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Abstract: Intuitionistic fuzzy sets (IFSs), as a representative variant of fuzzy sets, has substantial
advantages in managing and modeling uncertain information, so it has been widely studied and
applied. Nevertheless, how to perfectly measure the similarities or differences between IFSs is still
an open question. The distance metric offers an elegant and desirable solution to such a question.
Hence, in this paper, we propose a new distance measure, named DIFS, inspired by the Hellinger
distance in probability distribution space. First, we provide the formal definition of the new distance
measure of IFSs, and analyze the outstanding properties and axioms satisfied by DIFS, which means
it can measure the difference between IFSs well. Besides, on the basis of DIFS, we further present a
normalized distance measure of IFSs, denoted D ĨFS. Moreover, numerical examples verify that D ĨFS
can obtain more reasonable and superior results. Finally, we further develop a new decision-making
method on top of D ĨFS and evaluate its performance in two applications.

Keywords: intuitionistic fuzzy sets; Hellinger distance; decision making; uncertain information;
pattern classification

1. Introduction

Decision making is ubiquitous and surrounds our daily lives. Ideally, all information
and knowledge are represented by a crisp and certain value. Unfortunately, because of
the uncertainty and complexity of real applications, the information we collect is usually
imperfect, i.e., information with uncertainty [1–3]. A major challenge, therefore, is how
to process uncertain information to improve decision-making efficiency effectively [4–7].
At present, many methodologies have been proposed to solve this problem, such as fuzzy
sets [8], intuitionistic fuzzy sets [9–11], rough sets [12–14], evidence theory [15–17] and
R-number [18–20]. Among them, intuitionistic fuzzy sets (IFSs), an extension of fuzzy sets
(FSs), has a unique advantage in processing uncertain information. The most important
advantage of IFSs is that each element is represented by membership degree, as well as
nonmembership degree and hesitancy degree, which makes it more flexible and effective
in representing uncertain information. As a result, IFSs have gained great popularity and
have been devoted to pattern classification [21–24], medical diagnosis [25–27], information
fusion [28–30] and other fields [31–35].

The distance and divergence measures of IFSs, one of the essential branches of fuzzy
sets theory, have attracted continuous attention. Up to now, many distance measures of
IFSs [36–41] have been developed, which can be roughly classified into two types:

• Two-dimensional (2D) distance measures of IFSs (2D distance measures of IFSs is to con-
sider membership degree and nonmembership degree). Atanassov [42] defined four 2D
distance measures of IFSs according to Hamming and Euclidean distances. Later,
Glazoczewski [43] proposed a Hausdorff distance measure to distinguish the differ-
ence of IFSs. Wang and Xin [44] defined two new distance measures of IFSs and
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proposed the axiom definition of distance measure. Recently, Mahanta and Panda [32]
proposed a nonlinear distance measure to account for the difference between IFSs
with high hesitation degrees. Gohain et al. [45] introduced the difference between
the minimum and maximum cross-evaluation factor to measure IFSs. However, this
distance does not satisfy the property of symmetry.

• Three-dimensional (3D) distance measures of IFSs (3D distance measures of IFSs is to consider
membership degree, nonmembership degree and hesitation degree). Szmidt and Kacprzyk [46]
developed 3D Hamming and Euclidean distances and corresponding normalized ver-
sions, respectively. Based on Hausdorff distance [43], Yang and Chiclana [47] proposed
the corresponding 3D distance measure of IFSs and discussed its compatibility with
2D distance measure. Park et al. [48] presented a distance measure of IFSs by combin-
ing the distance measures of Yang and Chiclana [47] and Szmidt and Kacprzyk [46].
Xiao [22] suggested a new Jensen–Shannon divergence-based distance measure of
IFSs. There are other ways to measure the difference of IFSs, see [49–53].

Although the above methods have achieved good results in certain scenarios, there
are still some shortcomings:

• Several existing distance measures of IFSs do not fully satisfy the axiomatic definition.
• Most distance measures of IFSs tend to produce counterintuitive results when com-

puting the difference between IFSs.
• In pattern classification problems, some distance measures cannot effectively predict

the class of query pattern.

Hence, how distinguishing the difference between IFSs is an open and hot topic. In
this paper, inspired by the Hellinger distance [54], we propose a new distance measure
between IFSs, named DIFS, and prove the several properties of DIFS. Furthermore, we
present a normalized version of DIFS, called D ĨFS, and verify its effectiveness on some
numerical examples. Finally, we propose a decision-making method based on D ĨFS and
verify its performance in three applications.

1.1. Contribution

• A new distance measure (DIFS) is proposed, which makes full use of the membership
degree, nonmembership degree, and hesitancy degree to consider the difference
between IFSs.

• DIFS meets the properties of the axiomatic definition of the distance measure, which
reflects its validity in measuring the difference between IFSs.

• Based on D ĨFS, a decision-making method is devised. The applications in pattern
recognition verify that D ĨFS has good performance.

1.2. Organization

In Section 2, we review the basic definitions of IFSs and Hellinger distance. Section 3
shows the proposed distance measure and proves some of its properties. Numerical
examples verify the effectiveness of DIFS in Section 4. In Section 5, we propose a new
decision-making method based on DIFS, and two applications are employed to verify
the performance of the proposed method in Section 6. Finally, we make a conclusion in
Section 7.

2. Preliminaries

In this section, we shortly introduce the related definitions of IFSs and Hellinger
distance.

2.1. Basics of Intuitionistic Fuzzy Sets

Definition 1 (Fuzzy sets). Let X = {x1, x2, · · · , xn} be a universe of discourse (UOD). A fuzzy
set [8] Ī in X is defined as follows:

Ī = {〈x, ξĪ (x)〉|x ∈ X} (1)
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where ξĪ (x) : X → [0, 1] denotes the membership degree of x ∈ X.

Definition 2 (Intuitionistic fuzzy sets). Let X = {x1, x2, · · · , xn} be a UOD. An intuitionistic
fuzzy set [9] I in X is defined as follows:

I = {〈x, ξI (x), ζI (x)〉|x ∈ X} (2)

where ξI (x), ζI (x) : X → [0, 1] represent the membership degree and non-membership degree of
x ∈ X, respectively. For each x ∈ X, we have:

0 ≤ ξI (x) + ζI (x) ≤ 1 (3)

and
ϑI (x) = 1− ξI (x)− ζI (x) (4)

where ϑI (x) : X → [0, 1] denote the hesitancy degree or uncertainty degree of x ∈ X.

Distance measures of IFSs is an essential task in decision-making. Wang and Xin [44]
first proposed the properties of distance measure.

Definition 3 (The properties of IFSs). Let I , J and K be three IFSs in X, and the mapping
D : IFS(X)× IFS(X)→ [0, 1] is a distance measure of IFSs if D(I ,J ) satisfies:

1. 0 ≤ D(I ,J ) ≤ 1;
2. D(I ,J ) = 0 if and only if I = J ;
3. D(I ,J ) = D(J , I);
4. If I ⊆ J ⊆ K, then D(I ,J ) ≤ D(I ,K) and D(J ,K) ≤ D(I ,K).

Table 1 displays some classical distance measures between IFSs. For more concepts
about IFSs, see [9,42].

Table 1. Existing distance measures of IFSs.

Ref. Distance Measures

Atanassov [42] DHam−2(I ,J ) = 1
2n

n
∑

i=1
(|ξI (xi)− ξJ (xi)|+ |ζI (xi)− ζJ (xi)|)

Atanassov [42] DE−2(I ,J ) =

√
1

2n

n
∑

i=1

(
(ξI (xi)− ξJ (xi))

2 + (ζI (xi)− ζJ (xi))
2
)

Szmidt and Kacprzyk [46] DHam−3(I ,J ) = 1
2n

n
∑

i=1
(|ξI (xi)− ξJ (xi)|+ |ζI (xi)− ζJ (xi)|+ |ϑI (xi)− ϑJ (xi)|)

Szmidt and Kacprzyk [46] DE−3(I ,J ) =

√
1

2n

n
∑

i=1

(
(ξI (xi)− ξJ (xi))

2 + (ζI (xi)− ζJ (xi))
2 + (ϑI (xi)− ϑJ (xi))

2
)

Glazoczewski [43] DHau(I ,J ) = 1
n

n
∑

i=1
max(|ξI (xi)− ξJ (xi)|, |ζI (xi)− ζJ (xi)|)

Wang and Xin [44] D1
WX(I ,J ) = 1

n

n
∑

i=1

(
|ξI (xi)−ξJ (xi)|+|ζI (xi)−ζJ (xi)|

4 +
max(|ξI (xi)−ξJ (xi)|,|ζI (xi)−ζJ (xi)|)

2

)
Wang and xin [44] D2

WX(I ,J ) = 1
n

n
∑

i=1

|ξI (xi)−ξJ (xi)|+|ζI (xi)−ζJ (xi)|
2
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Table 1. Cont.

Ref. Distance Measures

Park et al. [48] DP(I ,J ) = 1
4n

n
∑

i=1
[|ξI (xi)− ξJ (xi)|+ |ζI (xi)− ζJ (xi)|+ |ϑI (xi)− ϑJ (xi)|

+2 max(|ξI (xi)− ξJ (xi)|, |ζI (xi)− ζJ (xi)|, |ϑI (xi)− ϑJ (xi)|)]

Yang and Chiclana [47] DY(I ,J ) = 1
n

n
∑

i=1
max(|ξI (xi)− ξJ (xi)|, |ζI (xi)− ζJ (xi)|, |ϑI (xi)− ϑJ (xi)|)

Shen et al. [51] DSH(I ,J ) = 1
n

n
∑

i=1

(
(ξ̃I (xi)−ξ̃J (xi))

2+(ζ̃I (xi)−ζ̃J (xi))
2

2

) 1
2

Song et al. [50] DS(I ,J ) = 1− 1
3n

n
∑

i=1
(2
√

ξI (xi)ξJ (xi) + 2
√

ζI (xi)ζJ (xi) +
√

ϑI (xi)ϑJ (xi)

+
√
(1− ξI (xi))(1− ξJ (xi)) +

√
(1− ζI (xi))(1− ζJ (xi)))

Chen and Deng [55] DHam−h(I ,J ) = 1
2n

n
∑

i=1
(|ξI (xi)− ξJ (xi)|+ |ζI (xi)− ζJ (xi)|)×

(
1− 1

2 |ϑI (xi)− ϑJ (xi)|
)

Chen and Deng [55] DHam−c(I ,J ) = 1
2n

n
∑

i=1
(|ξI (xi)− ξJ (xi)|+ |ζI (xi)− ζJ (xi)|)×

(
cos ϑ

6 |πI (xi)− ϑJ (xi)|
)

Xiao [22] DX(I ,J ) = 1
2

[
ξI (xi) log 2ξI (xi)

ξI (xi)+ξJ (xi)
+ ξJ (xi) log 2ξJ (xi)

ξI (xi)+ξJ (xi)
+ ζI (xi) log 2ζI (xi)

ζI (xi)+ζJ (xi)

+ζJ (xi) log 2ζJ (xi)
ζI (xi)+ζJ (xi)

+ ϑI (xi) log 2ϑI (xi)
ϑI (xi)+ϑJ (xi)

+ ϑJ (xi) log 2ϑJ (xi)
ϑI (xi)+ϑJ (xi)

] 1
2

Gohain et al. [45] DG(I ,J ) = 1
n

n
∑

i=1

[
1
2 (

|ξI (xi)−ξJ (xi)|+|ζI (xi)−ζJ (xi)|
(1−ξI (xi))(1−ξJ (xi))+(1+ζI (xi))(1+ζJ (xi))

)

+ 1
4 (|min(ξI (xi), ζJ (xi))−min(ξJ (xi), ζI (xi))|

+|max(ξI (xi), ζJ (xi))−max(ξJ (xi), ζI (xi))|)]

2.2. Hellinger Distance

To qualify the difference between two probability distributions, a new distance mea-
sure named Hellinger distance was presented [54].

Definition 4 (Hellinger distance). Consider two probability distributions P = {p1, p2, · · · , pn}
and Q = {q1, q2, · · · , qn}, the Hellinger distance between P and Q is defined as follows:

DH(P, Q) =
1√
2

√
n

∑
i=1

(
√

pi −
√

qi)2 (5)

Remark 1. A larger value of DH(P, Q) corresponds to a larger difference between P and Q, and
conversely, a smaller value of DH(P, Q) corresponds to a smaller difference between P and Q.

3. An Intuitionistic Fuzzy Version of Hellinger Distance Measure

In this section, we present an intuitionistic fuzzy version of Hellinger distance measure,
called DIFS. In parallel, we demonstrate that DIFS satisfies some outstanding properties.

Definition 5 (Hellinger distance of IFSs). Let X be a UOD, I and J be two IFSs on X, where
I = {〈x, ξI (x), ζI (x)〉|x ∈ X} and J = {〈x, ξJ (x), ζJ (x)〉|x ∈ X}. The distance measure,
named DIFS(I ,J ), between IFSs I and J is defined as follows:

DIFS(I ,J ) =
1√
2

√(√
ξI (x)−

√
ξJ (x)

)2
+

(√
ζI (x)−

√
ζJ (x)

)2
+

(√
ϑI (x)−

√
ϑJ (x)

)2
(6)

Remark 2. A larger value of DIFS(I ,J ) corresponds to a larger difference between the two IFSs
I and J ; similarly, a smaller value of DIFS(I ,J ) corresponds to a smaller difference between the
two IFSs I and J .
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The properties of DIFS are deduced as follows:

Property 1. 0 ≤ DIFS(I ,J ) ≤ 1.

Proof. Given two IFSs I = {〈x, ξI (x), ζI (x)〉|x ∈ X} and J = {〈x, ξJ (x), ζJ (x)〉|x ∈ X}
on UOD X, and we have:

DIFS(I ,J ) =
1√
2

√(√
ξI (x)−

√
ξJ (x)

)2

+

(√
ζI (x)−

√
ζJ (x)

)2

+

(√
ϑI (x)−

√
ϑJ (x)

)2

We can easily obtain DIFS(I ,J ) ≥ 0. What is more, ξI (x) + ζI (x) + ϑI (x) = 1 and
ξJ (x) + ζJ (x) + ϑJ (x) = 1, we can thus infer:

DIFS(I ,J ) =
1√
2

[(√
ξA(x)−

√
ξJ (x)

)2

+

(√
ζI (x)−

√
ζJ (x)

)2

+

(√
ϑI (x)−

√
ϑJ (x)

)2
] 1

2

=
1√
2

[
ξI (x)− 2

√
ξI (x)ξJ (x) + ξJ (x) + ζI (x)− 2

√
ζI (x)ζJ (x) + ζJ (x) + ϑI (x)

−2
√

ϑI (x)ϑJ (x) + ϑJ (x)
] 1

2

=
1√
2

[
2− 2

(√
ξI (x)ξJ (x) +

√
ζI (x)ζJ (x) +

√
ϑI (x)ϑJ (x)

)] 1
2

= 1−
[√

ξI (x)ξJ (x) +
√

ζI (x)ζJ (x) +
√

ϑI (x)ϑJ (x)
] 1

2

≤ 1

Therefore, we can prove that 0 ≤ DIFS(I ,J ) ≤ 1.

Property 2. DIFS(I ,J ) = 0 if and only if I = J .

Proof. Given two same IFSs I = {〈x, ξI (x), ζI (x)〉|x ∈ X} andJ = {〈x, ξJ (x), ζJ (x)〉|x ∈
X} on UOD X, we have:

ξI (x) = ξJ (x), ζI (x) = ζJ (x), ϑI (x) = ϑJ (x)

Then, (√
ξI (x)−

√
ξJ (x)

)2
= 0(√

ζI (x)−
√

ζJ (x)
)2

= 0(√
ϑI (x)−

√
ϑJ (x)

)2
= 0

Therefore, we can obtain:

DIFS(I ,J ) =
1√
2

√(√
ξI (x)−

√
ξJ (x)

)2

+

(√
ζI (x)−

√
ζJ (x)

)2

+

(√
ϑI (x)−

√
ϑJ (x)

)2

= 0

For any x ∈ X, if DIFS(I ,J ) = 0, we have:

DIFS(I ,J ) =
1√
2

√(√
ξI (x)−

√
ξJ (x)

)2

+

(√
ζI (x)−

√
ζJ (x)

)2

+

(√
ϑI (x)−

√
ϑJ (x)

)2

= 0
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Hence, we can obtain: (√
ξI (x)−

√
ξJ (x)

)2
= 0(√

ζI (x)−
√

ζJ (x)
)2

= 0(√
ϑI (x)−

√
ϑJ (x)

)2
= 0

Since 0 ≤ ξI (x) ≤ 1, 0 ≤ ζI (x) ≤ 1, 0 ≤ ϑI (x) ≤ 1, 0 ≤ ξJ (x) ≤ 1, 0 ≤ ζJ (x) ≤ 1
and 0 ≤ ϑJ (x) ≤ 1.

Thus, we have:

ξI (x) = ξJ (x), ζI (x) = ζJ (x), ϑI (x) = ϑJ (x)

Thereby, we can prove that DIFS(I ,J ) = 0 if and only if I = J .

Property 3. DIFS(I ,J ) = DIFS(J , I).

Proof. Given two IFSs I = {〈x, ξI (x), ζI (x)〉|x ∈ X} and J = {〈x, ξJ (x), ζJ (x)〉|x ∈ X}
on UOD X, we have:

DIFS(I ,J ) =
1√
2

√(√
ξI (x)−

√
ξJ (x)

)2

+

(√
ζI (x)−

√
ζJ (x)

)2

+

(√
ϑI (x)−

√
ϑJ (x)

)2

=
1√
2

√(√
ξJ (x)−

√
ξI (x)

)2

+

(√
ζJ (x)−

√
ζI (x)

)2

+

(√
ϑJ (x)−

√
ϑI (x)

)2

= DIFS(J , I)

Hence, we can prove that DIFS(I ,J ) = DIFS(J , I).

Property 4. If I ⊆ J ⊆ K, then D(I ,J ) ≤ D(I ,K) and D(J ,K) ≤ D(I ,K).

Proof. Given three IFSs I = {〈x, ξI (x), ζI (x)〉|x ∈ X}, J = {〈x, ξJ (x), ζJ (x)〉|x ∈ X}
and K = {〈x, ξK(x), ζK(x)〉|x ∈ X} on UOD X. If I ⊆ J ⊆ K, we have:

ξI (x) ≤ ξJ (x) ≤ ξK(x), ζI (x) ≤ ζJ ≤ ζK(x), ϑI (x) ≤ ϑJ (x) ≤ ϑK(x)

Hence, we obtain:

DIFS(I ,J ) =
1√
2

√(√
ξI (x)−

√
ξJ (x)

)2

+

(√
ζI (x)−

√
ζJ (x)

)2

+

(√
ϑI (x)−

√
ϑJ (x)

)2

≤ 1√
2

√(√
ξI (x)−

√
ξK(x)

)2

+

(√
ζI (x)−

√
ζK(x)

)2

+

(√
ϑI (x)−

√
ϑJ (x)

)2

= DIFS(I ,K)

Similarly, we can obtain DIFS(J ,K) ≤ DIFS(I ,K).
Therefore, we can prove that when I ⊆ J ⊆ K, D(I ,J ) ≤ D(I ,K) and D(J ,K) ≤

D(I ,K).

Definition 6 (Normalized Hellinger distance of IFSs). Let X = {x1, x2, · · · , xn} be a UOD, I
andJ be two IFSs on X, where I = {〈xi, ξI (xi), ζI (xi)〉|xi ∈ X} andJ = {〈xi, ξJ (xi), ζJ (xi)〉
|xi ∈ X}, the normalized distance measure, named D ĨFS(I ,J ), between IFSs I and J is defined as
follows:

D ĨFS(I ,J ) =
1√
2n

√√√√ n

∑
i=1

[(√
ξI (xi)−

√
ξJ (xi)

)2
+

(√
ζI (xi)−

√
ζJ (xi)

)2
+

(√
ϑI (xi)−

√
ϑJ (xi)

)2
]

(7)
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4. Numerical Examples

This section verifies the validity and properties of the proposed distance measure
with several numerical examples. In the paper, we execute all the distance measures and
generate the corresponding figures with MATLAB and run them on a computer with Intel
Core i7 2.4 GHz CPU with 16 GB RAM.

Example 1. Given three IFSs I , J and K in UOD X = {x1, x2}. These IFSs are expressed
as follows:

I = {〈x1, 0.20, 0.40〉, 〈x2, 0.50, 0.10〉}
J = {〈x1, 0.20, 0.40〉, 〈x2, 0.50, 0.10〉}
K = {〈x1, 0.60, 0.25〉, 〈x2, 0.15, 0.30〉}

The D ĨFS between IFSs I , J and K can be measured as:

D ĨFS(I ,J ) = 0,D ĨFS(I ,K) = 0.2969,D ĨFS(J ,K) = 0.2969

D ĨFS(J , I) = 0,D ĨFS(K, I) = 0.2969,D ĨFS(K,J ) = 0.2969

Based on the above results, we can easily verify the Property 2 and Property 3 of the proposed
distance measure.

Example 2. Given three IFSs I , J and K in UOD X = {x1, x2}. These IFSs are expressed
as follows:

I = {〈x1, 0.30, 0.60〉, 〈x2, 0.40, 0.50〉}
J = {〈x1, 0.50, 0.40〉, 〈x2, 0.60, 0.20〉}
K = {〈x1, 0.70, 0.10〉, 〈x2, 0.80, 0.10〉}

Clearly, I ⊆ J ⊆ K. Thereby, we have:

D ĨFS(I ,J ) = 0.1940,D ĨFS(I ,K) = 0.3647,D ĨFS(J ,K) = 0.2137

and

D ĨFS(I ,J ) ≤ D ĨFS(I ,K)
D ĨFS(J ,K) ≤ D ĨFS(I ,K)

Therefore, we verify Property 4.

Example 3. Given two IFSs I and J in UOD X = {x}, these IFSs are expressed as follows:

I = {〈x, ξ, ζ〉},J = {〈x, ζ, ξ〉}

The parameters ξ and ζ are in the range of [0, 1] and satisfy ξ + ζ ≤ 1, as shown in Figure 1a.
The D ĨFS between IFSs I and J can be measured as shown in Figure 1b. From Figure 1b, we can
observe that as ξ and ζ change, D ĨFS always changes between 0 and 1. Therefore, we can verify
Property 1 of D ĨFS.

Figures 2–4 show the influence of ξ and ζ as well as parameters α and β on D ĨFS
under different cases, respectively. It can be intuitively observed from Figures 2–4 that the
relationship between D ĨFS and ξ and ζ of IFSs is nonlinear, which reflects the nonlinear
characteristics of D ĨFS. In addition, the maximum value of D ĨFS provided by ξ and ζ in
different cases is as follows:

• J = {〈x, 1, 0〉} → D ĨFS(I ,J ) = 1, for I = {〈x, 0, β〉}, β ∈ [0, 1].
• J = {〈x, 0, 1〉} → D ĨFS(I ,J ) = 1, for I = {〈x, α, 0〉}, α ∈ [0, 1].
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• J = {〈x, 0.5, 0.5〉} → D ĨFS(I ,J ) = 1, for I = {〈x, 0, 0〉}.

(a) (b)

Figure 1. The values of D ĨFS varying with ξ and ζ in Example 3. (a) Variations of ξ and ζ; (b) D ĨFS.

(a) (b) (c)

Figure 2. ξ = 1, ζ = 0 in Example 4. (a) D ĨFS; (b) D ĨFS with different α; (c) D ĨFS with different β .

(a) (b) (c)

Figure 3. ξ = 0, ζ = 1 in Example 4. (a) D ĨFS; (b) D ĨFS with different α; (c) DIFS with different β.

(a) (b) (c)

Figure 4. ξ = 0.5, ζ = 0.5 in Example 4. (a) D ĨFS; (b) D ĨFS with different α; (c) D ĨFS with different β.
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Example 4. Given two IFSs I and J in UOD X = {x}. These IFSs are expressed as follows:

I = {〈x, α, β〉},J = {〈x, ζ, ξ〉}

Example 5. Given the IFSs Ii and Ji in UOD X = {x1, x2} under Case i(i = 1, · · · , 6), these
IFSs are expressed as shown in Table 2.

Table 2. Two IFSs Ii and Ji under different cases in Example 5.

IFSs Case 1 Case 2

Ii {〈x1, 0.35, 0.25〉, 〈x2, 0.45, 0.35〉} {〈x1, 0.35, 0.25〉, 〈x2, 0.45, 0.35〉}
Ji {〈x1, 0.15, 0.20〉, 〈x2, 0.25, 0.30〉} {〈x1, 0.13, 0.22〉, 〈x2, 0.23, 0.32〉}

IFSs Case 3 Case 4

Ii {〈x1, 0.30, 0.20〉, 〈x2, 0.40, 0.30〉} {〈x1, 0.50, 0.40〉, 〈x2, 0.40, 0.30〉}
Ji {〈x1, 0.25, 0.25〉, 〈x2, 0.50, 0.40〉} {〈x1, 0.55, 0.35〉, 〈x2, 0.30, 0.20〉}

IFSs Case 5 Case 6

Ii {〈x1, 0.50, 0.40〉, 〈x2, 0.40, 0.30〉} {〈x1, 0.50, 0.50〉, 〈x2, 1.00, 0.00〉}
Ji {〈x1, 0.50, 0.50〉, 〈x2, 0.45, 0.35〉} {〈x1, 0.00, 0.00〉, 〈x2, 0.00, 1.00〉}

Table 3 shows the results of different distance measures. We can see that most distance measures
can sometimes produce counterintuitive results. Specifically, DHam−2, DHam−3, D2

WX, DP and
DYC generate counterintuitive results in Case 1− Case 4, DE−2, DE−3, DHau, D1

WX, DHam−h
and DHam−c generate counterintuitive results in Case 3− Case 4, and DX cannot output results
in Case 5− Case 6. However, DSH , DS, DG and the proposed distance measure D ĨFS can well
distinguish the differences between IFSs in different cases, which also shows their potential in
practical application.

Table 3. Comparisons of various distance measures in Example 5.

Methods Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

DHam−2[42] 0.1250 0.1250 0.0750 0.0750 0.0500 0.7500
DE−2 [42] 0.1458 0.1570 0.0791 0.0791 0.0612 0.7906

DHam−3 [46] 0.2500 0.2500 0.1250 0.1250 0.1000 1.0000
DE−3 [46] 0.2291 0.2364 0.1275 0.1275 0.0935 0.9354
DHau [43] 0.2000 0.2200 0.0750 0.0750 0.0750 0.7500
D1

WX [44] 0.1625 0.1725 0.0750 0.0750 0.0625 0.7500
D2

WX [44] 0.1250 0.1250 0.0750 0.0750 0.0500 0.7500
DP [48] 0.2500 0.2500 0.1250 0.1250 0.1000 1.0000
DYC [47] 0.2500 0.2500 0.0625 0.0625 0.1000 1.0000
DSH [51] 0.1374 0.1638 0.0590 0.0604 0.0399 0.7500
DS [50] 0.0218 0.0249 0.0083 0.0063 0.0112 0.7643

DHam−h [55] 0.0812 0.0806 0.0483 0.0483 0.3208 0.4583
DHam−c [55] 0.1248 0.1224 0.0749 0.0749 0.0500 0.7333
DX [22] 0.2358 0.2473 0.1385 0.1103 NAN NAN
DG [45] 0.0968 0.1057 0.0484 0.0621 0.0351 0.6250
D ĨFS 0.1974 0.2072 0.1336 0.1067 0.1725 1.0000

Example 6. Given two IFSs I and J in UOD X = {x}. These IFSs are expressed as follows:

I = {〈x, α, 1− α〉},J = {〈x, ζ, ξ〉}

Figure 5 shows the results of DG and D ĨFS in three cases. Under different α values, we can see
that the changes of DG, D ĨFS and IFSs are nonlinear. Furthermore, in Figure 5c, we can see that
DG does not satisfy the symmetry of the axiomatic definition of the distance measure, whereas D ĨFS
is a better measure of the difference between IFSs.
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Figure 5. Comparisons of DG and D ĨFS in Example 6. (a) ξ = 1, ζ = 0; (b) ξ = 0, ζ = 1;
(c) ξ = 0.5, ζ = 0.5.

5. A New Decision-Making Method Based on D ĨFS
In this section, a new decision-making method based on D ĨFS is designed for the

pattern recognition problems.
Problem statement: Suppose there exist a finite UOD X = {x1, x2, · · · , xn}, and t pat-

ternsP = {P1,P2, · · · ,Pt}, which can be expressed in IFSs: Pj = {〈xi, ξPj(xi), ζPj(xi)〉|xi ∈
X}, (j = 1, 2, · · · , t). For m query patterns S = {S1,S2, · · · ,Sm}, expressed in IFSs as:
Sk = {〈xi, ξSk (xi), ζSk (xi)〉|xi ∈ X}, (k = 1, 2, · · · , m). We aim to classify the query pattern
in accordance with the known pattern.

Step 1: The distance measure D ĨFS is adopted to compute the distance between the
query pattern Sk, (k = 1, 2, · · · , m) and known pattern Pj, (j = 1, 2, · · · , t).

D ĨFS(Pj,Sk) =
1√
2n

√
n

∑
i=1

[(√
ξPj(xi)−

√
ξSk (xi)

)2
+
(√

ζPj(xi)−
√

ζSk (xi)
)2

+
(√

ϑPj(xi)−
√

ϑSk (xi)
)2
]

(8)

Step 2: The minimum distance D ĨFS(Pg,Sk) between the query pattern Sk, (k = 1, 2,
· · · , m) and known pattern Pj, (j = 1, 2, · · · , t) will be selected as follows:

D ĨFS(Pg,Sk) = min
1≤j≤t

D ĨFS(Pj,Sk) (9)

Step 3: The classification result of the query pattern Sk is described as follows:

g = arg min
1≤j≤t

D ĨFS(Pj,Sk), Pg → Sk (10)

The pseudocode of the proposed decision-making method is shown in Algorithm 1.

Algorithm 1 The proposed decision-making method.

Require: Pj, (j = 1, 2, · · · , t), Sk, (k = 1, 2, · · · , m)
Ensure: Classification result of Sk

1: for j = 1, j ≤ t do
2: for k = 1, k ≤ m do
3: Calculate the distance measure D ĨFS(Pj,Sk) using (8);
4: end for
5: end for
6: for k = 1, k ≤ n do
7: Obtain the minimum distance D ĨFS(Pg,Sk) using (9);
8: end for
9: for k = 1, k ≤ n do

10: Obtain the classification result of Sk using (10);
11: end for
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6. Application in Pattern Recognition

In this section, we apply the new decision-making method to pattern recognition
scenarios. By comparing fifteen existing methods, we verify that the proposed method has
advantages over the existing methods.

Application 1 ([22,56]). Let us consider a pattern classification scenario, where IFSs represent all
data. Table 4 shows three known patterns Pi(i = 1, 2, 3.) and a query pattern S . Our goal is to
obtain the class of the query pattern S depending on known patterns.

Table 4. IFSs of pattern classification problem in Application 1.

Pattern Feature

x1 x2 x3

P1 〈x1, 0.15, 0.25〉 〈x2, 0.25, 0.35〉 〈x3, 0.35, 0.45〉
P2 〈x1, 0.05, 0.15〉 〈x2, 0.15, 0.25〉 〈x3, 0.25, 0.35〉
P3 〈x1, 0.16, 0.26〉 〈x2, 0.26, 0.36〉 〈x3, 0.36, 0.46〉

S 〈x1, 0.30, 0.20〉 〈x2, 0.40, 0.30〉 〈x3, 0.50, 0.40〉

The implementation of the decision-making method is expressed below:
Step 1: The distance measure D ĨFS is adopted to compute the distances between S and

Pi(i = 1, 2, 3.), the results are depicted as:

D ĨFS(P1,S) = 0.1236

D ĨFS(P2,S) = 0.2589

D ĨFS(P3,S) = 0.1129

Step 2: The minimum distance between S and Pi is expressed as follows:

D ĨFS(P3,S) = 0.1129

Step 3: The classification result of S is described as follows:

P3 → S

Table 5 and Figure 6 show the results of distance measures by different methods. From Table 5
and Figure 6, we can see that DHam−2, D2

WX , DHam−h and DHam−c all produce counterintuitive re-
sults, where D(P1,S) = D(P3,S). Therefore, it is difficult for these methods to obtain satisfactory
decision results in practical application. Other comparison methods and the proposed method can all
obtain reasonable classification results, whereas DE−2, D1

WX , DYC, DS and DG are very close to the
distance from S to P1 and P3, which may limit their application in some complex cases.

Table 5. Pattern classification results of various methods in Application 1.

Method Distance Measures Classification

(P1, S) (P2, S) (P3, S)

DHam−2 [42] 0.1000 0.1500 0.1000 Uncertainty
DE−2 [42] 0.1118 0.1803 0.1077 P3

DHam−3 [46] 0.1500 0.3000 0.1400 P3
DE−3 [46] 0.1323 0.2784 0.1217 P3
DHau [43] 0.1500 0.2500 0.1400 P3
D1

WX [44] 0.1250 0.2000 0.1200 P3
D2

WX [44] 0.1000 0.1500 0.1000 Uncertainty
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Table 5. Cont.

Method Distance Measures Classification

(P1, S) (P2, S) (P3, S)

DP [48] 0.1500 0.3000 0.1400 P3
DYC [47] 0.1500 0.3000 0.1400 P3
DSH [51] 0.1373 0.1914 0.1347 P3
DS [50] 0.0102 0.0381 0.0089 P3

DHam−h [55] 0.0988 0.1463 0.0988 Uncertainty
DHam−c [55] 0.0100 0.1497 0.1000 Uncertainty
DX [22] 0.1479 0.3060 0.1351 P3
DG [57] 0.0452 0.0699 0.0450 P3
D ĨFS 0.1236 0.2589 0.1129 P3

Figure 6. Comparisons of various distance measures in Application 1.

Application 2. Suppose there has a pattern classification scenario where IFSs represent all data.
Table 6 displays three known patterns Pi(i = 1, 2, 3.) and a query pattern S . We intend to predict
the class of the query pattern S based on known patterns Pi(i = 1, 2, 3.).

Table 6. IFSs of pattern classification problem in Application 2.

Pattern Feature

x1 x2 x3

P1 〈x1, 0.34, 0.34〉 〈x2, 0.19, 0.48〉 〈x3, 0.02, 0.12〉
P2 〈x1, 0.35, 0.33〉 〈x2, 0.20, 0.47〉 〈x3, 0.00, 0.14〉
P3 〈x1, 0.33, 0.35〉 〈x2, 0.21, 0.46〉 〈x3, 0.01, 0.13〉

S 〈x1, 0.37, 0.31〉 〈x2, 0.23, 0.44〉 〈x3, 0.04, 0.10〉

Step 1: D ĨFS is adopted to compute the distances between S and Pi(i = 1, 2, 3.). The results
are depicted as:

D ĨFS(P1,S) = 0.0375

D ĨFS(P2,S) = 0.0871

D ĨFS(P3,S) = 0.0500
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Step 2: The minimum distance between S and Pi is described as follows:

D ĨFS(P1,S) = 0.0375

Step 3: The classification result of S is described as follows:

P1 → S

Table 7 and Figure 7 show the results of distance measures by different methods.
From Table 7 and Figure 7, we can find that DHam−2, DE−2, DHam−3, DE−3, DHau, D1

WX, D2
WX,

DP, DYC, DHam−h and DHam−c fail to classify the query pattern S reasonably because they are not
effective in distinguishing the distances between S and Pi(i = 1, 2, 3). Specifically, these methods
obtain the same distance on different patterns, namely D(P1,S) = D(P2,S) = D(P3,S). In
addition, DX can give unreasonable results in calculating the distances between S to Pi(i = 1, 2, 3).
In contrast, DSH , DS, DG and D ĨFS can all effectively identify the class of S . It is worth noting
that D ĨFS has a relatively large difference in calculating the distances between S to Pi(i = 1, 2, 3),
which also reflects that D ĨFS can more easily make the correct decision results.

Table 7. Pattern classification results of various methods in Application 2.

Method Distance Measures Classification

(P1, S) (P2, S) (P3, S)

DHam−2 [42] 0.0300 0.0300 0.0300 Uncertainty
DE−2 [42] 0.0311 0.0311 0.0311 Uncertainty

DHam−3 [46] 0.0300 0.0300 0.0300 Uncertainty
DE−3 [46] 0.0311 0.0311 0.0311 Uncertainty
DHau [43] 0.0300 0.0300 0.0300 Uncertainty
D1

WX [44] 0.0300 0.0300 0.0300 Uncertainty
D2

WX [44] 0.0300 0.0300 0.0300 Uncertainty
DP [48] 0.0300 0.0300 0.0300 Uncertainty
DYC [47] 0.0300 0.0300 0.0300 Uncertainty
DSH [51] 0.0438 0.0490 0.0464 P1
DS [50] 0.0011 0.0052 0.0018 P1

DHam−h [55] 0.0300 0.0300 0.0300 Uncertainty
DHam−c [55] 0.0300 0.0300 0.0300 Uncertainty
DX [22] 0.0438 NAN 0.0516 Unreasonable
DG [57] 0.0125 0.0128 0.0131 P1
D ĨFS 0.0375 0.0871 0.0500 P1

Figure 7. Comparisons of various distance measures in Application 2.
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7. Conclusions

In this paper, we propose a new distance measure (DIFS) of IFSs based on Hellinger
distance. DIFS meets the axiomatic definition of distance measure well, showing that
it can effectively measure the difference between IFSs. In addition, we also present a
normalized distance measure (D ĨFS), and numerical examples explain the potential of
D ĨFS. Finally, we design a D ĨFS-based decision-making method and employ it to several
applications. It is worth noting that the proposed method still faces several challenges. For
example, in applications, different attributes often have different importance in decision
making, while the importance of each attribute is treated equally in the proposed method.
Therefore, in future work, we will further explore the weighted Hellinger distance to
consider the difference between IFSs. It is necessary to apply DIFS to medical diagnosis,
image processing, and risk analysis.
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