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Abstract: In this article, we present a new statistical modification of the Weibull model for up-
dating the flexibility, called the generalized Weibull-Weibull distribution. The new modification
of the Weibull model is defined and studied in detail. Some mathematical and statistical functions are
studied, such as the quantile function, moments, the information generating measure, the Shannon
entropy and the information energy. The joint distribution functions of the two marginal univariate
models via the Copula model are provided. The unknown parameters are estimated using the maxi-
mum likelihood method and Bayesian method via Monte Carlo simulations. The Bayesian approach
is discussed using three different loss functions: the quadratic error loss function, the LINEX loss
function, and the general entropy loss function. We perform some numerical simulations to show
how interesting the theoretical results are. Finally, the practical application of the proposed model is
illustrated by analyzing two applications in the actuarial and engineering fields using corporate data
to show the elasticity and advantage of the proposed generalized Weibull-Weibull model. The practi-
cal applications show that proposed model is very suitable for modeling actuarial and technical data
sets and other related fields.

Keywords: Weibull distribution; family of generalized Weibull; maximum likelihood estimation;
bayesian estimation; statistical modeling

1. Introduction:

Statistical methods play a crucial role in analysis of measurement system errors [1],
test data [2], sports data [3], reliability [4], medical data [5], robust analysis [6], educational
data [7], risk assessment [8], social data [9], and other important fields in the tech world.
In addition to the areas already mentioned, the application of statistical methods to data
analysis in the world of engineering [10] and actuarial data [11] has attracted the inter-
est of researchers. Due to the crucial role that statistical models play in data analysis
in the technology industry, many new statistical approaches have been proposed and im-
plemented. These methods are very useful to update the distribution elasticity for statistical
distributions [12].

Many applications in the world need statistical description to be more understandable
to the reader, but there is no specific statistical distribution that describes all these phe-
nomena. Recently, many attempts have aroused the interest of researchers in the statistical
literature to define new flexible distributions for modeling and analyzing data in different
domains. Thus, several families have been proposed in the statistical literature that generate
novel models by adding one or more parameters to improve other flexible models [13-19].
These distributions are usually derived from existing distributions by introducing new
parameters or making some modifications to the existing probability density functions.
Each of these distributions has its own advantages and disadvantages and can be used
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for different types of data analysis. However, in many applied fields, there is a clear need
for modified forms of these models, since the basic models do not provide an adequate fit
to real data in many practical situations.

In general, actuarial and technical data are positively skewed [20,21] or unimodally
shaped [22] and have heavy tails [23]. In [24], it is shown that right-skewed data sets can be
modeled by skewed statistical distributions. Therefore, some unimodal and right-skewed
distributions have been used to analyze such data [25,26]. In the letters, most modifications
of the Weibull model have been discussed by introducing new families of models.

The Weibull distribution is used to simulate many probabilistic applications. The Weibull
distribution has many useful physical explanations and nice and desirable properties.
Over the last half century, the Weibull model has become remarkably important in the field
of durability and reliability testing. Let X be a random variable (R.V.) that follows the three-
parameters Weibull(B, o, ), then its cumulative distribution function (CDF) is given by

N
G(x;B,0,1) :1—67(T) , x> B,o,u>0. 1)
where x > 1, ¢ > 0 is the scale parameter and > 0 is the shape parameter. The probability
density function (PDF) is

—_ g\ A1 _unB
x (=
g(x;ﬁ,cw)=§<ay> e (), x> p,0,pu>0. 2)
A generalized family of univariate distributions with two additional positive parame-
ters T and A was generated by Weibull random variables, proposed by Cordeiro et al. [27]
and called the generalized Weibull family. The CDF and PDF of the generalized Weibull
family for any baseline CDF G(x) (for x € R) and PDF g(x) are given, respectively, by

F(;T,A) =1— exp{—’r(—log[l - G(x)])ﬂ, 3)
and
e, ) = {25 (togl1 — G exp( (- log1-Gl))). @

In this article, we propose a new approach to update the level of the distributional
flexibility of the Weibull model. The new flexible distribution, called the generalized
Weibull-Weibull model. The extended model is more flexible and can provide a reason-
able fit when modeling actuarial and technical data sets and other related fields. Some
key motivations for using the new generalized Weibull-Weibull distribution (GWWD)
modification:

(i) improve the flexibility and distribution properties of Weibull model.

(ii) the evolution has added only one parameter to the Weibull distribution in this way,
although the family was originally built from two parameters. As the number of pa-
rameters increases, many difficulties arise, from which, sequences of estimation prob-
lems arise, and more computational effort is required to obtain the basic mathematical
properties, etc.

(iii) a convenient and very simple way to mutate the Weibull model-only one parameter
addition.

(iv) can take several forms: a right-skewed form, a left-skewed form, a decreasing form,
a curved form, and a symmetric form. The failure rate function also can take a variety
of forms, so it has important standing in reliability analysis.

(v) the model functions have simple and closed forms.

The rest of this work was presented as follows. The GWWD is provided in Section 2.
In Section 3, some mathematical properties and information generating measures are
reported. The maximum likelihood estimators as well as the bootstrap confidence in-
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tervals: Boot-p Algorithm of the proposed model parameters are obtained in Section 4.
The Bayesian estimation of the model parameters under three loss functions are discussed
in Section 5. In Section 6, the performance of the introduced estimators ar evaluated via
numerical simulations. A real business data sets are analysed in Section 7. Section 8 show
the discussion and future works. Some conclusions are provided in Section 9.

2. The GWWD

This section provides the GWW D sub-model from Cordeiro generalized Weibull family.

Consider X is R.V. follow (~) the three-parameters Weibull(, o, ) with CDF that
given in Equation (1). For location parameter y € R™, scale parameter 6 € R, two shape
parameters 7,0 € R*, and X > y, the GWWD can be formed by replacing g(x) and G(x)
in Equations (4) and (3) by g(x; B, 0, #) and G(x; B, o, i) that given in Equations (2) and (1),
respectively. The CDF and PDF of the GWWD are given, respectively, by

ﬂ)é

F(x;r,é,a,y)zl—e_T( 7 x> wuT,d,0,u>0, (5)
and 1
_ - P
f(x;t,6,0,u) = %5 (T) e (F), x> u;T,0,0,u>0. (6)
The hazard rate function (HRF) and survival function (SF) of time ¢ are
T (t—p -1

H(t, = —| — . 7
(t;T,6,0,u) - ( - ) (7)

and S

Y (i

S(t;1,8,0,1) =e (), ®)

where § = A x B. Thus, we find compatibility between the generalized Weibull family
and the Weibull model and note that evolution has added only one parameter to the
Weibull distribution in this way, although the family was originally built from two param-
eters F(x; T, A, B,0,u) = F(x;T,AB,0,1) . For T = A = 1, the three-parameter Weibull
model(B,o, u) follows as a special sub-model from the GWWD model
For 7t = A = 1 and p = 0, the two-parameter Weibull model(B, ¢) follows as a spe-
cial sub-model from the GWWD model. The one parameter Weibull model (B) follows
as a special sub-model from the GWWD when T = A = 1 and ¢ = y = 0. The exponential
model(c) follows as a special sub-model from the GWWD model when p =t =A =1
and u = 0.

For selected parameters values of the GWWD model, Figure 1 show different vi-
sual illustrations for the PDF of GWWD model. The corresponding HRF are showed
in Figure 2, respectively. The illustrations of the PDF are obtained for (i) GWWD(10.2, 10.9,
0.50, 1.9, 0.20) (blue curve line), (ii) GWWD(02.2, 10.9, 0.50, 1.9, 0.20) (orange curve line),
(iii) GWWD(10.2, 06.9, 0.50, 1.9, 0.20) (green curve line), (iv) GWWD (10.2, 10.9, 0.65, 1.9,
0.20) (red curve line), and (v)GWWD(0.20, 12.9, 0.30, 1.1, 0.01) (purple curve line) in the left
panel plot. Figure 1 (right panel plot) is for (i) GWWD(0.90, 0.90, 0.90, 0.9, 0.20) (blue curve
line), (ii) GWWD(1.20,1.90, 0.45, 1.9, 0.40) (orange curve line), (iii) GWWD(8.20, 6.00, 0.15,
1.9, 0.20) (green curve line), (iv) GWWD (10.2, 1.90, 0.65, 1.9, 0.20) (red curve line), and
(v)YGWWD(5.20, 13.0, 0.30, 1.1, 0.01) (purple curve line).
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— GWWD(10.2,10.9,0.50,1.8,020) — GWWD(0.90,0.90,0.90,0.9,0.20)
GWWD(02.2,10.9,0.50,1.9,0.20) ¢ GWWD(1.20,1.90,0.45,1.9,0.40)
GWWD(10.2,06.9,0.50,1.9,0.20) GWWD(8.20,6.00,0.15,1.9,0.20)

~—— GWWD(10.2,10.9,0.65,1.9,0.20) ~— GWWD(10.2,1.90,0.65,1.9,0.20)

~— GWWD(0.20,12.9,0.30,1.1,0.01) —— GWWD(5.20,13.0,0.30,1.1,0.01)

02 04 06 08 10 12 14

. — GWWD(10.2,10.9,0.50,1.9,0.20) _ — GWWD(0.90,0.90,0.90,0.9,0.20)
g GWWD(02.2,109,0.50,1.8,020) & © GWWD(1.20,1.90,0.45,1.9,0.40)
s GWWD(10.2,06.9,0.50,1.9,0.20) % GWWD(8.20,6.00,0.15,1.9,0.20)
g — GWWD(102,109,0.65,1.9,020) & — GWWD(10.2,1.90,0.65,1.9,0.20)

— GWWD(0.20,12.9,0.30,1.1,0.01) — GWWD(5.20,13.0,0.30,1.1,0.01)

To 2 3 4 ) 02 04 06 08 1.0

Figure 2. Visual illustration of HRF for the GWWD(7, 4,0, i).

Figure 1 show the flexibility of the GWWD model. These modified model can provide
heavy tail shaped, reversed-] shaped, decreasing, modified bathtub, increasing, symmetric,
asymmetric, and unimodal density shapes. From Figure 2, it can be seen that GWWD
has monomodal characteristics and an increased failure rate. The monomodal failure rate
and increased modal properties are another advantage of the proposed model along with
the heavy tail behaviour. Therefore, the proposed model is suitable for modeling actuarial
and technical data sets and other related fields that have corresponding behaviour.

3. Properties of the GWWD

Some mathematical quantities and information generating measures of the GWWD
were introduced in this section.

3.1. Quantile Function

With reference to a continuous and strictly monotonic CDFE. Let Qgwwp (#) be the quan-
tile function of GWWD(, 6,0, i), then

Qowwp(#) = Xy = F ' (;1,6,0, 1), )
where 0 < u < 1. Inverting F(x; 7,8, 0, ) = uin(5), the Qawwp (1) of X ~ GWWD(t,d,0, 1) is

X, :U<_Tllog[1—u]>§ +u. (10)

The median (Me) of X ~ GWWD(7,d,0,u) when u = % is obtained as

1
5
Me = (7(0'693147> + u. (11)

Setting u ~ uniform(0,1), we also (10) can be used for simulating GWWD(<, 6,0, jt)
R.Vs.

3.2. Moments
,
Let X ~GWWD(7, 4,0, 1), and r € Z an optional constant, the expectation of (’C?TH) ,

can be written as

X —p r 71_5 ©/x—u r+(571_T%[5
()2 [0 e
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N
using the integral transformation z = (%) , we have

r o0
E((x—y) ) = T/ zée iz
(% 0

- r—%r(l n g) (13)

where I'(.) is gamma constant. Explicit expressions for moments can be produced using (13). In
particular, the 1 and 2"¢ moments, can be derived by sitting » = 1 and r = 2, respectively

and )
i = E(x2> = 2u —]12+02T§1—'<1—|—5>. (15)

Using Equation (14) and (15), the variance of GWWD, take the form

2
Var(X) = p +ar«’sr<1 + (15> - (2;1;/1 -+ azrfsr(l + §>> . (16)

The Skewness and Kurtosis Functions
By using Equation (10), we can derive (i) the skewness and (ii) the kurtosis.
The Skewness (S;) (see, Bowley [28]) and Kurtosis (K) (See, Moor [29]) formulas are,
respectively, given by
2X19 — X34 — X Xi1/8—X X5/8 — X
S, = A2 A4 T A4 g g 218 3/8 + X5/8 7/8
X174 — X3/4 Xo/8 — Xe/8

And by using Equation (10), we can write

1

B log(%) i Zlog(Z)% + log(4)%

- log<%) : + log(4)%

5k(9) / (17)

=
=
=

1
—log(§)° +1log(5)
1

log(4)" —log(4)

Based on Equations (17) and (18) and as expected, the new shape parameter ¢ is
the only one that affects the form and value of both S; and K. Table 1 represent some
numerical values of the X, via p = 0.50,7 = 1.1,c = 1.0,y = 1.1), S; and K for
6 =10.05,0.2,0.4,0.6,0.8,1,3.288,3.285,3.289, 7, 20, 60, 80.

Based on Table 1, Figure 1 plots the Si(left panel) and K (right panel). Figure 1 shows
that, the model Sy is positive (right skew) Vo < 3.285 then the model Sy become negative
(left skew) while the K is positive (leptokurtic) and the Kurtosis effect increase as J decrease.

—log(8)?

8
k(o) = 2807) , (18)

I

o



Symmetry 2023, 15, 560

6 of 19

Table 1. Some numerical values of the Xp, Sk and K for some ¢ values.

s X, Sk K
0.05 1.1001 0.999998 3325.26
0.2 1.20034 0.938246 7.42379
0.4 1.41835 0.679392 2.44666
0.6 1.56778 0.477511 1.66985
0.8 1.66704 0.347893 1.41426

1 1.73644 0.26186 1.30627
3.288 1.97765 112 x 1075 1.21002
3.285 1.97765 0 1.21002
3.289 1.97769 —24 %107 1.21003

7 2.04552 —0.0628706 1.23677
20 2.08695 —0.099024 1.26168
40 2.09841 ~0.108735 1.26962
60 2.10226 ~0.111969 1.27239
80 2.10419 ~0.113586 1.2738

3.3. The Information Generating Function

The information generating function is a mathematical tool used to measure the amount
of information contained in a given set of data. It is defined as the sum of the logarithms
of all possible outcomes, weighted by their respective probabilities. Finally, the information
generating function can be used to compare different models or algorithms for predicting
outcomes based on data. By calculating the IGF for each model or algorithm, we can
determine which one has better predictive power and thus contains more information
about the underlying data.

Let X ~ f(x), the information generating function (), (X), for any « > 0 (See, Golomb [30]),

is defined as .
,(X) = [ (F(x))"dx. (19)
Suppose the R.V. X ~GWWD(7, J, 7, jt). By substituting (6) in (19), O, (X) become
0, (X) :/ <T‘5(x”> e~ T(F) ) dx. (20)
p \o\ o
6
By using the integral transformation y = 77y (%) , we get
=) 1 1—7
0,00 = (07 () rr (74157, @)

In particular Q;(X) = 1. Let X(") = (X, ..., X;;) be a simple random sample (SRS)
of size n, where X ~ f(x). Then, the information generating measure of vector X is

given by
0, (x) = / §

[T [ s = ([ rwa) =@y @

FY (1) fY (300X . dxy

Then, the corresponding (), (X(”>) ased on GWWD(7, 4,0, 1), is given by

b
QW(X(”)) _ () () < ) (r(wr 157>)n (23)

For more details about the IGF and its extensions one may see Lépez-Ruiz et al. [31].
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3.4. The Shannon Entropy (H)

The information generating function can be used to calculate measures of uncertainty
such as Shannon entropy. The Shannon entropy measure is useful for quantifying how
uncertain we are about a given set of data or how much uncertainty there is in a system.
The Shannon entropy, or Information entropy was introduced by Claude Shannon [32], and
is defined as

H=— [ f(x)log(f(x))d. (24)
H can obtain from Q) (X) as
H - _00,(X)
97 |1
-1 +e<1 - ;) - log((i) - IOg(S(T), (25)

where ¢ is Euler’ s constant (= 0.577216).

3.5. The Informational Energy (IE)

Many series of computational intelligence tools are based on the informational energy
(IE). IE for any X ~ f(x), is given by

IE=— / £2(x)dx. (26)
X
In particular, Q0 (X) is simply IE when 7 = 2, and is given by

2*2+%5r%r(2— %)

o

IE — (27)

For some applications and the usefulness on IE, see, Cataron and Andonie [33].

4. Maximum Likelihood Estimation (MLE)

Consider x1, X7, ..., X;; are observed values of Xi.,,, X5.;, . . . Xy, that is an ordered random
sample from the GWWD(7, d, 0, u) given in (6). The GWWD(7, §, o, i) likelihood is

= (Z(j) (lﬂl(xi - u)“)eil"”W) : 8)

i=1

and the log-likelihood function (L) is
L n =\’
L = nlog[ts] — néloglo] + (6 —1) ) _log[x; —pu] — 7Y (U) . (29)
i=1 i=1

The first partial derivatives of (29) w.r.t T,J, 0, i are

oL n G(xi—pu 0

= - I-n(Et) 0
i=1

o n L xi—p\'  [—ntx

% = 5—nlog[a]—i—ni;(log[xl—y]—T(U) 10g[0_} , (31)

oL 6 T xi—p)

oL nrs (xi— ! 1
T <51>Z(g(0 ) xi—y) )
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The maximum likelihood estimators Ty, dpr, Opr, and fisr of the GWWD(t, 6,0, i)
parameters are the solutions of the Equations (30)-(33) .

The asymptotic confidence intervals of the parameters 7,6, and . Then V = V
(ML, , OML, OML, ML) = [(fi/j}, i,j =1,2,3,4is the variance covariance matrix, such that

4 -1

0L 9’L 9’L 9’L
at? ATl reaaeles JTou

%L %L 2L %L
9601 0B'2 9690 969

V(t,6,0,1) = — , (34)
PL PL PL PL
00T 909 d0? doou
L L L L
| duot 01106 oo a2 |
where
o’L n
o = )
PL o E(xi—p\, [xi—p
9Tds l;( o ) log{ o }’ (36)
0’L R 5
ot od+2 izzl(Xi - ]’l) 4 (37)
0L & (xi—p o1
ot (71;( o ) ’ 38)
2L n xi—p\° [xi—p]?
2 = _;B,Z_TZE( = ) log[ - ] , (39)
L 1 mx -\’ Xj— i
u\? _ _\6—1
PLo_ [ (27 . Slog| -] (%54) )
d6ou = xi—nu Xi— M o ’
0°L ! 5
ﬁ - 72 n+TZ(5_72_1)(xl—]/l) ’ (42)
4 i=1
9L 5\2 & Xi— i -1
dooy _T<0'> g( o > ’ (43)
L U 1 1-06\ (xi—p\° 2
— = (-1 — +r5< )( ; ) . (44)
o 1:21 (xi —p)° o2 v

A 100(1 — €)% two-sided approximate confidence intervals for the parameters 7, d, o

and p are then given by T+ z /2 /V (%), 0 £ z¢ 21/ V(8), 0 + 20 /21/V (7), and fi £ z¢ ;o /V (}),
respectively, where V (1), V(§), V(&), and V (j1) are the estimated variances of T, dnr,0mr,
and f1)11, which are given by the diagonal elements ofV,and z, /, is the upper (§) percentile
of Z(0,1).

The Bootstrap Confidence Intervals: Boot-p Algorithm
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Next, obtain the bootstrap confidence intervals for boot-p for A = (7, , 0, ), using
the algorithms
1.  Generate sample {x;} from the GWWD(t, 4,0, jt) of size n and estimate a A.
2. Generate another sample {x; } of size n using A. Then estimate A*.
3. Repeat step 2 B times.
4. Via F(x) = P(A* < x), that is, the CDF of A*, the 100(1 — ¢)% C.I. of A is given by

A €, » €
(ABaotfp(i)/ )\Bootfp(l - E))/

where Agoot—p(T) = F~1(7) and x is prefixed.

For more details about the bootstrap confidence intervals, one may refer to Kundu
and Joarder [34].

5. Bayesian Estimation

Bayesian estimation is a method of statistical inference that uses Bayes’ theorem
to calculate the probability of an event based on prior knowledge of conditions that
might be related to the event. It is a way of combining prior beliefs with new data
to arrive at an updated belief. This updated belief is called the posterior probability.
Bayesian estimation can be used to estimate parameters in a statistical model, such as the
mean and variance of a normal distribution, or to make predictions about future events,
see, [35]. We assume that 7, J, 0, and y are R.V.s that follow the prior PDFs Gamma(t; a1, by ),
Gamma(d; ay, bp), Gamma(c; az, b3) and Gamma(y; a4, by ), respectively, are given by

a1
bl

T(a1)

m(T) = ™ Lexp[—bi7], T,a1,b; >0, (45)

a2

b
m5(8) = ﬁsﬂs—l exp[—b38], &,az,by >0, (46)

b33
m3(0) = T(Za)a‘lf1 exp[—bso], o,a3,b3 > 0. 47)

and 0
b
my(p) = ﬁth exp[—bsp], p,a4,bg > 0. (48)

Then, the posterior density of 7, d, o, 4 and the data is given by

n
7_[*(_[, 51‘7/?/‘|x) = ]—1Tn+111—1(5n+a2—10_a3—n5—1ya4—1 (H(xi _ ,‘l/l)61>
i=1

. (r <h1+2;1:1(%)‘5>+(b25+b30+bw)>, )

where | is the normalizing constant.

MCMC Method
We use Metropolis Hastings procedure as:

1.  Set start values 7(0) = 10.025, 50) = 0.027, c® =05and y(o) = 1.16. Then, simulate
sample of size n from GWWD(T(O), 50) 50) y(o) ), nextset! = 1.

2. Simulate 7(*),5(*),¢(*) and pu(*). using the proposal distributions N(t(=1,V (%)),
N1, v(8)), N(e=D,v(¢)) and N(uz=1, v (p)).

7 (7(),50%) () () 1)

3. Calculate ¥ = min VR
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Simulate U from Uniform (0, 1).

If U < r, then (T(l)’(s(l)’g'(l),‘u(l)) = (T(*),g(*)’g(*),y(*)).

If U > r, then (T(l_l),é(l_l),a(l_l),y(l_l)) = (T(*),)L(*),(S(*),U(*),y(*))_
Setl =1+1.

Iterate Steps 2—-6, M repetitions, and get 1,50 () and y(l) forl =1,..., M.

Suppose the squared error loss function for the parameter A = 7,6, o and y, given by

Lsg(A,A) = (A — A)2. By using the generated random samples from the M-H technique
and for N is the nburn. Then, the Bayes estimator of A against the squared error loss
function, is given by

L

1
M-N,

M
Yy AW, (50)

—N+1

Ase = Ex[AX] =

Next, suppose the LINEX (LE) loss function, given by
Lig(AA) =explp(A=A)] —p(A=A) =1, p#0. (51)

The approximate Bayes estimate of A under LE loss function, is given by

Y Ny exp (—P)\(l)> )

" -1 -1
ALE = ra log(Ex[exp(—pA)|x]) = plog( M—N

Finally, suppose the general entropy (GE) loss function, given by

Loe(AA) = </A\> —elog@) —1. (53)

The approximate Bayes estimate of the parameters, given by

Aae = (Ea[A ) * = (MlNl )y (M’))_s) : (54)

=N+1
MCMC HPD Credible Interval Algorithm

Arrange T(*),J(*),U(*) and y(*) in rising values.

The lower bounds of 7, d, 0, and y is in the rank (M — N) x ¢/2.

The Upper bounds of 7, 4,0, and y is in the rank (M — N) x (1 —¢/2).

Iterate the previous steps M times. Get the average value of the lower and upper
bounds of 7,6, 0, and .

6. Simulation Study

In this section, we show the usefulness of the theatrical findings in this paper by

conducting series of simulation experiments. The simulations show the bias and estimated
risk of bayesian and the maximum likelihood estimates. The simulation experiments can
be explained though the following steps:

1.

We generate sample of sizes n = 25, 50, 100, 200, 400, and 600 from the GWWD(t, 6, o, )
via initial parameter values are 70 = 10.025, 50) = 0.027, o0 =05 and y(o) =1.16.
Again use each of the cases in step (1) for calculating the Bayesian estimates for both

cases of GE, LINEX and SE loss functions. The parameter p in LINEX is chosen as —3

and 7. The parameter ¢ in general entropy is chosen as 0.5.

For the Bayesian analysis, we take small values for the hyper-parameters as 4;, b; €

ue,1),vi=1,2,3.
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4.  The steeps (1)—(3) are repeated M= 3000 times, then the estimate, bias and estimated
risk (ER) in each cases are calculated in Table 2. Obtain the point estimation of the pa-
rameter using MLE and MCMC methods (with 10,000 repetitions and 200 burns).

5. The 90% and 95% approximate confidence, bootstrap HPD credible intervals with
their width are calculated.

6. The biases and ERs are given, respectively, by

and
1 1000

2 2 2
ER(1) = 1o 1o (i = )%
7. Coverage probabilities (CPs) are also calculated at the 95% and 90% HPD credible

intervals. The simulation results are presented in Table 2 for the parameters 7,9, 0,

and y,respectively.

Table 2. Point and Interval estimation of the parameters 7,6, o, and .

Point Intrval

Par. ML SE LE1 LE2 GE ML Boot  HpPDgy HPDipy HPDigy, HPDgp

strap

4.8457 4.074 6.084 6.1198 5.9828 6.0457

T 63181 103431103719 102251 10.3209 7.7905 12.802 13.773  13.7789  13.7537 13.7704
—-3.7073  0.3177 0.3465 0.1997 0.2955 2.9448 8.728 7.689 7.6591 7.7709 7.7247
5.0785 4.105 7.4 7.4354 7.2949 7.3673

0-5643 3.3109 3.3618 3.0911 3.2849 7.5576 11.067 13.714  13.7226  13.5131  13.6937
2.4791 6.962 6.314 6.2872 6.2183 6.3264

0.7306 0.028 0.248 0.2481 0.2481 0.248

n=25 0 10574 0.7607 0763 0-7508 07334 1.3843 3.857 1.416 1.4163 1.3778 1.3543
1.03 0.7333 0.7355 0.7234 0.706 0.6537 3.829 1.168 1.1682 1.1297 1.1063
0.7823 0.07 0.331 0.3319 0.3294 0.319

0.0278 06421 06469 06215 0.5927 1.3326 2.864 1.356 1.3622 1.3177 1.2817
0.5503 2.794 1.025 1.0303 0.9883 0.9627

0.8025 0.268 0.371 0.3714 0.3712 0.3708

o 0.8828 0.5237 0.5238 0-5234 0-5224 0.9631 2.03 0.632 0.6324 0.6321 0.6319
0.3611 0.002 0.0021 0.0017 0.0007 0.1606 1.762 0.261 0.2611 0.2608 0.2611
0.8152 0.331 0.412 0.4116 0.4114 0.4108

0.0017 0.0049 0.0049 0.0049 0.0049 0.9504 1.705 0.631 0.6309 0.6309 0.6303
0.1352 1.374 0.219 0.2194 0.2195 0.2195

3.3328 0.736 0.004 0.0044 0.0044 0.0015

# 4.371 01072 0.1132 0.089 0.0312 5.4092 7.05 0.442 0.4616 0.3357 0.1187
32126  —1.0512 —1.0452 —1.0694 —1.1272 2.0764 6.314 0.438 0.4572 0.3314 0.1172
3.497 1.081 0.009 0.009 0.009 0.0026

0-2806 1.1208 11116 L1515 12715 5.245 6.924 0.366 0.4048 0.2666 0.0923
1.748 5.843 0.357 0.3958 0.2576 0.0897
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Table 2. Cont.
Point Introal
Par. ML SE LE1 LE2 GE ML Boot  HpDgz HPDpp1 HPDppy HPDgp
strap

5.4776 4.08 7103 71026  7.1026  7.1026

6.4887 101651 10.1893 100699 10.1456 71907 13449 12454 125488 121554 123822
35368 01397 01639  0.0445 0.1202  2.0221  9.369 5351 54462 50528  5.2795
56375  4.134 8.057 8198 79144  7.9333

0.2661 16401 ~ 1.656 15826 16381 ;4500 11870 12057 121842 119608 12.0548
17023  7.738 4 39862  4.0464 41215

1.0508  0.045 0255 02555 02509  0.2414

n =50 1306 07934 07956 07836 07683 oo o0 1503 Loy Lassa 1396
12785 0766 07682  0.7561  0.7408 05103  4.261 1248 12516 12044  1.1546
1.0912  0.102 0317 03177 03161  0.3042

0.0169 06945 06991 06741 0649 ;550 3469 1308 13087 1304 13018
04296  3.367 0991 09909 0988  0.9976

0.8625  0.252 0366 03665 03661  0.365

0.9169 0518 05181 05178 05171 (o705 2008 0653 06536 06531  0.6523
03952  —0.0038 —0.0037 —0.004 —0.0047 0.1087  1.976 0287 02871 0287  0.2874
08711  0.325 0404 04043 04041  0.4035

0.0008 ~ 0.0044  0.0044  0.0044 00045 o000 g ggs 0.628 0629 06261  0.6205
0.0915 1.56 0224 02247 0222 0.217

3.6536 0.55 0.003 00026  0.0026  0.0019

43197 01427 01506 01163 00276 4 ge50 735 0789 08551 05736  0.1317
31613 —1.0156 —1.0078 —1.0421 —1.1308 13322  6.485 0786  0.8525 0571  0.1298
3.7589 0.99 0.006 0.006 0.006  0.0023

0115 1.0707  1.0605 L1081 1.2799  ,gen) o1 0513 05699 03466  0.1133
1.1215  5.951 0507 05639 03406  0.111

5.968 4.063 6799 68126 67487  6.7835

6.6441 102021 102187 10.1356 10.1887 /) 14199 12282 123097 12147  12.2636
—-33813 01767 01933  0.1102 0.1633 13522  10.136 5483 54971 53983  5.4801
6.075 4123 8245 82567 81858  8.2297

0.119 12782 12829 12505 12797 ;5158 1pag7 11876 119168 117579  11.8457
1.1383 8364 3631  3.6601 35722  3.6159

14372 0.055 0313 03128 03127 03125

n =100 L6427 07726 07748 07632 07467 'oies o0 1203 10965 12798 11974
16152 07451 07474 07358 07193  0.411 4714 0.98 09837 09671  0.8849
14697  0.104 0366 03686 03616  0.3514

0011 06226 06268 06051 05783 g5y 4938 1203 12057  1.1889  1.1748
0.346 4.034 0.837 08371  0.8273  0.8234

09056  0.275 0426 04262 04261  0.4259

09418 05157 05158 05155 05149 [ op g 06l 061 06098 0.6096
04201 —0.006 —0.006 —0.0062 —0.0068 0.0724  2.095 0.184  0.1838  0.1837  0.1837
09114  0.348 0431 04313 0431  0.4295

00003  0.0028  0.0028  0.0028 00028 54755 4 ggs 0601  0.6008  0.6007  0.6004
0.0609  1.545 0.17 0.1695 0.1696  0.1709

39463  0.732 0.009 0.009  0.0082  0.0003

4384 0232 02442 019 00368 o010 e 0785 08254 0.6529  0.2209
32256 —0.9264 —09142 —09684 —1.1216 0.8753 6.33 0776 08164  0.6447  0.2206
40156  1.159 0.014 0.014 00139  0.0007

00499 0906 0.889% 0968 12624 ,, ) (969 0.71 07237 05954  0.1041
0.7369 5.81 0696 07097 05815  0.1034
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Table 2. Cont.

Point Introval
Par. ML SE LE1 LE2 GE ML Boot  HpDgz HPDpp1 HPDppy HPDgp
strap

63275 4075 8125 81681 79705  8.0848

67887 102314 102422 101876 102227 75499 14026 1206 120764 119846  12.0483
32367 0206 02168 01621  0.1973 09224 9951 3935 39083 4014  3.9636
64004 4129 8995  9.0071 89532 89856

00554 07143 07158 0704 07145 74769 12796 11776 117941 116652 11.7619
07765 8667 2781 2787 27121  2.7764

16635  0.05 0264 02646 02625  0.2527

n =200 L8115 06668  0.669 0655 06279 020 o 1158 Lliecoe L1 10693
1784 06394 06422 06276  0.6004 02959  5.18 0894  0.896  0.8647  0.8166
16869 0091 0331 03311 03293  0.3208

00057 04555 04599 04372 04015 4930 4817 1108 11208 10721  1.0233
02491 4726 0777 07897 07428  0.7025

09246 0261 0421 04207 04206  0.4203

09484 05123 05123 05121 059 o753 543 0595 05951 0595 05948
04267 —0.0095 —0.0094 —0.0096 —0.0099 00477 2169 0174 01744 0.1744  0.1744
09284 0331 0453 0453 04525 04511

00001 0.0017 0.0017 00017 00017 9605 1968 0583 05831 05829 05825
00402  1.637 0.13 013 01304 01315

3.8483 0403 0024 00248  0.0225  0.0012

4117403197 03323 0.2738 0067 yoges 7037 096 09792  0.8627  0.5413
2959  —0.8387 —0.8261 —0.8846 —1.0914 05381 6634 0936 09544  0.8402  0.5401
38909  0.664  0.041 00415  0.0391  0.0015

00188 07605 07429 08281 1214 45439 4906 084  0.8843 07398  0.1768
0453 6242 0799 08427 07007  0.1754

6.6582 4095 9117 9126  9.0864  9.1103

69837 101202 101299 10.0817 101126 75007 14269 11188 11.1972 111518 11.1814
3.0417 00948 01045  0.0563  0.0872  0.651 10174 2071 20712 20653  2.0711
67097 4151 9229 92409  9.1831  9.2188

00276 03253 03287 03134 03233 75500 13153 11057  11.06 110046 11.0555
0548 9002 1828 1819 18216  1.8366

1.8052  0.029 0297 0297 02951  0.2851

n = 400 19108 05999  0.6029 05873 05508 . oo 097 09733 09582 09249
1.8834 05724 05755 05599 05234 02113 5485 0673 06762  0.6632  0.6398
1.8219 0074 0354 03542 0353 0341

00029 0355 035 03387 02978 ;9998 4987 0913 09171  0.898 08709
01779 4913 0559 05628 05456  0.5299

09363 0282 0444 04441 04441  0.4441

09527 0513 03131 0513 05127 9690 2319 0557 05575 05572 05567
0431  —0.0087 —0.0087 —0.0088 —0.009 0033 2037 0113 01134 01131  0.1127
09389 035 0.46 046 04595  0.4581

00001 0.0009  0.0009 00009 00009 9666 2014 0555 05552 05552  0.5552
00278 1664 0095 00952  0.0957  0.0971

39184  0.388 006 00602 00584  0.0043

4108 0510705225 04656 02524 4 hens 7018 125 12675 12317 12211
29446  —0.6477 —06359 —0.6928 -0.906 03692  6.63 119 12073 11733 12168
39476 0764  0.097 00995  0.0867  0.0054

00089 05143 04997 05724 0953 o504 6867 1146  1.148  1.1402  1.0922
03108 6103  1.049  1.0486  1.0535  1.0868
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Table 2. Cont.
Point Introal
Par. ML SE LE1 LE2 GE ML Boot  HpDgz HPDpp1 HPDppy HPDgp
strap

67917 4064 9206 92141 91754  9.1988

7058 101735 101822 10.1382  10.1667 755 14518 11574 116015 113311 11.5544

—29674 0.1481  0.1568  0.1128 01413 05324 10454 2368 23874 21557  2.3556

6.8339 4125 9296 92976 92714  9.2924

00184 03736 0382 0342 03681 ;pe51 13313 11245 112547 112005 11.2372

04482 9188 1949 1957 19291  1.9448

17953 0025 0317 03181 03126  0.2643
n =600 18777 05827 05865 05669 05185 o L2 et 0si09 08068 07471
1.8503 05552 05591 05395 0491 01648 558 0517 05228 04942  0.4828

1.8083  0.06 0356 03567 0354  0.3023

00018 03266  0.3314  0.3076 025729471 497 0.827 08342 07973  0.7436

01388 491 0471 04775 04433 04413

09237 0247 0469 04694  0.4691  0.4686

09365 05151 05151 0515 0SM9 9494 2501 0558 05577 05576 05572

04148 —0.0066 —0.0066 —0.0067 —0.0068 0.0257 2254  0.089  0.0884  0.0884  0.0886

09257 0323 0483 04826 04824 04817

0 00005 00005 00005 00005 gg475 1894 0548 05482 0548 05477
00217 1571 0065  0.0656  0.0657  0.066
37438 0345 0202 02073 0182  0.0051
38824 07874 07952 07561 0626 400 6939 1215 122 11943  1.1814
2724 —0371 03632 —04023 —05324 02772 6594 1013 10127 10123  1.1764
0005 00101 0203 002401 o433 07657 0658 0357 03735 02946 00135

3.9991 6.754 1.168 1.1817 1.1593 1.1406
0.2333 6.096 0.811 0.8082 0.8647 1.127

Point estimate: first line represents estimate and second line represents ER. Interval estimate: 95% and 90%

interval estimate, respectively. The first and second lines show the credible HPD interval and the corresponding

width of the parameter, respectively.

6.
7.

The simulation experiments can be explained though the following steps:

In most cases, the Bayesian estimates of T are overestimated, while the MLE estimates
is underestimated.

In most cases, the estimates of § are overestimated.

In most cases, the Bayesian estimates of y and ¢ are underestimated, while the MLE
estimates is overestimated.

In most cases, the Bayesian estimates of T is overestimated, while the MLE estimates
is underestimated.

The results shows that the Bayesian estimate based Linex with negative p approach
gives better estimates other Bayesian estimators.

The performance of MLE was also good even when the small sample sizes.

At the level of confidence intervals, there is a significant superiority the Bayesian approach.

7. Application of the GWWD

In this section, the flexibility in practice of the GWWD model was illustrated by ana-

lyzing two practical data sets. Example 1: The actuarial data that introduced by Wong [36].
The point and interval estimation are presented in Tables 3 and 4. Example 2: The Civil
Engineering Cement Manufacturing Dataset of size 16 was taken from the engineering field
that represent the cement measured in kg in am3 mixture and is given by: 141.3, 168.9, 250,
266, 154.8, 255, 166.8, 251.4, 296, 155, 151.8, 173, 385, 237.5, 167, 213.8.



Symmetry 2023, 15, 560

15 0f 19

Table 3. Point estimation of the actuarial data.

Point
Par. a b ML SE LE1 LE2 GE
T 0.578219 0.74522 0.0108 0.1947 0.1953 0.1923 0.158
—3.2434 —3.0594 —3.0588 —3.0618 —3.0962
0.0027 9.3677 9.3641 9.3822 9.5934
¥ 0.774842 0.22833 0.0154 2.626 2.6799 2.399 2.4024
—0.4222 2.1883 2.2422 1.9613 1.9648
0.1582 5.1654 5.4436 4.1231 4.2406
1) 0.866376 0.039942 0.5483 0.5499 0.5499 0.5499 0.5499
—1.9734 —1.9718 —1.9718 —1.9718 —1.9718
0.001 3.8882 3.8881 3.8882 3.8884
o 0.536458 0.645524 0.0046 0.0034 0.0034 0.0034 0.0025
—1.8343 —1.8355 —1.8355 —1.8355 —1.8364
0.001 3.369 3.3689 3.3689 3.3724
First line represents estimate, second line represents bias, and third line represents ER.
Table 4. Interval estimation of the actuarial data.
Interval
Par. a b ML HPDS HPDLEl HPDLEZ HPDGE
0.001 0.051 0.0515 0.0507 0.019
T 0.578219 0.74522 0.1123 0.348 0.3487 0.3439 0.3077
0.1113 0.297 0.2972 0.2932 0.2887
0.001 0.06 0.0607 0.0595 0.0328
0.0962 0.331 0.3314 0.3272 0.3004
0.0952 0.271 0.2707 0.2677 0.2676
0.001 1.568 1.5815 1.4289 1.2721
v 0.774842 0.22833 0.795 3.846 4.0513 3.443 3.5939
0.794 2.278 2.4698 2.0141 2.3218
0.001 1.719 1.7276 1.6032 1.3592
0.6717 3.787 3.8726 3.3122 3.4139
0.6707 2.068 2.145 1.709 2.0546
0.5377 0.515 0.5148 0.5148 0.5147
0 0.866376 0.039942 0.5589 0.58 0.5802 0.5802 0.5802
0.0213 0.065 0.0654 0.0654 0.0655
0.5393 0.525 0.5249 0.5249 0.5248
0.5572 0.575 0.5752 0.5751 0.5749
0.0179 0.05 0.0503 0.0502 0.0501
0.0017 0.001 0.0002 0.0002 0.001
v 0.536458 0.645524 0.0074 0.01 0.0104 0.0104 0.0102
0.0057 0.009 0.0102 0.0102 0.0092
0.0022 0.001 0.0002 0.0002 0.001
0.007 0.01 0.0099 0.0099 0.0097
0.0048 0.009 0.0097 0.0097 0.0087

The first and second lines show the credible HPD interval and the corresponding width of the parameter,
respectively. 95% and 90% interval estimate, respectively.

The data are analysed and the maximum likelihood and Bayesian estimates of the model
parameters are obtained. Table 3 shows the result of the point estimation of the actuarial
data and Table 4 shows the result of the corresponding interval estimations. To decide about
the best fitting among the competitive distributions, One-sample Kolmogorov-Smirnov test
statistic with its corresponding p-value are taken calculated. The comparison of the GWWD
distribution is made with some important distributions including generalized Weibull two-
parameter Weibull distribution (GW-OWD), exponentiated distribution (EXP-WD) and
two-parameter Weibull distribution (TW-D). The CDF of the competing probability models
are, respectively, given by
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x\0
F(x;1,0,0) =1-¢ (&),  x>01,6,0,>0, (55)
F(x;7,6,0) = (1 - efwx)”)ﬂ x>0;7,6,0 > 0. (56)
F(x;6,0) =1—e %, x>0;6,0>0. (57)

Table 5 shows the one-sample Kolmogorov-Smirnov test of the actuarial data.
Table 6 shows the result of the point estimation of the engineering data and Table 7 shows
the result of the corresponding interval estimations. The one-sample Kolmogorov-Smirnov
test of the engineering data is presented in Table 8.

Table 5. One-sample Kolmogorov-Smirnov test of the actuarial data.

Model KS p-Value
GWWD 0.15252 0.9476
GW-OWD 0.21753 0.6559
EXP-CD 0.22573 0.6116
TW-D 0.26447 0.4142

Table 6. Point estimation of the engineering data.

Point
Par. a b ML SE LE1 LE2 GE

T 0.241816 0.521228 0.4401 0.1312 0.1318 0.1292 0.1068
—2.814 —3.1229 —3.1223 —3.125 —3.1473

0.3444 9.7559 9.7525 9.7687 9.9083

0% 0.104293 0.476433 0.1949 0.4171 0.4181 0.4135 0.4034

1.4649 0.9716 0.9684 0.9837 0.9958

0.0001 1.2135 1.2084 1.233 1.2613

1) 0.020871 0.796755 1.61 1.4092 1.5439 1.0328 0.7481

1.1723 0.9715 1.1062 0.5952 0.3105

2169.2 1.4276 1.7777 0.648 0.4358

o 0.764295 0.747721 0.5833 0.8495 0.8565 0.8213 0.7738

—1.2555 —0.9894 —0.9824 —1.0176 —1.065

0.0853 1.2636 1.2578 1.2885 1.4146

First line represents estimate, second line represents bias, and third line represents ER.

Table 7. Interval estimation of the engineering data.

Interval
Par. a b ML HPDS HPDLEl HPDLEZ HPDGE

T 0.241816 0.521228 710533)(;1 0.039 0.268 0.0386 0.2701  0.0383 0.2571  0.0237 0.2036

2.3003 0.229 0.2315 0.2188 0.1798
71043?;32 0.043 0.241 0.0433 0.2424  0.0433 0.2344 0.031 0.1875

1.9365 0.198 0.1991 0.1911 0.1565
v 0.104293 0.476433 0.0568 0.3928  0.1497 0.8421  0.1503 0.8439  0.14950.8371  0.1468 0.8244

0.3359 0.6924 0.6935 0.6876 0.6775

0.0747 0.3576  0.1800 0.8080  0.1798 0.8112  0.17920.7962  0.1748 0.7854
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Table 7. Cont.

Interval
Par. a b ML HPDS HPDLEl HPDLEZ HPDGE
0.2828 0.6279 0.6313 0.6169 0.6106
1) 0.020871 0.796755 -89.67 92.89 0.016 2.582 0.0159 2.8682  0.0159 2.1998 0.0134 2.103
182.574 2.566 2.8523 2.1839 2.0896
_;Z'i:;% 0.369 2.504 0.418 2.6762 0.27341.92 0.0386 1.8855
153.697 2.135 2.2583 1.6467 1.8469
Iy 0.764295 0.747721 0.011 1.1556 0.188 1.976 0.1964 1.9812  0.1638 1.9556  0.0951 1.9545
1.1446 1.788 1.7848 1.7918 1.8594
0.1015 1.0651 0.276 1.703 0.27791.7123  0.2657 1.6623  0.1272 1.6482
0.9636 1.427 1.4345 1.3966 1.5209

The first and second lines show the credible HPD interval and the corresponding width of the parameter,
respectively. 95% and 90% interval estimate, respectively.

Table 8. One-sample Kolmogorov-Smirnov test of the engineering data.

Model KS p-Value
GWWD 0.52541 0.0001215
GW-OWD 0.57143 1.797 x 107>
EXP-WD 0.85718 6.106 x 10714
TW-D 0.53245 9.201 x 1075

8. Discussion and Future Works

The use of the Weibull distribution with the generalized Weibull distribution family
used resulted in the generation of a new distribution with desirable properties that had
not been studied previously. Generating new distributions from the existing ones is useful
if the new distribution has sufficiently novel, and interesting properties. Applying this
distribution to new domains and using it to model processes not described in the sta-
tistical literature is not straightforward. In this work, we applied a new GWWD model
to new domains and used the distribution in modeling processes that differ from those
in the statistical literature. We have presented a new application to actuarial and engineer-
ing data using several different methods. Sometimes the development of a basic model
such as the Weibull distribution, exponential distribution, or other basic distributions using
a particular family is not sufficient and leads to some problems that need to be considered.
Sometimes the developed model lacks a scale or location parameter, which proves to be
a weakness when modeling different data. One of the strengths of the proposed GWWD
is that it has a location parameter y, a scale parameter ¢, and two shape parameters T
and J. Increasing the number of parameters leads to problems in the estimation and
complexity of the shape of the distribution and its equations, which leads to difficulties
in the application of the new distribution. This study showed a match between the fam-
ily used and the Weibull distribution, resulting in a new distribution to which only one
shape parameter T was added, increasing flexibility even though the family used had two
parameters. The Kolmogorov-Smirnov test is a test that can be used to check whether
a data set comes from a particular distribution. It is a non-parametric test. It is applicable
for continuous distributions. The basic idea is to compare the empirical CDF and the actual
CDF of the distribution and find out how far the empirical CDF is from the ideal CDFE.
The test works by calculating the maximum difference between the two cumulative distri-
bution functions. If this maximum difference is greater than a certain threshold, the null
hypothesis is rejected. The null hypothesis states that the two samples are from the same
distribution. The Kolmogorov-Smirnov test is used to compare two samples and determine
if they are from the same distribution. It can also be used to compare a sample to a the-
oretical distribution. From the results in Tables 5 and 8, it can be seen that the GWWD
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model could be selected as the best model among the fitted models because the proposed
model has the highest values for the Kolmogorov-Smirnov p-value. Other methods can be
used to estimate the parameters, extend the practical application of data from other areas,
and use the proposed distribution as a new family to generate new models and improve
the properties of the distribution.

9. Concluding Remarks

In this paper, a new extension of the Weibull distribution, the generalized Weibull-
Weibull distribution with four parameters, is proposed and studied in detail. The proposed
model changes the properties of the distribution. In addition, the flexibility of the density
shapes of the model was improved. It can take a heavy tail shape, an inverted J-shape,
a decreasing modified bathtub shape, an increasing symmetric, asymmetric and unimodal
shape. The failure rate function can take a variety of forms and therefore occupies an impor-
tant place in reliability analysis. All the functions obtained have a closed form, which has
the advantage that the distribution can be studied scientifically as well as used in practical
applications for control, prediction and decision making. The quantile function, moments,
information generating function, information generating measure, Shannon entropy, infor-
mation energy, and joint CDF of the two marginal univariate distributions were provided
in simple and closed forms. Maximum likelihood estimators for the intended model pa-
rameters and a Bayesian study were used to estimate the parameters. Performance is
evaluated against the detailed classified simulation results to determine the best estima-
tion approach for the model parameters. The one-sample Kolmogorov-Smirnov test is
used to compare the generalized Weibull-Weibull distribution and other competing dis-
tributions. After analyzing these two data sets, the results indicate that the generalized
Weibull-Weibull distribution provides a better fit than other competing models and could
be chosen as an appropriate model for analyzing the actuarial and technical data.
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