for different types of data analysis. However, in many applied fields, there is a clear need
for modified forms of these models, since the basic models do not provide an adequate fit
to real data in many practical situations.

In general, actuarial and technical data are positively skewed [20,21] or unimodally
shaped [22] and have heavy tails [23]. In [24], it is shown that right-skewed data sets can be
modeled by skewed statistical distributions. Therefore, some unimodal and right-skewed
distributions have been used to analyze such data [25,26]. In the letters, most modifications
of the Weibull model have been discussed by introducing new families of models.

The Weibull distribution is used to simulate many probabilistic applications. The Weibull
distribution has many useful physical explanations and nice and desirable properties.
Over the last half century, the Weibull model has become remarkably important in the field
of durability and reliability testing. Let X be a random variable (R.V.) that follows the three-
parameters Weibull(β, σ, µ), then its cumulative distribution function (CDF) is given by

G(x; β, σ, µ) = 1− e−(
x−µ

σ )
β

, x ≥ µ; β, σ, µ > 0. (1)

where x ≥ µ, σ > 0 is the scale parameter and β > 0 is the shape parameter. The probability
density function (PDF) is

g(x; β, σ, µ) =
β

σ

(
x− µ

σ

)β−1
e−(

x−µ
σ )

β

, x ≥ µ; β, σ, µ > 0. (2)

A generalized family of univariate distributions with two additional positive parame-
ters τ and λ was generated by Weibull random variables, proposed by Cordeiro et al. [27]
and called the generalized Weibull family. The CDF and PDF of the generalized Weibull
family for any baseline CDF G(x) (for x ∈ R) and PDF g(x) are given, respectively, by

F(x; τ, λ) = 1− exp
[
−τ(− log[1− G(x)])λ

]
, (3)

and

f (x; τ, λ) =
τλg(x)

1− G(x)
(− log[1− G(x)])λ−1 exp

(
−τ(− log(1− G(x)))λ

)
. (4)

In this article, we propose a new approach to update the level of the distributional
flexibility of the Weibull model. The new flexible distribution, called the generalized
Weibull-Weibull model. The extended model is more flexible and can provide a reason-
able fit when modeling actuarial and technical data sets and other related fields. Some
key motivations for using the new generalized Weibull-Weibull distribution (GWWD)
modification:

(i) improve the flexibility and distribution properties of Weibull model.
(ii) the evolution has added only one parameter to the Weibull distribution in this way,

although the family was originally built from two parameters. As the number of pa-
rameters increases, many difficulties arise, from which, sequences of estimation prob-
lems arise, and more computational effort is required to obtain the basic mathematical
properties, etc.

(iii) a convenient and very simple way to mutate the Weibull model-only one parameter
addition.

(iv) can take several forms: a right-skewed form, a left-skewed form, a decreasing form,
a curved form, and a symmetric form. The failure rate function also can take a variety
of forms, so it has important standing in reliability analysis.

(v) the model functions have simple and closed forms.

The rest of this work was presented as follows. The GWWD is provided in Section 2.
In Section 3, some mathematical properties and information generating measures are
reported. The maximum likelihood estimators as well as the bootstrap confidence in-
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tervals: Boot-p Algorithm of the proposed model parameters are obtained in Section 4.
The Bayesian estimation of the model parameters under three loss functions are discussed
in Section 5. In Section 6, the performance of the introduced estimators ar evaluated via
numerical simulations. A real business data sets are analysed in Section 7. Section 8 show
the discussion and future works. Some conclusions are provided in Section 9.

2. The GWW D

This section provides the GWWD sub-model from Cordeiro generalized Weibull family.
Consider X is R.V. follow (∼) the three-parameters Weibull(β, σ, µ) with CDF that

given in Equation (1). For location parameter µ ∈ R+, scale parameter δ ∈ R+, two shape
parameters τ, σ ∈ R+, and X ≥ µ, the GWWD can be formed by replacing g(x) and G(x)
in Equations (4) and (3) by g(x; β, σ, µ) and G(x; β, σ, µ) that given in Equations (2) and (1),
respectively. The CDF and PDF of the GWWD are given, respectively, by

F(x; τ, δ, σ, µ) = 1− e−τ( x−µ
σ )

δ

, x ≥ µ; τ, δ, σ, µ > 0, (5)

and

f (x; τ, δ, σ, µ) =
τδ

σ

(
x− µ

σ

)δ−1
e−τ( x−µ

σ )
δ

, x ≥ µ; τ, δ, σ, µ > 0. (6)

The hazard rate function (HRF) and survival function (SF) of time t are

H(t; τ, δ, σ, µ) =
τδ

σ

(
t− µ

σ

)δ−1
. (7)

and

S(t; τ, δ, σ, µ) = e−τ
(

t−µ
σ

)δ

, (8)

where δ = λ× β. Thus, we find compatibility between the generalized Weibull family
and the Weibull model and note that evolution has added only one parameter to the
Weibull distribution in this way, although the family was originally built from two param-
eters F(x; τ, λ, β, σ, µ) ≡ F(x; τ, λβ, σ, µ) . For τ = λ = 1 , the three-parameter Weibull
model(β, σ, µ) follows as a special sub-model from the GWWD model.
For τ = λ = 1 and µ = 0, the two-parameter Weibull model(β, σ) follows as a spe-
cial sub-model from the GWWD model. The one parameter Weibull model (β) follows
as a special sub-model from the GWWD when τ = λ = 1 and σ = µ = 0. The exponential
model(σ) follows as a special sub-model from the GWWD model when β = τ = λ = 1
and µ = 0.

For selected parameters values of the GWWD model, Figure 1 show different vi-
sual illustrations for the PDF of GWWD model. The corresponding HRF are showed
in Figure 2, respectively. The illustrations of the PDF are obtained for (i) GWWD(10.2, 10.9,
0.50, 1.9, 0.20) (blue curve line), (ii) GWWD(02.2, 10.9, 0.50, 1.9, 0.20) (orange curve line),
(iii) GWWD(10.2, 06.9, 0.50, 1.9, 0.20) (green curve line), (iv) GWWD (10.2, 10.9, 0.65, 1.9,
0.20) (red curve line), and (v)GWWD(0.20, 12.9, 0.30, 1.1, 0.01) (purple curve line) in the left
panel plot. Figure 1 (right panel plot) is for (i) GWWD(0.90, 0.90, 0.90, 0.9, 0.20) (blue curve
line), (ii) GWWD(1.20,1.90, 0.45, 1.9, 0.40) (orange curve line), (iii) GWWD(8.20, 6.00, 0.15,
1.9, 0.20) (green curve line), (iv) GWWD (10.2, 1.90, 0.65, 1.9, 0.20) (red curve line), and
(v)GWWD(5.20, 13.0, 0.30, 1.1, 0.01) (purple curve line).
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Figure 1. Visual illustration of PDF for the GWWD(τ, δ, σ, µ).
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Figure 2. Visual illustration of HRF for the GWWD(τ, δ, σ, µ).

Figure 1 show the flexibility of the GWWD model. These modified model can provide
heavy tail shaped, reversed-J shaped, decreasing, modified bathtub, increasing, symmetric,
asymmetric, and unimodal density shapes. From Figure 2, it can be seen that GWWD
has monomodal characteristics and an increased failure rate. The monomodal failure rate
and increased modal properties are another advantage of the proposed model along with
the heavy tail behaviour. Therefore, the proposed model is suitable for modeling actuarial
and technical data sets and other related fields that have corresponding behaviour.

3. Properties of the GWW D

Some mathematical quantities and information generating measures of the GWWD
were introduced in this section.

3.1. Quantile Function

With reference to a continuous and strictly monotonic CDF. Let QGWWD(u) be the quan-
tile function of GWWD(τ, δ, σ, µ), then

QGWWD(u) = Xq = F−1(u; τ, δ, σ, µ), (9)

where 0 < u < 1. Inverting F(x; τ, δ, σ, µ) = u in (5), the QGWWD(u)of X ∼ GWWD(τ, δ, σ, µ) is

Xq = σ

(
−1
τ

log[1− u]
) 1

δ

+ µ. (10)

The median (Me) of X ∼ GWWD(τ, δ, σ, µ) when u = 1
2 is obtained as

Me = σ

(
0.693147

τ

) 1
δ

+ µ. (11)

Setting u ∼ uni f orm(0, 1), we also (10) can be used for simulating GWWD(τ, δ, σ, µ)
R.V.s.

3.2. Moments

Let X ∼GWWD(τ, δ, σ, µ), and r ∈ Z an optional constant, the expectation of
(

x−µ
σ

)r
,

can be written as

E
((

x− µ

σ

)r)
=

τδ

σ

∫ ∞

µ

(
x− µ

σ

)r+δ−1
e−τ( x−µ

σ )
δ

dx, (12)
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using the integral transformation z =
(

x−µ
σ

)δ
, we have

E
((

x− µ

σ

)r)
= τ

∫ ∞

0
z

r
δ e−τzdz

= τ−
r
δ Γ
(

1 +
r
δ

)
, (13)

where Γ(.) is gamma constant. Explicit expressions for moments can be produced using (13). In
particular, the 1st and 2nd moments, can be derived by sitting r = 1 and r = 2, respectively

µ′1 = E(x) = µ + στ−
1
δ Γ
(

1 +
1
δ

)
, (14)

and

µ′2 = E
(

x2
)
= 2µµ′1 − µ2 + σ2τ−

2
δ Γ
(

1 +
2
δ

)
. (15)

Using Equation (14) and (15), the variance of GWWD, take the form

Var(X) = µ + στ−
r
δ Γ
(

1 +
1
δ

)
−
(

2µµ′1 − µ2 + σ2τ−
2
δ Γ
(

1 +
2
δ

))2
. (16)

The Skewness and Kurtosis Functions

By using Equation (10), we can derive (i) the skewness and (ii) the kurtosis.
The Skewness (Sk) (see, Bowley [28]) and Kurtosis (K) (See, Moor [29]) formulas are,
respectively, given by

Sk =
2X1/2 − X3/4 − X1/4

X1/4 − X3/4
, and K =

X1/8 − X3/8 + X5/8 − X7/8

X2/8 − X6/8
.

And by using Equation (10), we can write

Sk(δ) =
log
(

4
3

) 1
δ − 2 log(2)

1
δ + log(4)

1
δ

− log
(

4
3

) 1
δ
+ log(4)

1
δ

, (17)

K(δ) =
log
( 8

7
) 1

δ − log
( 8

5
) 1

δ + log
( 8

3
) 1

δ − log(8)
1
δ

log
(

4
3

) 1
δ − log(4)

1
δ

, (18)

Based on Equations (17) and (18) and as expected, the new shape parameter δ is
the only one that affects the form and value of both Sk and K. Table 1 represent some
numerical values of the Xp via p = 0.50, τ = 1.1, σ = 1.01, µ = 1.1), Sk and K for
δ = 0.05, 0.2, 0.4, 0.6, 0.8, 1, 3.288, 3.285, 3.289, 7, 20, 60, 80.

Based on Table 1, Figure 1 plots the Sk(left panel) and K (right panel). Figure 1 shows
that, the model Sk is positive (right skew) ∀δ < 3.285 then the model Sk become negative
(left skew) while the K is positive (leptokurtic) and the Kurtosis effect increase as δ decrease.
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Table 1. Some numerical values of the Xp, Sk and K for some δ values.

δ Xp Sk K

0.05 1.1001 0.999998 3325.26
0.2 1.20034 0.938246 7.42379
0.4 1.41835 0.679392 2.44666
0.6 1.56778 0.477511 1.66985
0.8 1.66704 0.347893 1.41426
1 1.73644 0.26186 1.30627

3.288 1.97765 1.12 × 10−5 1.21002
3.285 1.97765 0 1.21002
3.289 1.97769 −2.4 × 10−5 1.21003

7 2.04552 −0.0628706 1.23677
20 2.08695 −0.099024 1.26168
40 2.09841 −0.108735 1.26962
60 2.10226 −0.111969 1.27239
80 2.10419 −0.113586 1.2738

3.3. The Information Generating Function

The information generating function is a mathematical tool used to measure the amount
of information contained in a given set of data. It is defined as the sum of the logarithms
of all possible outcomes, weighted by their respective probabilities. Finally, the information
generating function can be used to compare different models or algorithms for predicting
outcomes based on data. By calculating the IGF for each model or algorithm, we can
determine which one has better predictive power and thus contains more information
about the underlying data.

Let X ∼ f (x), the information generating function Ωγ(X), for any γ > 0 (See, Golomb [30]),
is defined as

Ωγ(X) =
∫

X
( f (x))γdx. (19)

Suppose the R.V. X ∼GWWD(τ, δ, σ, µ). By substituting (6) in (19), Ωγ(X) become

Ωγ(X) =
∫ ∞

µ

(
τδ

σ

(
x− µ

σ

)δ−1
e−τ( x−µ

σ )
δ
)γ

dx. (20)

By using the integral transformation y = τγ
(

x−µ
σ

)δ
, we get

Ωγ(X) = (γτ)
γ−1

δ

(
δ

σ

)γ−1
γ−γΓ

(
γ +

1− γ

δ

)
. (21)

In particular Ω1(X) = 1. Let X(n) = (X1, ..., Xn) be a simple random sample (SRS)
of size n, where X ∼ f (x). Then, the information generating measure of vector X(n) is
given by

Ωγ

(
X(n)

)
=

∫
Xn

...
∫

X1

f γ(x1)... f γ(xn)dx1...dxn

=
n

∏
i=1

∫
Xi

f γ(xi)dxi =

(∫
X

f γ(x)dx
)n

= (Ωγ(X))n. (22)

Then, the corresponding Ωγ

(
X(n)

)
based on GWWD(τ, δ, σ, µ), is given by

Ωγ

(
X(n)

)
= γ−nγ(γτ)

n
(

1−γ
δ

)(
δ

σ

)n(1−γ)(
Γ
(

γ +
1− γ

δ

))n
. (23)

For more details about the IGF and its extensions one may see López-Ruiz et al. [31].
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3.4. The Shannon Entropy (H)

The information generating function can be used to calculate measures of uncertainty
such as Shannon entropy. The Shannon entropy measure is useful for quantifying how
uncertain we are about a given set of data or how much uncertainty there is in a system.
The Shannon entropy, or Information entropy was introduced by Claude Shannon [32], and
is defined as

H = −
∫

X
f (x) log( f (x))dx. (24)

H can obtain from Ωγ(X) as

H = −
∂Ωγ(X)

∂γ

∣∣∣∣
γ=1

= 1 + ε

(
1− 1

δ

)
− log

(
δ

σ

)
− log(τ)

δ
, (25)

where ε is Euler’ s constant (∼= 0.577216).

3.5. The Informational Energy (IE)

Many series of computational intelligence tools are based on the informational energy
(IE). IE for any X ∼ f (x), is given by

IE = −
∫

X
f 2(x)dx. (26)

In particular, Ωγ(X) is simply IE when γ = 2, and is given by

IE =
2−2+ 1

δ δτ
1
δ Γ
(

2− 1
δ

)
σ

. (27)

For some applications and the usefulness on IE, see, Cataron and Andonie [33].

4. Maximum Likelihood Estimation (MLE)

Consider x1, x2, ..., xn are observed values of X1:n, X2:n, . . . Xr:n that is an ordered random
sample from the GWWD(τ, δ, σ, µ) given in (6). The GWWD(τ, δ, σ, µ) likelihood is

l =
(

τδ

σδ

)n
(

n

∏
i=1

(xi − µ)δ−1

)
e−τ ∑n

i=1

(
xi−µ

σ

)δ

, (28)

and the log-likelihood function (L) is

L = n log[τδ]− nδ log[σ] + (δ− 1)
n

∑
i=1

log[xi − µ]− τ
n

∑
i=1

(
xi − µ

σ

)δ

. (29)

The first partial derivatives of (29) w.r.t τ, δ, σ, µ are

∂L
∂τ

=
n
τ
−

n

∑
i=1

(
xi − µ

σ

)δ

, (30)

∂L
∂δ

=
n
δ
− n log[σ] + σ

n

∑
i=1

(
log[xi − µ]− τ

(
xi − µ

σ

)δ

log
[
−µ + xi

σ

])
, (31)

∂L
∂σ

=
δ

σ

(
−n +

τ

σ

n

∑
i=1

(xi − µ)

(
xi − µ

σ

)−1+δ
)

, (32)

∂L
∂µ

= (δ− 1)
n

∑
i=1

(
τδ

σ

(
xi − µ

σ

)δ−1
− 1

xi − µ

)
. (33)
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The maximum likelihood estimators τ̂ML, δ̂ML, σ̂ML, and µ̂ML of the GWWD(τ, δ, σ, µ)
parameters are the solutions of the Equations (30)–(33) .

The asymptotic confidence intervals of the parameters τ, δ, σ and µ. Then V̂ = V
(τ̂ML, , δ̂ML, σ̂ML, µ̂ML) = [σi,j], i, j = 1, 2, 3, 4 is the variance covariance matrix, such that

V(τ, δ, σ, µ) = −



∂2L
∂τ2

∂2L
∂τ∂δ

∂2L
∂τ∂σ

∂2L
∂τ∂µ

∂2L
∂δ∂τ

∂2L
∂β
′2

∂2L
∂δ∂σ

∂2L
∂δ∂µ

∂2L
∂σ∂τ

∂2L
∂σ∂δ

∂2L
∂σ2

∂2L
∂σ∂µ

∂2L
∂µ∂τ

∂2L
∂µ∂δ

∂2L
∂µ∂σ

∂2L
∂µ2



−1

, (34)

where

∂2L
∂τ2 = − n

τ2 , (35)

∂2L
∂τ∂δ

= −
n

∑
i=1

(
xi − µ

σ

)δ

log
[

xi − µ

σ

]
, (36)

∂2L
∂τ∂σ

=
δ

σδ+2

n

∑
i=1

(xi − µ)δ, (37)

∂2L
∂τ∂µ

=
δ

σ

n

∑
i=1

(
xi − µ

σ

)δ−1
, (38)

∂2L
∂δ2 = − n

β
′2 − τ

n

∑
i=1

(
xi − µ

σ

)δ

log
[

xi − µ

σ

]2
, (39)

∂2L
∂δ∂σ

=
1
σ

(
−n + τ

n

∑
i=1

(
xi − µ

σ

)δ(
1 + δ log

[
xi − µ

σ

]))
, (40)

∂2L
∂δ∂µ

=
n

∑
i=1

− 1
xi − µ

+ τ


(

xi−µ
σ

)δ

xi − µ
+

δ log
[

xi−µ
σ

](
xi−µ

σ

)δ−1

σ


, (41)

∂2L
∂σ2 =

δ

σ2

(
n + τ

n

∑
i=1

(δ− 2
σ2 − 1)(xi − µ)δ

)
, (42)

∂2L
∂σ∂µ

= −τ

(
δ

σ

)2 n

∑
i=1

(
xi − µ

σ

)δ−1
, (43)

∂2L
∂µ2 = (δ− 1)

n

∑
i=1
− 1

(xi − µ)2 + τδ

(
1− δ

σ2

)(
xi − µ

σ

)δ−2
. (44)

A 100(1− ε)% two-sided approximate confidence intervals for the parameters τ, δ, σ

and µ are then given by τ̂± zε/2
√

V(τ̂), δ̂± zε/2

√
V(δ̂), σ̂± zε/2

√
V(σ̂), and µ̂± zε/2

√
V(µ̂),

respectively, where V(τ̂), V(δ̂), V(σ̂), and V(µ̂) are the estimated variances of τ̂ML,δ̂ML,σ̂ML,
and µ̂ML, which are given by the diagonal elements ofV̂,and zε/2 is the upper

(
ε
2
)

percentile
of Z(0,1).

The Bootstrap Confidence Intervals: Boot-p Algorithm



Symmetry 2023, 15, 560 9 of 19

Next, obtain the bootstrap confidence intervals for boot-p for λ = (τ, δ, σ, µ), using
the algorithms

1. Generate sample {xi} from the GWWD(τ, δ, σ, µ) of size n and estimate a λ̂.
2. Generate another sample {x∗i } of size n using λ̂. Then estimate λ̂∗.
3. Repeat step 2 B times.
4. Via F̂(x) = P(λ̂∗ ≤ x), that is, the CDF of λ̂∗, the 100(1− ε)% C.I. of λ is given by(

λ̂Boot−p(
ε

2
), λ̂Boot−p(1−

ε

2
)
)

,

where λ̂Boot−p(τ) = F̂−1(τ) and x is prefixed.

For more details about the bootstrap confidence intervals, one may refer to Kundu
and Joarder [34].

5. Bayesian Estimation

Bayesian estimation is a method of statistical inference that uses Bayes’ theorem
to calculate the probability of an event based on prior knowledge of conditions that
might be related to the event. It is a way of combining prior beliefs with new data
to arrive at an updated belief. This updated belief is called the posterior probability.
Bayesian estimation can be used to estimate parameters in a statistical model, such as the
mean and variance of a normal distribution, or to make predictions about future events,
see, [35]. We assume that τ, δ, σ, and µ are R.V.s that follow the prior PDFs Gamma(τ; a1, b1),
Gamma(δ; a2, b2), Gamma(σ; a3, b3) and Gamma(µ; a4, b4), respectively, are given by

π1(τ) =
ba1

1
τ(a1)

τa1−1 exp[−b1τ], τ, a1, b1 > 0, (45)

π2(δ) =
ba2

2
τ(a2)

δa3−1 exp[−b3δ], δ, a2, b2 > 0, (46)

π3(σ) =
ba3

3
τ(a3)

σa3−1 exp[−b3σ], σ, a3, b3 > 0. (47)

and

π4(µ) =
ba4

4
τ(a4)

µa4−1 exp[−b4µ], µ, a4, b4 > 0. (48)

Then, the posterior density of τ, δ, σ, µ and the data is given by

π∗(τ, δ, σ, µ|x) = J−1τn+a1−1δn+a2−1σa3−nδ−1µa4−1

(
n

∏
i=1

(xi − µ)δ−1

)

× e
−
(

τ

(
b1+∑n

i=1(
x−µ

σ )
δ
)
+(b2δ+b3σ+b4µ)

)
, (49)

where J is the normalizing constant.

MCMC Method

We use Metropolis Hastings procedure as:

1. Set start values τ(0) = 10.025, δ(0) = 0.027, σ(0) = 0.5 and µ(0) = 1.16. Then, simulate
sample of size n from GWWD(τ(0), δ(0), σ(0), µ(0)), next set l = 1.

2. Simulate τ(∗), δ(∗), σ(∗) and µ(∗). using the proposal distributions N(τ(l−1), V(τ̂)),
N(δ(l−1), V(δ̂)), N(σ(l−1), V(σ̂)) and N(µ(l−1), V(µ̂)).

3. Calculate r = min
(

π∗(τ(∗),δ(∗),σ(∗),µ(∗))
π∗(τ(l−1),δ(l−1),σ(l−1),µ(l−1))

, 1
)

.
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4. Simulate U from Uniform (0, 1).

5. If U < r, then
(

τ(l), δ(l), σ(l), µ(l)
)
=
(

τ(∗), δ(∗), σ(∗), µ(∗)
)

.

If U ≥ r, then
(

τ(l−1), δ(l−1), σ(l−1), µ(l−1)
)
=
(

τ(∗), λ(∗), δ(∗), σ(∗), µ(∗)
)

.

6. Set l = l + 1.
7. Iterate Steps 2–6, M repetitions, and get τ(l), δ(l), σ(l) and µ(l) for l = 1,. . . , M.

Suppose the squared error loss function for the parameter λ = τ, δ, σ and µ, given by
LSE(λ, λ̂) = (λ− λ̂)2. By using the generated random samples from the M-H technique
and for N is the nburn. Then, the Bayes estimator of λ against the squared error loss
function, is given by

λ̂SE = Eλ[λ|x] =
1

M− N

M

∑
l=N+1

λ(l). (50)

Next, suppose the LINEX (LE) loss function, given by

LLE
(
λ, λ̂

)
= exp

[
ρ
(
λ− λ̂

)]
− ρ
(
λ− λ̂

)
− 1, ρ 6= 0. (51)

The approximate Bayes estimate of λ under LE loss function, is given by

λ̂LE =
−1
ρ

log(Eλ[exp(−ρλ)|x]) = −1
ρ

log

∑M
l=N+1 exp

(
−ρλ(l)

)
M− N

, (52)

Finally, suppose the general entropy (GE) loss function, given by

LGE
(
λ, λ̂

)
=

(
λ̂

λ

)ε

− ε log

(
λ̂

λ

)
− 1. (53)

The approximate Bayes estimate of the parameters, given by

λ̂GE =
(
Eλ

[
λ−ε

∣∣x])−1
ε =

(
1

M− N

M

∑
l=N+1

(
λ(l)

)−ε
)−1

ε

, (54)

MCMC HPD Credible Interval Algorithm

1. Arrange τ(∗), δ(∗), σ(∗) and µ(∗) in rising values.
2. The lower bounds of τ, δ, σ, and µ is in the rank (M− N)× ε/2.
3. The Upper bounds of τ, δ, σ, and µ is in the rank (M− N)× (1− ε/2).
4. Iterate the previous steps M times. Get the average value of the lower and upper

bounds of τ, δ, σ, and µ.

6. Simulation Study

In this section, we show the usefulness of the theatrical findings in this paper by
conducting series of simulation experiments. The simulations show the bias and estimated
risk of bayesian and the maximum likelihood estimates. The simulation experiments can
be explained though the following steps:

1. We generate sample of sizes n = 25, 50, 100, 200, 400, and 600 from the GWWD(τ, δ, σ, µ)

via initial parameter values are τ(0) = 10.025, δ(0) = 0.027, σ(0) = 0.5 and µ(0) = 1.16.
2. Again use each of the cases in step (1) for calculating the Bayesian estimates for both

cases of GE, LINEX and SE loss functions. The parameter ρ in LINEX is chosen as −3
and 7. The parameter ε in general entropy is chosen as 0.5.

3. For the Bayesian analysis, we take small values for the hyper-parameters as ai, bi ∈
U(0, 1), ∀i = 1, 2, 3.
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4. The steeps (1)–(3) are repeated M= 3000 times, then the estimate, bias and estimated
risk (ER) in each cases are calculated in Table 2. Obtain the point estimation of the pa-
rameter using MLE and MCMC methods (with 10,000 repetitions and 200 burns).

5. The 90% and 95% approximate confidence, bootstrap HPD credible intervals with
their width are calculated.

6. The biases and ERs are given, respectively, by

Bias
(
λ̂
)
=

1
1000

1000

∑
i=1

(
λ̂i − λ

)
,

and

ER
(
λ̂
)
=

1
1000

1000

∑
i=1

(
λ̂i − λ

)2
,

7. Coverage probabilities (CPs) are also calculated at the 95% and 90% HPD credible
intervals. The simulation results are presented in Table 2 for the parameters τ, δ, σ,
and µ,respectively.

Table 2. Point and Interval estimation of the parameters τ, δ, σ, and µ.

Par.
Point Intrval

ML SE LE1 LE2 GE ML Boot
strap

HPDSE HPDLE1 HPDLE2 HPDGE

τ 6.3181 10.3431 10.3719 10.2251 10.3209 4.8457
7.7905

4.074
12.802

6.084
13.773

6.1198
13.7789

5.9828
13.7537

6.0457
13.7704

−3.7073 0.3177 0.3465 0.1997 0.2955 2.9448 8.728 7.689 7.6591 7.7709 7.7247

0.5643 3.3109 3.3618 3.0911 3.2849 5.0785
7.5576

4.105
11.067

7.4
13.714

7.4354
13.7226

7.2949
13.5131

7.3673
13.6937

2.4791 6.962 6.314 6.2872 6.2183 6.3264

n = 25 δ 1.0574 0.7607 0.763 0.7508 0.7334 0.7306
1.3843

0.028
3.857

0.248
1.416

0.2481
1.4163

0.2481
1.3778

0.248
1.3543

1.03 0.7333 0.7355 0.7234 0.706 0.6537 3.829 1.168 1.1682 1.1297 1.1063

0.0278 0.6421 0.6469 0.6215 0.5927 0.7823
1.3326

0.07
2.864

0.331
1.356

0.3319
1.3622

0.3294
1.3177

0.319
1.2817

0.5503 2.794 1.025 1.0303 0.9883 0.9627

σ 0.8828 0.5237 0.5238 0.5234 0.5224 0.8025
0.9631

0.268
2.03

0.371
0.632

0.3714
0.6324

0.3712
0.6321

0.3708
0.6319

0.3611 0.002 0.0021 0.0017 0.0007 0.1606 1.762 0.261 0.2611 0.2608 0.2611

0.0017 0.0049 0.0049 0.0049 0.0049 0.8152
0.9504

0.331
1.705

0.412
0.631

0.4116
0.6309

0.4114
0.6309

0.4108
0.6303

0.1352 1.374 0.219 0.2194 0.2195 0.2195

µ 4.371 0.1072 0.1132 0.089 0.0312 3.3328
5.4092

0.736
7.05

0.004
0.442

0.0044
0.4616

0.0044
0.3357

0.0015
0.1187

3.2126 −1.0512 −1.0452 −1.0694 −1.1272 2.0764 6.314 0.438 0.4572 0.3314 0.1172

0.2806 1.1208 1.1116 1.1515 1.2715 3.497
5.245

1.081
6.924

0.009
0.366

0.009
0.4048

0.009
0.2666

0.0026
0.0923

1.748 5.843 0.357 0.3958 0.2576 0.0897
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Table 2. Cont.

Par.
Point Intrval

ML SE LE1 LE2 GE ML Boot
strap

HPDSE HPDLE1 HPDLE2 HPDGE

τ 6.4887 10.1651 10.1893 10.0699 10.1456 5.4776
7.4997

4.08
13.449

7.103
12.454

7.1026
12.5488

7.1026
12.1554

7.1026
12.3822

−3.5368 0.1397 0.1639 0.0445 0.1202 2.0221 9.369 5.351 5.4462 5.0528 5.2795

0.2661 1.6401 1.656 1.5826 1.6381 5.6375
7.3398

4.134
11.872

8.057
12.057

8.198
12.1842

7.9144
11.9608

7.9333
12.0548

1.7023 7.738 4 3.9862 4.0464 4.1215

n = 50 δ 1.306 0.7934 0.7956 0.7836 0.7683 1.0508
1.5612

0.045
4.306

0.255
1.503

0.2555
1.507

0.2509
1.4554

0.2414
1.396

1.2785 0.766 0.7682 0.7561 0.7408 0.5103 4.261 1.248 1.2516 1.2044 1.1546

0.0169 0.6945 0.6991 0.6741 0.649 1.0912
1.5208

0.102
3.469

0.317
1.308

0.3177
1.3087

0.3161
1.304

0.3042
1.3018

0.4296 3.367 0.991 0.9909 0.988 0.9976

σ 0.9169 0.518 0.5181 0.5178 0.5171 0.8625
0.9712

0.252
2.228

0.366
0.653

0.3665
0.6536

0.3661
0.6531

0.365
0.6523

0.3952 −0.0038 −0.0037 −0.004 −0.0047 0.1087 1.976 0.287 0.2871 0.287 0.2874

0.0008 0.0044 0.0044 0.0044 0.0045 0.8711
0.9626

0.325
1.885

0.404
0.628

0.4043
0.629

0.4041
0.6261

0.4035
0.6205

0.0915 1.56 0.224 0.2247 0.222 0.217

µ 4.3197 0.1427 0.1506 0.1163 0.0276 3.6536
4.9858

0.55
7.035

0.003
0.789

0.0026
0.8551

0.0026
0.5736

0.0019
0.1317

3.1613 −1.0156 −1.0078 −1.0421 −1.1308 1.3322 6.485 0.786 0.8525 0.571 0.1298

0.1155 1.0707 1.0605 1.1081 1.2799 3.7589
4.8804

0.99
6.941

0.006
0.513

0.006
0.5699

0.006
0.3466

0.0023
0.1133

1.1215 5.951 0.507 0.5639 0.3406 0.111

τ 6.6441 10.2021 10.2187 10.1356 10.1887 5.968
7.3202

4.063
14.199

6.799
12.282

6.8126
12.3097

6.7487
12.147

6.7835
12.2636

−3.3813 0.1767 0.1933 0.1102 0.1633 1.3522 10.136 5.483 5.4971 5.3983 5.4801

0.119 1.2782 1.2829 1.2505 1.2797 6.075
7.2133

4.123
12.487

8.245
11.876

8.2567
11.9168

8.1858
11.7579

8.2297
11.8457

1.1383 8.364 3.631 3.6601 3.5722 3.6159

n = 100 δ 1.6427 0.7726 0.7748 0.7632 0.7467 1.4372
1.8482

0.055
4.769

0.313
1.293

0.3128
1.2965

0.3127
1.2798

0.3125
1.1974

1.6152 0.7451 0.7474 0.7358 0.7193 0.411 4.714 0.98 0.9837 0.9671 0.8849

0.011 0.6226 0.6268 0.6051 0.5783 1.4697
1.8157

0.104
4.138

0.366
1.203

0.3686
1.2057

0.3616
1.1889

0.3514
1.1748

0.346 4.034 0.837 0.8371 0.8273 0.8234

σ 0.9418 0.5157 0.5158 0.5155 0.5149 0.9056
0.978

0.275
2.37

0.426
0.61

0.4262
0.61

0.4261
0.6098

0.4259
0.6096

0.4201 −0.006 −0.006 −0.0062 −0.0068 0.0724 2.095 0.184 0.1838 0.1837 0.1837

0.0003 0.0028 0.0028 0.0028 0.0028 0.9114
0.9723

0.348
1.893

0.431
0.601

0.4313
0.6008

0.431
0.6007

0.4295
0.6004

0.0609 1.545 0.17 0.1695 0.1696 0.1709

µ 4.384 0.232 0.2442 0.19 0.0368 3.9463
4.8216

0.732
7.062

0.009
0.785

0.009
0.8254

0.0082
0.6529

0.0003
0.2209

3.2256 −0.9264 −0.9142 −0.9684 −1.1216 0.8753 6.33 0.776 0.8164 0.6447 0.2206

0.0499 0.906 0.8896 0.968 1.2624 4.0156
4.7524

1.159
6.969

0.014
0.71

0.014
0.7237

0.0139
0.5954

0.0007
0.1041

0.7369 5.81 0.696 0.7097 0.5815 0.1034
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Table 2. Cont.

Par.
Point Intrval

ML SE LE1 LE2 GE ML Boot
strap

HPDSE HPDLE1 HPDLE2 HPDGE

τ 6.7887 10.2314 10.2422 10.1876 10.2227 6.3275
7.2499

4.075
14.026

8.125
12.06

8.1681
12.0764

7.9705
11.9846

8.0848
12.0483

−3.2367 0.206 0.2168 0.1621 0.1973 0.9224 9.951 3.935 3.9083 4.014 3.9636

0.0554 0.7143 0.7158 0.704 0.7145 6.4004
7.1769

4.129
12.796

8.995
11.776

9.0071
11.7941

8.9532
11.6652

8.9856
11.7619

0.7765 8.667 2.781 2.787 2.7121 2.7764

n = 200 δ 1.8115 0.6668 0.6696 0.655 0.6279 1.6635
1.9594

0.05
5.23

0.264
1.158

0.2646
1.1606

0.2625
1.1272

0.2527
1.0693

1.784 0.6394 0.6422 0.6276 0.6004 0.2959 5.18 0.894 0.896 0.8647 0.8166

0.0057 0.4555 0.4599 0.4372 0.4015 1.6869
1.936

0.091
4.817

0.331
1.108

0.3311
1.1208

0.3293
1.0721

0.3208
1.0233

0.2491 4.726 0.777 0.7897 0.7428 0.7025

σ 0.9484 0.5123 0.5123 0.5121 0.5119 0.9246
0.9723

0.261
2.43

0.421
0.595

0.4207
0.5951

0.4206
0.595

0.4203
0.5948

0.4267 −0.0095 −0.0094 −0.0096 −0.0099 0.0477 2.169 0.174 0.1744 0.1744 0.1744

0.0001 0.0017 0.0017 0.0017 0.0017 0.9284
0.9685

0.331
1.968

0.453
0.583

0.453
0.5831

0.4525
0.5829

0.4511
0.5825

0.0402 1.637 0.13 0.13 0.1304 0.1315

µ 4.1174 0.3197 0.3323 0.2738 0.067 3.8483
4.3864

0.403
7.037

0.024
0.96

0.0248
0.9792

0.0225
0.8627

0.0012
0.5413

2.959 −0.8387 −0.8261 −0.8846 −1.0914 0.5381 6.634 0.936 0.9544 0.8402 0.5401

0.0188 0.7605 0.7429 0.8281 1.214 3.8909
4.3439

0.664
6.906

0.041
0.84

0.0415
0.8843

0.0391
0.7398

0.0015
0.1768

0.453 6.242 0.799 0.8427 0.7007 0.1754

τ 6.9837 10.1202 10.1299 10.0817 10.1126 6.6582
7.3092

4.095
14.269

9.117
11.188

9.126
11.1972

9.0864
11.1518

9.1103
11.1814

-3.0417 0.0948 0.1045 0.0563 0.0872 0.651 10.174 2.071 2.0712 2.0653 2.0711

0.0276 0.3253 0.3287 0.3134 0.3233 6.7097
7.2577

4.151
13.153

9.229
11.057

9.2409
11.06

9.1831
11.0046

9.2188
11.0555

0.548 9.002 1.828 1.819 1.8216 1.8366

n = 400 δ 1.9108 0.5999 0.6029 0.5873 0.5508 1.8052
2.0165

0.029
5.514

0.297
0.97

0.297
0.9733

0.2951
0.9582

0.2851
0.9249

1.8834 0.5724 0.5755 0.5599 0.5234 0.2113 5.485 0.673 0.6762 0.6632 0.6398

0.0029 0.355 0.359 0.3387 0.2978 1.8219
1.9998

0.074
4.987

0.354
0.913

0.3542
0.9171

0.353
0.8986

0.341
0.8709

0.1779 4.913 0.559 0.5628 0.5456 0.5299

σ 0.9527 0.513 0.5131 0.513 0.5127 0.9363
0.9692

0.282
2.319

0.444
0.557

0.4441
0.5575

0.4441
0.5572

0.4441
0.5567

0.431 −0.0087 −0.0087 −0.0088 −0.009 0.033 2.037 0.113 0.1134 0.1131 0.1127

0.0001 0.0009 0.0009 0.0009 0.0009 0.9389
0.9666

0.35
2.014

0.46
0.555

0.46
0.5552

0.4595
0.5552

0.4581
0.5552

0.0278 1.664 0.095 0.0952 0.0957 0.0971

µ 4.103 0.5107 0.5225 0.4656 0.2524 3.9184
4.2876

0.388
7.018

0.06
1.25

0.0602
1.2675

0.0584
1.2317

0.0043
1.2211

2.9446 −0.6477 −0.6359 −0.6928 -0.906 0.3692 6.63 1.19 1.2073 1.1733 1.2168

0.0089 0.5143 0.4997 0.5724 0.953 3.9476
4.2584

0.764
6.867

0.097
1.146

0.0995
1.148

0.0867
1.1402

0.0054
1.0922

0.3108 6.103 1.049 1.0486 1.0535 1.0868
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Table 2. Cont.

Par.
Point Intrval

ML SE LE1 LE2 GE ML Boot
strap

HPDSE HPDLE1 HPDLE2 HPDGE

τ 7.058 10.1735 10.1822 10.1382 10.1667 6.7917
7.3242

4.064
14.518

9.206
11.574

9.2141
11.6015

9.1754
11.3311

9.1988
11.5544

−2.9674 0.1481 0.1568 0.1128 0.1413 0.5324 10.454 2.368 2.3874 2.1557 2.3556

0.0184 0.3736 0.382 0.342 0.3681 6.8339
7.2821

4.125
13.313

9.296
11.245

9.2976
11.2547

9.2714
11.2005

9.2924
11.2372

0.4482 9.188 1.949 1.957 1.9291 1.9448

n = 600 δ 1.8777 0.5827 0.5865 0.5669 0.5185 1.7953
1.9601

0.025
5.605

0.317
0.834

0.3181
0.8409

0.3126
0.8068

0.2643
0.7471

1.8503 0.5552 0.5591 0.5395 0.491 0.1648 5.58 0.517 0.5228 0.4942 0.4828

0.0018 0.3266 0.3314 0.3076 0.2572 1.8083
1.9471

0.06
4.97

0.356
0.827

0.3567
0.8342

0.354
0.7973

0.3023
0.7436

0.1388 4.91 0.471 0.4775 0.4433 0.4413

σ 0.9365 0.5151 0.5151 0.515 0.5149 0.9237
0.9494

0.247
2.501

0.469
0.558

0.4694
0.5577

0.4691
0.5576

0.4686
0.5572

0.4148 −0.0066 −0.0066 −0.0067 −0.0068 0.0257 2.254 0.089 0.0884 0.0884 0.0886

0 0.0005 0.0005 0.0005 0.0005 0.9257
0.9474

0.323
1.894

0.483
0.548

0.4826
0.5482

0.4824
0.548

0.4817
0.5477

0.0217 1.571 0.065 0.0656 0.0657 0.066

µ 3.8824 0.7874 0.7952 0.7561 0.626 3.7438
4.021

0.345
6.939

0.202
1.215

0.2073
1.22

0.182
1.1943

0.0051
1.1814

2.724 −0.371 −0.3632 −0.4023 −0.5324 0.2772 6.594 1.013 1.0127 1.0123 1.1764

0.005 0.2101 0.203 0.2401 0.433 3.7657
3.9991

0.658
6.754

0.357
1.168

0.3735
1.1817

0.2946
1.1593

0.0135
1.1406

0.2333 6.096 0.811 0.8082 0.8647 1.127

Point estimate: first line represents estimate and second line represents ER. Interval estimate: 95% and 90%
interval estimate, respectively. The first and second lines show the credible HPD interval and the corresponding
width of the parameter, respectively.

The simulation experiments can be explained though the following steps:

1. In most cases, the Bayesian estimates of τ are overestimated, while the MLE estimates
is underestimated.

2. In most cases, the estimates of δ are overestimated.
3. In most cases, the Bayesian estimates of µ and σ are underestimated, while the MLE

estimates is overestimated.
4. In most cases, the Bayesian estimates of τ is overestimated, while the MLE estimates

is underestimated.
5. The results shows that the Bayesian estimate based Linex with negative ρ approach

gives better estimates other Bayesian estimators.
6. The performance of MLE was also good even when the small sample sizes.
7. At the level of confidence intervals, there is a significant superiority the Bayesian approach.

7. Application of the GWW D

In this section, the flexibility in practice of the GWWD model was illustrated by ana-
lyzing two practical data sets. Example 1: The actuarial data that introduced by Wong [36].
The point and interval estimation are presented in Tables 3 and 4. Example 2: The Civil
Engineering Cement Manufacturing Dataset of size 16 was taken from the engineering field
that represent the cement measured in kg in am3 mixture and is given by: 141.3, 168.9, 250,
266, 154.8, 255, 166.8, 251.4, 296, 155, 151.8, 173, 385, 237.5, 167, 213.8.
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Table 3. Point estimation of the actuarial data.

Point
Par. a b ML SE LE1 LE2 GE

τ 0.578219 0.74522 0.0108 0.1947 0.1953 0.1923 0.158
−3.2434 −3.0594 −3.0588 −3.0618 −3.0962
0.0027 9.3677 9.3641 9.3822 9.5934

γ 0.774842 0.22833 0.0154 2.626 2.6799 2.399 2.4024
−0.4222 2.1883 2.2422 1.9613 1.9648
0.1582 5.1654 5.4436 4.1231 4.2406

δ 0.866376 0.039942 0.5483 0.5499 0.5499 0.5499 0.5499
−1.9734 −1.9718 −1.9718 −1.9718 −1.9718

0.001 3.8882 3.8881 3.8882 3.8884
σ 0.536458 0.645524 0.0046 0.0034 0.0034 0.0034 0.0025

−1.8343 −1.8355 −1.8355 −1.8355 −1.8364
0.001 3.369 3.3689 3.3689 3.3724

First line represents estimate, second line represents bias, and third line represents ER.

Table 4. Interval estimation of the actuarial data.

Interval

Par. a b ML HPDS HPDLE1 HPDLE2 HPDGE

τ 0.578219 0.74522 0.001
0.1123

0.051
0.348

0.0515
0.3487

0.0507
0.3439

0.019
0.3077

0.1113 0.297 0.2972 0.2932 0.2887
0.001

0.0962
0.06

0.331
0.0607
0.3314

0.0595
0.3272

0.0328
0.3004

0.0952 0.271 0.2707 0.2677 0.2676

γ 0.774842 0.22833 0.001
0.795

1.568
3.846

1.5815
4.0513

1.4289
3.443

1.2721
3.5939

0.794 2.278 2.4698 2.0141 2.3218
0.001

0.6717
1.719
3.787

1.7276
3.8726

1.6032
3.3122

1.3592
3.4139

0.6707 2.068 2.145 1.709 2.0546

δ 0.866376 0.039942 0.5377
0.5589

0.515
0.58

0.5148
0.5802

0.5148
0.5802

0.5147
0.5802

0.0213 0.065 0.0654 0.0654 0.0655
0.5393
0.5572

0.525
0.575

0.5249
0.5752

0.5249
0.5751

0.5248
0.5749

0.0179 0.05 0.0503 0.0502 0.0501

σ 0.536458 0.645524 0.0017
0.0074

0.001
0.01

0.0002
0.0104

0.0002
0.0104

0.001
0.0102

0.0057 0.009 0.0102 0.0102 0.0092
0.0022
0.007

0.001
0.01

0.0002
0.0099

0.0002
0.0099

0.001
0.0097

0.0048 0.009 0.0097 0.0097 0.0087
The first and second lines show the credible HPD interval and the corresponding width of the parameter,
respectively. 95% and 90% interval estimate, respectively.

The data are analysed and the maximum likelihood and Bayesian estimates of the model
parameters are obtained. Table 3 shows the result of the point estimation of the actuarial
data and Table 4 shows the result of the corresponding interval estimations. To decide about
the best fitting among the competitive distributions, One-sample Kolmogorov-Smirnov test
statistic with its corresponding p-value are taken calculated. The comparison of the GWWD
distribution is made with some important distributions including generalized Weibull two-
parameter Weibull distribution (GW-OWD), exponentiated distribution (EXP-WD) and
two-parameter Weibull distribution (TW-D). The CDF of the competing probability models
are, respectively, given by
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F(x; τ, δ, σ) = 1− e−τ( x
σ )

δ

, x ≥ 0; τ, δ, σ,> 0, (55)

F(x; τ, δ, σ) =
(

1− e−(δx)σ
)τ

, x ≥ 0; τ, δ, σ > 0. (56)

F(x; δ, σ) = 1− e−δxσ
, x ≥ 0; δ, σ > 0. (57)

Table 5 shows the one-sample Kolmogorov-Smirnov test of the actuarial data.
Table 6 shows the result of the point estimation of the engineering data and Table 7 shows
the result of the corresponding interval estimations. The one-sample Kolmogorov-Smirnov
test of the engineering data is presented in Table 8.

Table 5. One-sample Kolmogorov-Smirnov test of the actuarial data.

Model KS p-Value

GWWD 0.15252 0.9476
GW-OWD 0.21753 0.6559
EXP-CD 0.22573 0.6116

TW-D 0.26447 0.4142

Table 6. Point estimation of the engineering data.

Point
Par. a b ML SE LE1 LE2 GE

τ 0.241816 0.521228 0.4401 0.1312 0.1318 0.1292 0.1068
−2.814 −3.1229 −3.1223 −3.125 −3.1473
0.3444 9.7559 9.7525 9.7687 9.9083

γ 0.104293 0.476433 0.1949 0.4171 0.4181 0.4135 0.4034
1.4649 0.9716 0.9684 0.9837 0.9958
0.0001 1.2135 1.2084 1.233 1.2613

δ 0.020871 0.796755 1.61 1.4092 1.5439 1.0328 0.7481
1.1723 0.9715 1.1062 0.5952 0.3105
2169.2 1.4276 1.7777 0.648 0.4358

σ 0.764295 0.747721 0.5833 0.8495 0.8565 0.8213 0.7738
−1.2555 −0.9894 −0.9824 −1.0176 −1.065
0.0853 1.2636 1.2578 1.2885 1.4146

First line represents estimate, second line represents bias, and third line represents ER.

Table 7. Interval estimation of the engineering data.

Interval
Par. a b ML HPDS HPDLE1 HPDLE2 HPDGE

τ 0.241816 0.521228 −0.7101
1.5903 0.039 0.268 0.0386 0.2701 0.0383 0.2571 0.0237 0.2036

2.3003 0.229 0.2315 0.2188 0.1798
−0.5282
1.4084 0.043 0.241 0.0433 0.2424 0.0433 0.2344 0.031 0.1875

1.9365 0.198 0.1991 0.1911 0.1565
γ 0.104293 0.476433 0.0568 0.3928 0.1497 0.8421 0.1503 0.8439 0.1495 0.8371 0.1468 0.8244

0.3359 0.6924 0.6935 0.6876 0.6775
0.0747 0.3576 0.1800 0.8080 0.1798 0.8112 0.1792 0.7962 0.1748 0.7854
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Table 7. Cont.

Interval
Par. a b ML HPDS HPDLE1 HPDLE2 HPDGE

0.2828 0.6279 0.6313 0.6169 0.6106
δ 0.020871 0.796755 -89.67 92.89 0.016 2.582 0.0159 2.8682 0.0159 2.1998 0.0134 2.103

182.574 2.566 2.8523 2.1839 2.0896
−75.2386

78.45 0.369 2.504 0.418 2.6762 0.2734 1.92 0.0386 1.8855

153.697 2.135 2.2583 1.6467 1.8469
σ 0.764295 0.747721 0.011 1.1556 0.188 1.976 0.1964 1.9812 0.1638 1.9556 0.0951 1.9545

1.1446 1.788 1.7848 1.7918 1.8594
0.1015 1.0651 0.276 1.703 0.2779 1.7123 0.2657 1.6623 0.1272 1.6482

0.9636 1.427 1.4345 1.3966 1.5209

The first and second lines show the credible HPD interval and the corresponding width of the parameter,
respectively. 95% and 90% interval estimate, respectively.

Table 8. One-sample Kolmogorov-Smirnov test of the engineering data.

Model KS p-Value

GWWD 0.52541 0.0001215
GW-OWD 0.57143 1.797 × 10−5

EXP-WD 0.85718 6.106 × 10−14

TW-D 0.53245 9.201 × 10−5

8. Discussion and Future Works

The use of the Weibull distribution with the generalized Weibull distribution family
used resulted in the generation of a new distribution with desirable properties that had
not been studied previously. Generating new distributions from the existing ones is useful
if the new distribution has sufficiently novel, and interesting properties. Applying this
distribution to new domains and using it to model processes not described in the sta-
tistical literature is not straightforward. In this work, we applied a new GWWD model
to new domains and used the distribution in modeling processes that differ from those
in the statistical literature. We have presented a new application to actuarial and engineer-
ing data using several different methods. Sometimes the development of a basic model
such as the Weibull distribution, exponential distribution, or other basic distributions using
a particular family is not sufficient and leads to some problems that need to be considered.
Sometimes the developed model lacks a scale or location parameter, which proves to be
a weakness when modeling different data. One of the strengths of the proposed GWWD
is that it has a location parameter µ, a scale parameter σ, and two shape parameters τ
and δ. Increasing the number of parameters leads to problems in the estimation and
complexity of the shape of the distribution and its equations, which leads to difficulties
in the application of the new distribution. This study showed a match between the fam-
ily used and the Weibull distribution, resulting in a new distribution to which only one
shape parameter τ was added, increasing flexibility even though the family used had two
parameters. The Kolmogorov-Smirnov test is a test that can be used to check whether
a data set comes from a particular distribution. It is a non-parametric test. It is applicable
for continuous distributions. The basic idea is to compare the empirical CDF and the actual
CDF of the distribution and find out how far the empirical CDF is from the ideal CDF.
The test works by calculating the maximum difference between the two cumulative distri-
bution functions. If this maximum difference is greater than a certain threshold, the null
hypothesis is rejected. The null hypothesis states that the two samples are from the same
distribution. The Kolmogorov-Smirnov test is used to compare two samples and determine
if they are from the same distribution. It can also be used to compare a sample to a the-
oretical distribution. From the results in Tables 5 and 8, it can be seen that the GWWD
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model could be selected as the best model among the fitted models because the proposed
model has the highest values for the Kolmogorov-Smirnov p-value. Other methods can be
used to estimate the parameters, extend the practical application of data from other areas,
and use the proposed distribution as a new family to generate new models and improve
the properties of the distribution.

9. Concluding Remarks

In this paper, a new extension of the Weibull distribution, the generalized Weibull-
Weibull distribution with four parameters, is proposed and studied in detail. The proposed
model changes the properties of the distribution. In addition, the flexibility of the density
shapes of the model was improved. It can take a heavy tail shape, an inverted J-shape,
a decreasing modified bathtub shape, an increasing symmetric, asymmetric and unimodal
shape. The failure rate function can take a variety of forms and therefore occupies an impor-
tant place in reliability analysis. All the functions obtained have a closed form, which has
the advantage that the distribution can be studied scientifically as well as used in practical
applications for control, prediction and decision making. The quantile function, moments,
information generating function, information generating measure, Shannon entropy, infor-
mation energy, and joint CDF of the two marginal univariate distributions were provided
in simple and closed forms. Maximum likelihood estimators for the intended model pa-
rameters and a Bayesian study were used to estimate the parameters. Performance is
evaluated against the detailed classified simulation results to determine the best estima-
tion approach for the model parameters. The one-sample Kolmogorov-Smirnov test is
used to compare the generalized Weibull-Weibull distribution and other competing dis-
tributions. After analyzing these two data sets, the results indicate that the generalized
Weibull-Weibull distribution provides a better fit than other competing models and could
be chosen as an appropriate model for analyzing the actuarial and technical data.
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Saud University, Riyadh, Saudi Arabia.
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