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Abstract: A Fermatean fuzzy set (FFS) is a reliable method for representing uncertainty in “multi-
criteria decision-making” (MCDM). This research seeks to examine the topological properties of
FFSs and to establish the notion of “Fermatean fuzzy topology” (FFT). An FFT is the generalisation
of existing fuzzy topologies. Several aspects of FFT are examined and various novel concepts
are proposed, which include Fermatean fuzzy α-continuity between FFTSs and Fermatean fuzzy
connectedness. To deal multiple challenges in sustainable supply chain management, a Fermatean
fuzzy “combinative distance-based assessment” (CODAS) method was developed. The proposed
FF CODAS technique involves various key features for MCDM. Firstly, a known reputation vector
or equal expert weights is determined based on the reputation, experience and qualifications of
the experts. Secondly, the Fermatean fuzzy direct rating approach is used to establish the relative
relevance of criteria based on the expert group’s evaluation preferences. Thirdly, the Fermatean
fuzzy CODAS approach is used to construct alternative orderings based on their assessment scores.
Finally, an application is developed to show the benefit of the suggested supplier selection approach.
Additionally, the symmetry of an optimal decision in application is carried out by a comparison
analysis of the suggested models with some existing models.

Keywords: Fermatean fuzzy topology; Fermatean fuzzy α-continuity; topological data analysis;
CODAS; supplier selection

MSC: 03E72; 94D05; 90B50

1. Introduction

In computational intelligence challenges, inferring topological and geometrical infor-
mation from data can provide a novel perspective in mathematical modelling. Methods
for “topological data analysis” (TDA) are rapidly expanding methodologies for inferring
the permanent and essential characteristics for potentially complicated data. TDA can
be utilised autonomously or in tandem with other information-processing and analytical
instructional methods. In modern data science, topological methods have been utilised
to evaluate the structural aspects of big data, leading to additional information analysis.
Utilising a variety of mathematical techniques, topology and geometry are natural instru-
ments for evaluating big datasets. Traditional and basic analysis in a range of computer
intelligence domains are inspired by topology and big data. In addition, topology is the
link between geographical structures and characteristics, and it may be utilised to explain
certain spatial functions and create datasets with a greater level of dependability and
integrity. Topological notions such as continuity, convergence and homeomorphisms have
a solid geometrical interpretation.

Researchers have investigated a lot of key features in classical set theory and classical
topology. Nevertheless, traditional approaches cannot handle ambiguous and unclear
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information. To solve these concerns, Zadeh [1] developed the concept of “fuzzy set” (FS)
theory and “membership function” (MSF), Pawlak [2] proposed rough set theory and
approximation spaces, and Molodtsov [3] developed soft set theory and parameterisation.
Chang [4] expanded the concept of FSs to fuzzy topological space (TS) and studied several
essential features, including open set, closed set, compactness, and continuity in terms of
FS theory. Lowen presented a different notion of fuzzy TSs [5,6]. Atanassov [7] further
revealed the notion of an “intuitionistic fuzzy set” (IFS) using MSF and “non-membership
function” (NMSF). Later, Coker established the concept of intuitionistic fuzzy TS and
researched the equivalent versions of traditional topology concepts such as continuity and
compactness [8,9]. Additional results on intuitionistic fuzzy TSs are defined in [10,11].
Fuzzy metric spaces provided solutions to the topics concerning distance-like functions,
etc. [12]. Thus, instead of particular fixed components, the idea of topology incorporates
the MSF structure of fuzziness. The concepts of open and alpha open maps in terms of
fuzzy and continuous functions were introduced by Singal and Rajvanshi [13]. Ajmal
and Kohli [14] developed the idea of “connectedness in fuzzy TSs” and Chaudhuri and
Das [15] initiated the notion of “some fuzzy connected sets in fuzzy TSs”. Olgun et al. [16]
introduced the “Pythagorean fuzzy TSs”, Turkarslan et al. [17] proposed some sort of
“q-rung orthopair fuzzy TSs”, Joseline and Ajay [18] gave the idea of “Pythagorean fuzzy
α-continuity”. Haydar defined connectedness for the fuzzy Pythagorean TS [19].

In the modern scientific era, modelling uncertainty as part of MCDM approaches is
essential for addressing problems that occur in the actual world. In order to determine
how reliable human judgments are, many MCDM techniques have been devised. These
procedures include comparing a group of potential outcomes to a set of criteria and rating
each possibility accordingly. The gathering and synthesis of information is essential to the
operation of a wide variety of technological processes, including machine learning, pattern
classification, photogrammetry, and selection. In a general sense, the process of aggregation
involves the combination of a great deal of data in order to obtain a conclusion. It was also
shown that fundamental data processing algorithms that are based on crisp integers cannot
be used to accurately reflect the operating circumstances of human cognitive processes.
Because of these strategies, “decision makers” (DMs) are left with confusing facts and
judgements that are difficult to understand. As a consequence of this, in order to cope
with the ambiguous and fuzzy situations that are present in the world, DMs look for new
philosophies that will enable them to understand confusing data values and preserve their
judgement demands in response to a variety of settings.

Fuzzy logic is a sort of multi-valued logic in which variable values might vary between
0 and 1. The premise of fuzzy logic is that individuals make judgments based on confusing
and non-numerical information. Fuzzy sets are mathematical representations of ambiguity
and inaccurate information. They are commonly known as fuzzy models. It is a word
used to explain the concept of partial truth, according to which the truth value might
vary between false and true. Zadeh proposed a formal framework for making decisions
based on imprecise data representations. This concept is based on the fuzzy set, which
is a set with no obvious bounds and can only contain things to a given degree; in other
words, elements can only be members to a certain degree. Researchers have noticed that the
structure of the membership grades is a big concern when utilising fuzzy sets as a result of
this. The uncertainty associated with giving an exact numerical membership value to each
element in the supplied fuzzy collection is the source of the difficulty. Yager introduced
the “Pythagorean fuzzy set” (PFS) [20–22] as well as the “q-rung orthopair fuzzy set” [23].
Senapati and Yager [24] developed the concept of FFSs.

Data processing is crucial for decision making in business, government, sociology,
science, intellectual, cognitive, and autonomous systems. In general, awareness of the
alternatives has been regarded as a numerical or verbal quantity. Unfortunately, the data
cannot easily be amalgamated with regard to ambiguity. Xu et al. [25,26] established
geometric and averaging AOs for IFS. Akram et al. [27] proposed the idea of complex
Fermatean fuzzy N-soft sets as a hybrid model of N-soft set, FFS, and complex FS. They
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developed a new hybrid method for decision making with regard to the terrific capability
problem based on the Fermatean fuzzy TOPSIS technique approach. A robust work related
to the proposed work can be seen in [28].

Riaz et al. [29] developed “linear Diophantine fuzzy prioritised AOs” and Iampan
et al. [30] proposed Einstein AOs for LDFSs. Ashraf and Abdullah [31] proposed some
mathematical modelling for COVID-19 under a spherical fuzzy set. Some extensive work
related to AOs can be seen in [32–37]. Peng et al. [38] introduced some AOs for a “single-
valued neutrosophic number” (SVNN). Liu et al. [39] developed some AOs for SVNNs
based on “Hamacher operations”. Farid and Riaz [40] proposed Einstein interactive AOs
for SVNNs. Some extensive work related to operational science in a fuzzy framework was
given in [41–44]. The main goals of this study are given as follows:

1. To define the topological structure of FSSs and to propose the concept of fuzzy
Fermatean topology;

2. To address the characterisation of Fermatean fuzzy TSs, such as interior, closure, and
boundary, etc.;

3. Examining noteworthy results regarding images and inverse images of FFSs under
Fermatean fuzzy mapping;

4. To define Fermatean fuzzy α-continuity between FFTSs and Fermatean fuzzy connectedness;
5. Modelling uncertain information in MCDM with Fermatean fuzzy CODAS methods.
6. Data analysis with Fermatean fuzzy CODAS approach for supplier selection and supply

chain. A numerical example is illustrated to explain FF CODAS for supplier selection.

The remaining sections of the paper are structured as follows. Section 2 covers the
fundamental FFS ideas. In Section 3, the concept of FFT is defined and associated findings
are examined. In Section 4, the idea of FF α-continuity is introduced. Section 5 provides
basic ideas pertaining to FF connectivity, whereas Section 6 suggests a CODAS structure
under the FFSs. Section 7 provides an application regarding the selection of suppliers.
Section 8 provides a summary of the planned outcomes, techniques, findings, and their
benefits. This section also includes future directions.

2. Fundamental Concepts

In this section of the manuscript, we will review some of the fundamental notions.

Definition 1 ([24]). Assume FFS h̄ in = is defined as

h̄ = {〈ρ, µη
h̄(ρ), νη

h̄(ρ)〉 : ρ ∈ =}

where µη
h̄, νη

h̄ : = → [0, 1] denotes the MSF and NMSF of the alternative ρ ∈ = and ∀ρ, so we
have

0 ≤ µη3
h̄(ρ) + νη3

h̄(ρ) ≤ 1.

Furthermore, πh̄(ρ) =
3
√

1− µη3
h̄(ρ)− νη3

h̄(ρ) is called the “indeterminacy degree” of ρ to h̄.

Definition 2 ([24]). Let δ̃f1 = 〈µη
1, νη

1〉 and δ̃f2 = 〈µη
2, νη

2〉 be FFNs. Since σ > 0, then
(1) (δ̃f1 )c = 〈νη

1, µη
1〉

(2) δ̃f1 ∨ δ̃f2 = 〈max{µη
1, νη

1}, min{µη
2, νη

2}〉
(3) δ̃f1 ∧ δ̃f2 = 〈min{µη

1, νη
1}, max{µη

2, νη
2}〉

(4) δ̃f1 ⊕ δ̃f2 = 〈 3
√

µη3
1 + µη3

2 − µη3
1µη3

2, νη
1νη

2〉

(5) δ̃f1 ⊗ δ̃f2 = 〈µη
1µη

2, 3
√

νη3
1 + νη3

2 − νη3
1νη3

2〉

(6) σδ̃f1 = 〈 3
√

1− (1− µη3
1)

σ, νησ
1 〉

(7)(δ̃f1 )σ = 〈µησ
1 , 3
√

1− (1− νη3
1)

σ〉
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Definition 3 ([24]). Let δ̃f = 〈µη , νη〉 be the FFN, and the “score function” (SF) S of δ̃f is
defined as

S(δ̃f) = µη3 − νη3

S(δ̃f) ∈ [−1, 1]. The FFN score will determine its ranking, with the greatest score dictating the
FFN’s top priority. In other instances, however, the SF is not favourable for FFN. Consequently,
using the SF to examine FFNs is inadequate. We are introducing a new function, namely the

“accuracy function” (AF).

Definition 4 ([24]). Let δ̃f = 〈µη , νη〉 be the FFN, then an AF L̆ of δ̃f is defined as

L̆(δ̃f) = µη3 + νη3

L̆(δ̃f) ∈ [0, 1].

Definition 5. Consider δ̃f = 〈µη
δ̃f , νη

δ̃f〉 and f̆ = 〈µη
f̆, νη

f̆〉 as two FFN, and S(δ̃f), S(f̆)
are the SF of δ̃f and f̆, and L̆(δ̃f), L̆(f̆) are the AFs of δ̃f and f̆, respectively, then:
(a) If S(δ̃f) > S(f̆), then δ̃f > f̆;
(b) If S(δ̃f) = S(f̆) then;

If L̆(δ̃f) > L̆(f̆) then δ̃f > f̆;
If L̆(δ̃f) = L̆(f̆), then δ̃f = f̆.

Definition 6 ([45]). Considering δ̃f1 = 〈µη
1, νη

1〉 and δ̃f2 = 〈µη
2, νη

2〉 as FFNs, we define the
subtraction and division of FFNs as

• δ̃f1 	 δ̃f2 =

(
3

√
µη 3

1−µη 3
2

1−µη 3
2

, νη1
νη2

)
, if µη

1 ≥ µη
2, νη

1 ≤ min
{

νη
2, νη2π1

π2

}
• δ̃f1 � δ̃f2 =

(
µη

1
µη

2
, 3
√

νη13−νη23

1−νη23

)
if νη

1 ≥ νη
2, µη

1 ≤ min
{

µη
2, µη

2π1
π2

}
3. Main Results

In this section, the concept of Fermatean fuzzy topology (FFT) and numerous related
results are proposed.

Definition 7. Let = 6= ∅ be the universe and ג{ be the assemblage of FF subsets of =. If ג{ satisfies
the axioms:

T1 0=, 1= ∈ ;ג{

T2 For any χζ
1, χζ

2 ∈ ,ג{ we have χζ
1 ∩ χζ

2 ∈ ;ג{
T3 For any

{
χζ

i
}

i∈I ⊆ ,ג{ we have ∪i∈Iχ
ζ

i ∈ .ג{

Then, ג{ is called an FFT on = and the pair (ג{,=) is said to be an FFTS. Each member of ג{ is
called an FF open set (FFOS). The complement of an FF open set is called an FF closed set (FFCS).

Remark 1. Each IFS and PFS may be considered as an FFS, leading to the conclusion that any IFS
topology and PFS topology is an FFT. However, the converse fails to hold.

Example 1. Let = =
{

ᾰ
γ
1 , ᾰ

γ
2 , ᾰ

γ
3
}

. Consider the following family of FF subsets
ג{ =

{
0=, 1=, χζ

1, . . . , χζ
4
}

, where

χζ
1 =

{〈
ᾰ

γ
1 , 0.58, 0.78

〉
,
〈
ᾰ

γ
2 , 0.67, 0.58

〉
,
〈
ᾰ

γ
3 , 0.28, 0.18

〉}
,

χζ
2 =

{〈
ᾰ

γ
1 , 0.60, 0.76

〉
,
〈
ᾰ

γ
2 , 0.72, 0.53

〉
,
〈
ᾰ

γ
3 , 0.30, 0.16

〉}
,

χζ
3 =

{〈
ᾰ

γ
1 , 0.64, 0.72

〉
,
〈
ᾰ

γ
2 , 0.74, 0.48

〉
,
〈
ᾰ

γ
3 , 0.34, 0.14

〉}
,

χζ
4 =

{〈
ᾰ

γ
1 , 0.71, 0.67

〉
,
〈
ᾰ

γ
2 , 0.80, 0.43

〉
,
〈
ᾰ

γ
3 , 0.44, 0.10

〉}
.
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One can see that (ג{,=) is an FFTS.

Moreover, 1ג{ =
{

0=, 1=, χζ
1
}

, 2ג{ =
{

0=, 1=, χζ
2
}

, 3ג{ =
{

0=, 1=, χζ
3
}

, 4ג{ ={
0=, 1=, χζ

4
}

, 5ג{ =
{

0=, 1=, χζ
1, χζ

2
}

, 6ג{ =
{

0=, 1=, χζ
1, χζ

3
}

, 7ג{ =
{

0=, 1=, χζ
1, χζ

4
}

,
8ג{ =

{
0=, 1=, χζ

2, χζ
3
}

, 9ג{ =
{

0=, 1=, χζ
2, χζ

4
}

, 10ג{ =
{

0=, 1=, χζ
3, χζ

4
}

, 11ג{ ={
0=, 1=, χζ

1, χζ
2, χζ

3
}
12ג{ =

{
0=, 1=, χζ

1, χζ
3, χζ

4
}

are also FFTSs.

Definition 8. Let = and q̆ be two non-empty sets, let i : = → q̆ be a mapping, and let D̆ and F̃
be FF subsets of = and q̆, respectively. The image of D̆ under mapping i is denoted by i[D̆]. Then,
the MSF and NMSF of the image set i[D̆] are defined by

µη
i[D̆](y) =

{
supz∈i−1(y) µη

D̆(z), if i−1(y) 6= ∅
0, otherwise

and

νη
i[D̆](y) =

{
infz∈i−1(y) νη

D̆(z), if i−1(y) 6= ∅
0, otherwise

respectively. The MSF and NMSF of the pre-image of F̃ with respect to i that is denoted by i−1[F̃]
are defined by

µη
i−1[F̃](x) = µη

F̃(i(x)) and νη
i−1[F̃](x) = νη

F̃(i(x)) respectively.

which show that the µη3
i[D̆]

+ νη3
i[D̆]
≤ 1 FF membership condition is provided for the FF image

and pre-image.

Proposition 1. Let = and q̆ be two non-empty sets and i : = → q̆ be an FF mapping. Then, we
have

1. i−1[F̃c] = (i−1[F̃]
)c for any FF subset F̃ of q̆;

2. (i[D̆])c ⊆ i
[
D̆c] for any FF subset D̆ of =;

3. If F̃1 ⊆ F̃2, then i−1[F̃1
]
⊆ i−1[F̃2

]
where F̃1 and F̃2 are FF subsets of q̆;

4. If D̆1 ⊆ D̆2 then i
[
D̆1
]
⊆ i

[
D̆2
]

where D̆1 and D̆2 are FF subsets of =;
5. i

[
i−1[F̃]

]
⊆ F̃ for any FF subset F̃ of q̆;

6. D̆ ⊆ i−1[i[D̆]] for any FF subset D̆ of =.

Definition 9. Let
{

χζ
i =

{〈
ℵ̆, µη

χζ
i
(ℵ̆), νη

χζ
i
(ℵ̆)
〉

: ℵ̆ ∈ =
}}

i∈I
be the assemblage of FF sets

over =. Then, ⋂
i∈I

χζ
i =

{〈
ℵ̆,∈ i

{
µη

χζ
i
(ℵ̆)
}

, sup
{

νη
χζ

i
(ℵ̆)
}〉

: ℵ̆ ∈ =
}

,

⋃
i∈I

χζ
i =

{〈
ℵ̆, sup

{
µη

χζ
i
(ℵ̆)
}

,∈ i
{

νη
χζ

i
(ℵ̆)
}〉

: ℵ̆ ∈ =
}

.

Note that
⋂

i∈I χζ
i and ∪i∈Iχ

ζ
i are FF sets over =. We shall

⋂
i∈I χζ

i define⋂
i∈I χζ

i =
{〈
ℵ̆, α∩∩i, βi∈Iχ

ζ
i

〉
: ℵ̆ ∈ =

}
such that αn∈χζ

i
=∈ i

{
µη

χζ
i
(ℵ̆)
}

and

βi∈Iχ
ζ

i = sup
{

νη
χζ

i
(ℵ̆)
}

. In order to for
⋂

i∈I χζ
i to be an FF set, we must have that α3

i∈Iχ
ζ

i(ℵ̆)+

β3
i∈Iχ

ζ
i(ℵ̆) ≤ 1. We see since β3

i∈Iχ
ζ

i(ℵ̆) = sup
{

νη3
χζ

i
(ℵ̆)
}

, then
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β3
∩∈Iχ

ζ
i(ℵ̆) = sup

{
νη3

χζ
i
(ℵ̆)
}
= sup

{
r3

i − µη3
χζ

i
, r3

i − νη3
χζ

i

}
≤ sup

{
r3

i− ∈ i
{

µη3
χζ

i
, νη3

χζ
i

}
, r3

i− ∈ i
{

µη3
χζ

i
, νη3

χζ
i

}}
β3

i∈I(ℵ̆) ≤ sup
{

1− ∈ i
{

µη3
χζ

i
, νη3

χζ
i

}}
, 1− ∈ i

{
µη3

χζ
i
, νη3

χζ
i

}
≤ 1− ∈ i

{
µη3

χζ
i
, νη3

χζ
i

}
where µη3

χζ
i
+ νη3

χζ
i
= r3

i for every i ∈ I. From this, we see that α3
∩∈Iχ

ζ
i(ℵ̆) + β3

∩∈Iχ
ζ

i(ℵ̆) ≤∈

i
{

µη3
χζ

i
, νη3

χζ
i

}
+ 1− ∈ i

{
µη3

χζ
i
, νη3

χζ
i

}
≤ 1. Thus,

⋂
i∈I χζ

i is an FF set.

The proof is trivial for ∪i∈Iχ
ζ

i.

Theorem 1. Let
{

χζ
i =

{〈
ℵ̆, µη

χζ
i
(ℵ̆), νη

χζ
i
(ℵ̆)
〉

: ℵ̆ ∈ =
}}

i∈I
be the assemblage of FF sets

over =. Then,

1.
⋂

i∈I χζ
i = ∪i∈Iχζ

i;
2.

⋃
i∈I χζ

i =
⋂

i∈I χζ
i.

Proof. (1) We have
⋂

i∈I χζ
i =

{〈
ℵ̆,∈ i

{
µη

χζ
i
(ℵ̆)
}

, sup
{

νη
χζ

i
(ℵ̆)
}〉

: ℵ̆ ∈ =
}

. Then,

⋂
i∈I

χζ
i =

{〈
ℵ̆, sup

{
νη

χζ
i
(ℵ̆),∈ i

{
µη

χζ
i
(ℵ̆)
}}〉

: ℵ̆ ∈ =
}

and χζ
i =

{〈
ℵ̆, νη

χζ
i
(ℵ̆), µη

χζ
i
(ℵ̆)
〉

: ℵ̆ ∈ =
}

and so

∪ūi∈Iχζ
i =

{〈
ℵ̆, sup

{
νη

χζ
i
(ℵ̆),∈ i

{
µη

χζ
i
(ℵ̆)
}}〉

: ℵ̆ ∈ =
}

. That is,
⋂

i∈I χζ
i = ∪i∈Iχζ

i.

(2) It is proven similar to (1).

Definition 10. Let (ג{,=) be an FFTS and χζ =
{〈
ℵ̆, µη

χζ (ℵ̆), νη
χζ (ℵ̆)

〉
: ℵ̆ ∈ =

}
be an FFS

over =. Then, the FF interior, FF closure, and FF boundary of χζ are defined by:

1. Int(χζ) = ∪{G : G is an FFOS in = and G ⊆ χζ};
2. Cl(χζ) = ∩{K : K is an FFCS in = and χζ ⊆ K};
3. Fr(χζ) = Cl(χζ) ∩ Cl

(
χζ c
)

;

4. Ext(χζ) = Int(χζ c
).

It is clear that:
(a) Int (χζ) is the largest FFOS containing χζ ;
(b) Cl(χζ) is the smallest FFCS containing χζ .

Example 2. Assume = =
{

ᾰ
γ
1 , ᾰ

γ
2 , ᾰ

γ
3
}

. Consider the family of FFSs

ג{ =
{

1=, 0=, χζ
1, χζ

2, χζ
3, χζ

4,
}

,

where
χζ

1 =
{〈

ᾰ
γ
1 , 0.58, 0.78

〉
,
〈
ᾰ

γ
2 , 0.67, 0.58

〉
,
〈
ᾰ

γ
3 , 0.28, 0.18

〉}
,

χζ
2 =

{〈
ᾰ

γ
1 , 0.60, 0.76

〉
,
〈
ᾰ

γ
2 , 0.72, 0.53

〉
,
〈
ᾰ

γ
3 , 0.30, 0.16

〉}
,

χζ
3 =

{〈
ᾰ

γ
1 , 0.64, 0.72

〉
,
〈
ᾰ

γ
2 , 0.74, 0.48

〉
,
〈
ᾰ

γ
3 , 0.34, 0.14

〉}
,

χζ
4 =

{〈
ᾰ

γ
1 , 0.71, 0.67

〉
,
〈
ᾰ

γ
2 , 0.80, 0.43

〉
,
〈
ᾰ

γ
3 , 0.44, 0.10

〉}
.
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It is clear that (ג{,=) is an FF TS. Now, assume that

k =
{〈

ᾰ
γ
1 , 0.78, 0.48

〉
,
〈
ᾰ

γ
2 , 0.88, 0.28

〉
,
〈
ᾰ

γ
3 , 0.57, 0.08

〉}
is an FF subset over =. Then,

Int(k) = 0= ∪ χζ
1 ∪ χζ

2 ∪ χζ
3 ∪ χζ

4

= χζ
4 =

{〈
ᾰ

γ
1 , 0.71, 0.67

〉
,
〈
ᾰ

γ
2 , 0.80, 0.43

〉
,
〈
ᾰ

γ
3 , 0.44, 0.10

〉}
In fact, Int(k) is the largest FFOS contained in FFS k.

On the other hand, in order to find the FF closure of χζ , it necessary to determine the FFCSs over =.
Then,

χζ c
1 =

{〈
ᾰ

γ
1 , 0.78, 0.58

〉
,
〈
ᾰ

γ
2 , 0.58, 0.67

〉
,
〈
ᾰ

γ
3 , 0.18, 0.28

〉}
,

χζ c
2 =

{〈
ᾰ

γ
1 , 0.76, 0.60

〉
,
〈
ᾰ

γ
2 , 0.53, 0.72

〉
,
〈
ᾰ

γ
3 , 0.16, 0.30

〉}
,

χζ c
3 =

{〈
ᾰ

γ
1 , 0.72, 0.64

〉
,
〈
ᾰ

γ
2 , 0.48, 0.74

〉
,
〈
ᾰ

γ
3 , 0.14, 0.34

〉}
,

χζ c
4 =

{〈
ᾰ

γ
1 , 0.67, 0.71

〉
,
〈
ᾰ

γ
2 , 0.43, 0.80

〉
,
〈
ᾰ

γ
3 , 0.10, 0.44

〉}
.

Now, we obtain

kc =
{〈

ᾰ
γ
1 , 0.48, 0.78

〉
,
〈
ᾰ

γ
2 , 0.28, 0.88

〉
,
〈
ᾰ

γ
3 , 0.08, 0.57

〉}
The computations for Cl(k), Fr(k), and Ext(k) are as follows,

Cl(k) =1= (1= is only closed superset of k)

Cl(kc) =1= ∩ χζ c
1 ∩ χζ c

2 ∩ χζ c
3 ∩ χζ c

4

=χζ c
4 (χζ c

4 is the smallest closed superset of k)
Fr(k) =Cl(k) ∩ Cl(kc)

=1= ∩ χζ c
4

=χζ c
4 (χζ c

4 ⊆ 1=)

Ext(k) =Int(kc)

=0=

Remark 2. In addition, we analyse why certain findings that hold in crisp topology fail in FFT.
The results of crisp topology and FFT are shown in Table 1.

Table 1. Comparison of some results of crisp topology and FFT.

Crisp Topology Fermatean Fuzzy Topology

Int(k)
⋃

Ext(k)
⋃

Fr(k) = = Int(k)
⋃

Ext(k)
⋃

Fr(k) 6= 1=
Int(k)

⋂
Ext(k) = ∅ Int(k)

⋂
Ext(k) 6= 0=

Ext(k)
⋂

Fr(k) = ∅ Ext(k)
⋂

Fr(k) 6= 0=
Int(k)

⋂
Fr(k) = ∅ Int(k)

⋂
Fr(k) 6= 0=

Proposition 2. Let (ג{,=) be an FFTS and χζ , χζ
1, χζ

2 be FFSs over =. Then, the following
properties hold.

1. Int(χζ) ⊆ χζ ;
2. Int(Int(χζ)) = Int(χζ);
3. χζ

1 ⊆ χζ
2 ⇒ Int

(
χζ

1
)
⊆ Int

(
χζ

2
)
;

4. Int
(
χζ

1 ∩ χζ
2
)
= Int

(
χζ

1
)
∩ Int

(
χζ

2
)
;

5. Int
(
1=
)
= 1=, Int

(
0=
)
= 0=;

6. Int
(
χζ

1 ∪ χζ
2
)
⊆ Int

(
χζ

1
)
∩ Int

(
χζ

2
)
.
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Proof. We can see that (1), (2), (3), and (5) are readily available from the FF interior descrip-
tion.
For (4), we obtain
Int
(
χζ

1 ∩ χζ
2
)
⊆ Int

(
χζ

1
)
∩ Int

(
χζ

2
)

from Int
(
χζ

1 ∩ χζ
2
)
⊆ Int

(
χζ

1
)

and
Int
(
χζ

1 ∩ χζ
2
)
⊆ Int

(
χζ

2
)
. On the other hand, from the facts Int

(
χζ

1
)
⊆ χζ

1 and
Int
(
χζ

2
)
⊆ χζ

2 ⇒ Int
(
χζ

1
)
∩ Int

(
χζ

2
)
⊆ χζ

1 ∩ χζ
2 and Int

(
χζ

1
)
∩ Int

(
χζ

2
)
∈ ,ג{ we

have Int
(
χζ

1
)
∩ Int

(
χζ

2
)
⊆ Int

(
χζ

1 ∩ χζ
2
)
. Thus, the proof of the axioms (4) is obtained

from these two inequalities.

Theorem 2. Let P ξ : FFS(=) → FFS(=) be a mapping. The family ג{ = {χζ ∈ FFS(=) :
P ξ(χζ) = χζ} is an FF topology over =, if the mapping P ξ satisfies the following conditions:
(i) P ξ(χζ) ⊆ χζ ;
(ii) P ξ

(
1=
)
= 1=;

(iii) P ξ(P ξ(χζ)) = P ξ(χζ);
(iv) P ξ

(
χζ

1 ∩ χζ
2
)
= P ξ

(
χζ

1
)
∩ P ξ

(
χζ

2
)
. P ξ(χζ) = Int(χζ) for each FF set χζ in this FF TS.

Proposition 3. Let (ג{,=) be an FFTS and χζ , χζ
1, χζ

2 be FFSs over =. Then, the following
properties hold.

1. χζ ⊆ Cl(χζ);
2. Cl(Cl(χζ)) = Cl(χζ);
3. χζ

1 ⊆ χζ
2 ⇒ Cl

(
χζ

1
)
⊆ Cl

(
χζ

2
)
;

4. Cl
(
χζ

1 ∪ χζ
2
)
= Cl

(
χζ

1
)
∪ Cl

(
χζ

2
)
;

5. Cl
(
1=
)
= 1=, Cl

(
0=
)
= 0=.

Proof. Here, (1), (2), (3) and (5) can be easily obtained from the definition of the FF closure.
For (4), we obtain Cl

(
χζ

1
)
∪ Cl

(
χζ

2
)
⊆ Cl

(
χζ

1 ∪ χζ
2
)

from Cl
(
χζ

1
)
⊆ Cl

(
χζ

1 ∪ χζ
2
)

and Cl
(
χζ

2
)
⊆ Cl

(
χζ

1 ∪ χζ
2
)
. On the other hand, from the facts χζ

1 ⊆ Cl
(
χζ

1
)

and
χζ

2 ⊆ Cl
(
χζ

2
)
⇒ χζ

1 ∪ χζ
2 ⊆ Cl

(
χζ

1
)
∪ Cl

(
χζ

2
)

and Cl
(
χζ

1
)
∪ Cl

(
χζ

2
)
∈ χζ , we have

Cl
(
χζ

1 ∪ χζ
2
)
⊆ Cl

(
χζ

1
)
∪ Cl

(
χζ

2
)
. Thus, the proof of the axioms (4) is obtained from these

two inequalities.

Theorem 3. Let C : FFS(=)→ FFS(=) be a mapping. The family
ג{ =

{
χζ ∈ FFS(=) : C

(
χζ c
)
= χζ c

}
is an FF topology over = if the mapping C satisfies the

following conditions:

1. χζ ⊆ C(χζ);
2. C

(
0=
)
= 0=;

3. C(C(χζ)) = C(χζ);
4. C

(
χζ

1 ∪ χζ
2
)
= C

(
χζ

1
)
∪ C
(
χζ

2
)
.

Furthermore, C(χζ) = Cl(χζ) for each FF set χζ in this FF TS.

Theorem 4. Let (ג{,=) be an FFTS and χζ be an FFS over =. Then,

(a) Cl
(

χζ c
)
= (Int(χζ))c;

(b) Int
(

χζ c
)
= (Cl(χζ))c.

Proof. (a) Let χζ =
{〈
ℵ̆, µη

χζ (ℵ̆), νη
χζ (ℵ̆)

〉
: ℵ̆ ∈ =

}
and assume that the family of FFSs

contained in χζ are indexed by the family
{

χζ
i =

{〈
ℵ̆, µη

χζ
i
(ℵ̆), νη

χζ
i
(ℵ̆)
〉

: ℵ̆ ∈ =
}}

i∈I
.

Then, we see that Int(χζ) =
{〈
ℵ̆, sup

{
µη

χζ
i
(ℵ̆)
}

,∈ i
{

νη
χζ

i
(ℵ̆)
}〉

: ℵ̆ ∈ =
}

and hence

(Int(χζ))c =
{〈
ℵ̆,∈ i

{
νη

χζ
i
(ℵ̆)
}

, sup
{

µη
χζ

i
(ℵ̆)
}〉

: ℵ̆ ∈ =
}

. Since

χζ c
=
{〈
ℵ̆, νη

χζ (ℵ̆), µη
χζ (ℵ̆)

〉
: ℵ̆ ∈ =

}
and µη

χζ
i
(ℵ̆) ≤ µη

χζ (ℵ̆), νη
χζ

i
(ℵ̆) ≥ νη

χζ (ℵ̆) for
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each i ∈ I, we obtain that{
χζ

i =
{〈
ℵ̆, µη

χζ
i
(ℵ̆), νη

χζ
i
(ℵ̆)
〉

: ℵ̆ ∈ =
}}

i∈I
is the family of FFSs containing χζ c, i.e.,

Cl
(

χζ c
)
=
{〈
ℵ̆,∈ i

{
νη

χζ
i
(ℵ̆)
}

, sup
{

µη
χζ

i
(ℵ̆)
}〉

: ℵ̆ ∈ =
}

. Therefore,

Cl
(

χζ c
)
= (Int(χζ))c immediately.

(b) This is analogous to (a).

Definition 11. A Fermatean fuzzy number (FFN) or Fermatean fuzzy point (FF point) ℵ =
(µη , νη) is said to be contained in FFS K

K = {〈ρ, µη
K(ρ), νη

K(ρ)〉 : ρ ∈ =}

written as ℵ ∈ K, if µη ≤ µη
K and if νη ≥ νη

K, ∀ρ ∈ =.

Definition 12. An FFN ℵ = (µη , νη) contained in an FFS K is said to be an FF interior point if
there exists FFOS U such that, ℵ ∈ U ⊆ K. Then, K is called an FF neighbourhood of FFN ℵ.
Note that ℵ in the FF interior point of FFS K if and only if K is an FF neighbourhood of FFN ℵ.

Theorem 5. Let (ג{,=) be an FFTS.
(i) If φ and ϕ are the neighbourhoods of FFN ℵ, then φ

⋂
ϕ and φ

⋃
ϕ are also neighbourhoods of ℵ.

(ii) If ψ is a neighbourhood of FFN ℵ, then each FF superset δ of ψ is also a neighbourhood of ℵ.

Proposition 4. Let
(
1ג{,=

)
and

(
2ג{,=

)
be two FFTSs and i : = → q̆ be an FF mapping.

Then, the following are equivalent to each other:

a i is FF continuous mapping;

b i[Cl(χζ)] ⊆ Cl(i[χζ ]) for each FFSχζ in =;

c Cl
(
i−1[K]

)
⊆ i−1[Cl(K)] for each FFSK in q̆;

d i−1[Int(K)] ⊆ Int
(
i−1[K]

)
for each FFSK in q̆.

Proof. (a)⇒ (b ) Let i : = → q̆ be FF continuous mapping and χζ be an FFS over =. Then,
i[χζ ] ⊆ Cl(i[χζ ]) and χζ ⊆ i−1[Cl(i[χζ ])]. Since Cl(i[χζ ]) is an FFCS in q̆ and i is FF
continuous mapping, i−1[Cl(i[χζ ])] is an FFCS in =. On the other hand, if Cl(χζ) is the
smallest FFCS containing χζ , then Cl(χζ) ⊆ i−1[Cl(i[χζ ])] and so, i[Cl(χζ)] ⊆ Cl(i[χζ ]).

(b) ⇒ (c) Suppose that χζ = i−1[K]. From (b), i[Cl(χζ)] = i
[
Cl
(
i−1[K]

)]
⊆

Cl(i[χζ ]) = Cl
(
i
[
i−1[K]

])
⊆ Cl(K). Then, Cl

(
i−1[K]

)
= Cl(χζ) ⊆ i−1[i[Cl(χζ)]] ⊆

i−1[Cl(K)].
(c)⇒ (d) Since Int (K) = (Cl(Kc))c, then Cl

(
i−1[K]

)
= Cl(χζ) ⊆ i−1[i[Cl(χζ)]] ⊆

i−1[Cl(K)].
Assume that G is an FFOS in q̆. Then, Int (G) = G. From (d), i−1[G] = i−1[Int(G)] ⊆

Int
(
i−1[G]

)
⊆ i−1[G]. Therefore, i is an FF continuous mapping.

Definition 13. Let (ג{,=) be an FFTS.
(i) A subfamily Γ of ג{ is called an FF basis (FFB) for ג{ if for each χζ ∈ ,ג{ there exists Γ′ ⊆ Γ
such that χζ = ∪Γ′.
(ii) A collection Φ of some FFSs on = is called an FF subbase (FFSB) for some FFT ג{ if the finite
intersections of members of Φ form an FF basis for .ג{

Theorem 6.
(
1ג{,=

)
and

(
2ג{,=

)
are two FFTSs and i : = → q̆ is an FF mapping. Then,

1. i is an FF continuous mapping iff for each F̃ ∈ Γ, we have i−1[F̃] as an FF open subset of =
such that Γ is an FF basis for .2ג{
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2. i is an FF continuous mapping iff for each K ∈ χζ , we have i−1[K] as an FF open subset of
= such that Φ is an FF subbase for .2ג{

Proof. (i) Let i be an FF continuous mapping. Since each F̃ ∈ Γ ⊆ 2ג{ and i is an FF
continuous mapping, then i−1[F̃] ∈ .1ג{
Conversely, suppose that Γ is an FF basis for 2ג{ and i−1[F̃] ∈ 1ג{ for each F̃ ∈ Γ. Then,
for an arbitrary FFOS χζ ∈ ,2ג{

i−1[χζ ] = i−1[∪F̃∈Γ F̃
]
= ∪

F̃∈Γ
i−1[F̃] ∈ .1ג{

That is, i is an FF continuous mapping.
(ii) Let i be an FF continuous mapping. Since each K ∈ Φ ⊆ 2ג{ and i is an FF continuous
mapping, then i−1[K] ∈ .1ג{

Conversely, assume that Φ is an FF subbase for 2ג{ and i−1[K] ∈ 1ג{ for each K ∈ Φ.
Then, for an arbitrary FFOS χζ ∈ ,2ג{

i−1[χζ ] = i−1
[
∪ij∈I

(
Ki1 ∩ Ki2 ∩ . . . ∩ Kin

)]
=
⋃
ij∈I

(
i−1[Ki1

]
∩i−1[Ki2

]
∩ . . . ∩i−1[Kin ]

)
∈ 1ג{

That is, i is an FF continuous mapping.

Definition 14. Let
(
1ג{,=

)
and

(
2ג{,=

)
be two FFTSs and i : = → q̆ be an FF mapping.

Then:
(i) i is called an FF open function if i[χζ ] is an FFOS over q̆ for every FFOS χζ over =. (ii) i is
called an FF closed function if i[K] is an FFCS over q̆ for every FFCS K over =.

Example 3. Let = =
{

ᾰ
γ
1 , ᾰ

γ
2 , ᾰ

γ
3
}

and q̆ = {y1, y2, y3}. Consider the following families of FF
sets 1ג{ =

{
0=, 1=, χζ

1, χζ
2, χζ

3, χζ
4
}

and 2ג{ =
{

0q̆, 1q̆, S1, S2, S3, S4
}

where

χζ
1 =

{〈
ᾰ

γ
1 , 0.27, 0.43

〉
,
〈
ᾰ

γ
2 , 0.57, 0.17

〉
,
〈
ᾰ

γ
3 , 0.57, 0.47

〉}
χζ

2 =
{〈

ᾰ
γ
1 , 0.57, 0.47

〉
,
〈
ᾰ

γ
2 , 0.77, 0.27

〉
,
〈
ᾰ

γ
3 , 0.67, 0.57

〉}
χζ

3 =
{〈

ᾰ
γ
1 , 0.57, 0.38

〉
,
〈
ᾰ

γ
2 , 0.77, 0.17

〉
,
〈
ᾰ

γ
3 , 0.67, 0.47

〉}
χζ

4 =
{〈

ᾰ
γ
1 , 0.27, 0.40

〉
,
〈
ᾰ

γ
2 , 0.57, 0.27

〉
,
〈
ᾰ

γ
3 , 0.57, 0.57

〉}
S1 = {〈y1, 0.57, 0.17〉, 〈y2, 0.27, 0.43〉, 〈y3, 0.57, 0.47〉},
S2 = {〈y1, 0.77, 0.27〉, 〈y2, 0.57, 0.47〉, 〈y3, 0.67, 0.57〉},
S3 = {〈y1, 0.77, 0.17〉, 〈y2, 0.57, 0.38〉, 〈y3, 0.67, 0.47〉},
S4 = {〈y1, 0.57, 0.27〉, 〈y2, 0.27, 0.40〉, 〈y3, 0.57, 0.57〉},

It is clear that
(
1ג{,=

)
and

(
2ג{,=

)
are FFTSs. If FF mapping i : = → q̆ is defined as

i
(
ᾰ

γ
1
)
= y2

i
(
ᾰ

γ
2
)
= y1

i
(
ᾰ

γ
3
)
= y3

Then i is an FF open function. However, i is not an FF closed function on FFTSs
(
1ג{,=

)
.

Theorem 7. Let
(
1ג{,=

)
and

(
2ג{,=

)
be two FFTSs and i : = → q̆ be an FF mapping. Then:

1. i is an FF open function if i[Int(χζ)] ⊆ Int(i[χζ ]) for each FF set χζ over =.
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2. i is an FF closed function if Cl(i[χζ ]) ⊆ i[Cl(χζ)] for each FF set χζ over =.

Proof. (1) Let i be an FF open function and χζ be an FFS over =. Then, Int(χζ) is an
FFOS and Int(χζ) ⊆ χζ . Since i is an FF open function, i[Int(χζ)] is an FFOS over q̆ and
i[Int(χζ)] ⊆ i[χζ ]. Thus, i[Int(χζ)] ⊆ Int(i[χζ ]) is obtained.
Conversely, suppose that χζ is any FFOS over =. Then, χζ = Int(χζ). From the condition
of theorem, we have i[Int(χζ)] ⊆ Int(i[χζ ]). Then, i[χζ ] = i[Int(χζ)] ⊆ Int(i[χζ ]) ⊆
i[χζ ]. This implies that i[χζ ] = Int(i[χζ ]). That is, i is an FF open function.
(2) Let i be an FF closed function and χζ be a FFS over =. Since i is an FF closed function,
then i[Cl(χζ)] is an FFCS over q̆ and i[χζ ] ⊆ i[Cl(χζ)]. Thus, Cl(i[χζ ]) ⊆ i[Cl(χζ)]
is obtained.

Conversely, assume that χζ is any FFCS over =. Then, χζ = Cl(χζ). From the
condition of theorem, we have Cl(i[χζ ]) ⊆ i[Cl(χζ)] = i[χζ ] ⊆ Cl(i[χζ ]). This means
that, Cl(i[χζ ]) = i[χζ ]. That is, i is an FF closed function.

Definition 15. Let
(
1ג{,=

)
and

(
2ג{,=

)
be two FFTSs and i : = → q̆ be an FF mapping.

Then, i is a called an FF homeomorphism if:
(i) i is a bijective mapping;
(ii) i is an FF continuous mapping;
(iii) i−1 is an FF continuous mapping.

Theorem 8. Let
(
1ג{,=

)
and

(
2ג{,=

)
be two FFTSs and i : = → q̆ be an FF mapping. Then,

the following conditions are equivalent:
(a) i is an FF homeomorphism;
(b) i is an FF continuous mapping and FF open function; (c) i is an FF continuous mapping and
FF closed function.

Proof. The proof can be easily obtained by using the previous theorems on continuity,
openness and closedness are omitted.

4. Ff Connectedness

In this section, we define the generalised concept of IF-connected TS and provide the
related results with illustrations.

Definition 16. Let A be an FF subset in .(=ג{,=)
(a) If there exist FFOSs U ς and Vτ in = satisfying the following properties, then Aζ is called FF
Ci-disconnected (i = 1, 2, 3, 4) :

C1 Aζ ⊆ U ς ∪ Vτ ,U ς ∩ Vτ ⊆ Aζ c, Aζ ∩ U ς 6= 0x, Aζ ∩ Vτ 6= 0x;

C2 Aζ ⊆ U ς ∪ Vτ , Aζ ∩ U ς ∩ Vτ 6= 0x, Aζ ∩ U ς 6= 0x, Aζ ∩ Vτ 6= 0x;

C3 Aζ ⊆ U ς ∪ Vτ ,U ς ∩ Vτ ⊆ Aζ c,U ς * Aζ c,Vτ * Aζ c;

C4 Aζ ⊆ U ς ∪ Vτ , Aζ ∩ U ς ∩ Vτ 6= 0x,U ς * Aζ c,Vτ * Aζ c.

(b) Aζ is said to be FF Ci-connected (i = 1, 2, 3, 4) if Aζ is not FF Ci-disconnected (i = 1, 2, 3, 4).

It is clear that, in FFTSs, we have the following implications:

C1-connectedness → C2-connectedness
↓ ↓

C3-connectedness → C4-connectedness.
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Example 4. Let = =
{

ᾰ
γ
1 , ᾰ

γ
2 , ᾰ

γ
3
}

. Consider the following family of FF sets

χζ
1 =

{〈
ᾰ

γ
1 , 0.50, 0.20

〉
,
〈
ᾰ

γ
2 , 0.50, 0.40

〉
,
〈
ᾰ

γ
3 , 0.40, 0.40

〉}
,

χζ
2 =

{〈
ᾰ

γ
1 , 0.40, 0.50

〉
,
〈
ᾰ

γ
2 , 0.60, 0.30

〉
,
〈
ᾰ

γ
3 , 0.20, 0.30

〉}
,

χζ
3 =

{〈
ᾰ

γ
1 , 0.50, 0.20

〉
,
〈
ᾰ

γ
2 , 0.60, 0.30

〉
,
〈
ᾰ

γ
3 , 0.40, 0.30

〉}
,

χζ
4 =

{〈
ᾰ

γ
1 , 0.40, 0.50

〉
,
〈
ᾰ

γ
2 , 0.50, 0.40

〉
,
〈
ᾰ

γ
3 , 0.20, 0.40

〉}
.

Then, ג{ =
{

1=, 0=, χζ
1, χζ

2, χζ
3, χζ

4
}

is an FFTS on =, and consider the FFSE given below

E =
{〈

ᾰ
γ
1 , 0.60, 0.20

〉
,
〈
ᾰ

γ
2 , 0.50, 0.20

〉
,
〈
ᾰ

γ
3 , 0.40, 0.30

〉}
,

in =. Then, E is FF C1-connected, and E is also FFC2-connected, FFC3-connected, and FFC4-
connected.

Example 5. Consider the FFTS (=ג{,=) given in Example 4 and consider the FFS F given below

F =
{〈

ᾰ
γ
1 , 0.20, 0.40

〉
,
〈
ᾰ

γ
2 , 0.30, 0.60

〉
,
〈
ᾰ

γ
3 , 0.20, 0.40

〉}
,

One can verify whether F is FFC1-disconnected and hence not FFC1-connected.

Definition 17. Let (=ג{,=) be an FFTS:
(i) = is said to be FFC5-disconnected if there exists an FFOS and FFCS G such that G 6= 1x

and G 6= 0x.
(ii) = is said to be FFC5-connected if it is not FFC5-disconnected.

Example 6. Let = = {1, 2} and define the FF subsets Aζ , Sς, C, andD as follows ;
Let = =

{
ᾰ

γ
1 , ᾰ

γ
2 , ᾰ

γ
3
}

. Consider the following family of FF sets:

χζ
1 =

{〈
ᾰ

γ
1 , 0.40, 0.30

〉
,
〈
ᾰ

γ
2 , 0.20, 0.70

〉}
,

χζ
2 =

{〈
ᾰ

γ
1 , 0.30, 0.40

〉
,
〈
ᾰ

γ
2 , 0.70, 0.20

〉}
,

χζ
3 =

{〈
ᾰ

γ
1 , 0.30, 0.40

〉
,
〈
ᾰ

γ
2 , 0.20, 0.70

〉}
,

χζ
4 =

{〈
ᾰ

γ
1 , 0.40, 0.30

〉
,
〈
ᾰ

γ
2 , 0.70, 0.20

〉}
,

Then, the family ג{ =
{

1=, 0=, χζ
1, χζ

2, χζ
3, χζ

4
}

is an FFTS on = and (ג{,=) is an FFC5-
disconnected, since Aζ is a nonzero FFOS and FFCS in =.

Definition 18. Let (=ג{,=) be an FFTS:
(i) = is called FF disconnected if there exist FFOSs Aζ 6= 0x and Sς 6= 0x such that AζU ςSς = 1x
and Aζ ∩ Sς = 0x.
(ii) = is called FF connected if = is not FF disconnected.

Proposition 5. FF C5-connectedness implies FF connectedness.

Proposition 6. Let
(
=and}1ג

)
,
(
q̆,}2ג

)
be two FFTSs and let f : = → q̆ be an FF continuous

surjection. If
(
1ג{,=

)
is FF connected, then so is

(
q̆,}2ג

)
.

Proof. On the contrary, suppose that
(
q̆,}2ג

)
is FF disconnected. Then, there exist FFOSs

Aζ 6= 0q̆, Sς 6= 0q̆ in q̆ such that AζU ςSς = 1y, Aζ ∩ Sς = 0q̆. Now, we see that U ς =

f 1(Aζ),Vτ = f 1(Sς) are FFOSs in = since f is FF continuous. From Aζ 6= 0q̆, we obtain
U ς = f 1(Aζ) 6= 0x. Similarly, Vτ 6= 0x. Hence, AζU ςSς = 1y => f 1(Aζ) f 1(Sς) =

f 1(1y
)
= 1x => U ς

uVτ = 1=; Aζ ∩ Sς = 0q̆ ⇒ f 1(Aζ) ∩ f 1(Sς) = f 1(0q̆) = 0= ⇒
U ς ∩ ∩Sς = 0q̆ ⇒ f 1(Aζ) ∩ f 1(Sς) = f 1(0q̆) = 0= ⇒ U

ς∩
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Corollary 1. Let
(
1ג{,=

)
,
(
q̆,}2ג

)
be two FFTSs and let f : = → q̆ be an FF continuous

surjection. If
(
1ג{,=

)
is FF C5-connected, then so is

(
q̆,}2ג

)
.

Definition 19. An FFTS (ג{,=) is said to be FF strongly connected, if there exists nonzero FFCSs
Aζ and Sς such that µη

Aζ + µη
Sς ≤ 1 and ϑAζ + ϑSς ≥ 1.

Proposition 7. Let
(
1ג{,=

)
,
(
q̆,}2ג

)
be two FFTSs and let f : = → q̆ be an FF continuous

surjection. If
(
1ג{,=

)
is FF strongly connected, then so is

(
q̆,}2ג

)
.

Proof. This is analogous to the proof of Proposition 6. It is clear that, in FFTSs, strong
FF connectedness does not imply FF C5-connectedness, and the same is true for its con-
verse.

5. Fermatean Fuzzy α-Continuity

Definition 20. An FFS χζ =< x, µη
χζ , γχζ > of an FFTS (ג{,=) is called an FF α open set if

χζ ⊆ Int(Cl(Int(χζ))). An FFS whose complement is an FF α open set (FFαOS) is called an FF
α closed set (FFαCS).

Proposition 8. Let (ג{,=) be an FFTS. Then, the arbitrary union of FFαOS is an FFαOS and an
arbitrary intersection of FFαCSs is FFαCS.

Proof. Let {χζ
i = 〈x, µη

χζ , γχζ > |i ∈ I} be a family of FFαOSs. Then, for each i ∈ I, χζ
i ⊆

Int(Cl( Int (χζ
i))). Thus, ∪χζ

i ⊆ ∪Int((Cl( Int (χζ
i))))

⊆ Int(∪Cl( Int (χζ
i)))) ⊆ Int(Cl(∪Int(χζ

i)))) ⊆ Int(Cl(Int(∪χζ
i))))

Hence, ∪χζ
i is an FFαOS set. If we take the complement of this part, the following will be

proven (i.e., the arbitrary intersection of FFαOS is also an FFαOS).

Every FFOS is an FFαOS and every FFCS is an FFαCS but the converse is not true.

Definition 21. The FF α closure of an FFS χζ in an FFTS (ג{;=) represented as Clα(χζ) and
defined by Clα(χζ) =

⋂{Ci|Ciis an FFαC set and χζ ⊆ Ci}

Proposition 9. In an FFTS ,(ג{,=) an FFS χζ is FFαC if and only if χζ = Clα(χζ).

Proof. Assume that χζ is an FFαC set. Then,
χζ ∈ {Ci|Ci is a FFαC set and χζ ⊆ Ci

}
, so χζ = ∩{Ci|Ci is a FFαC and χζ ⊆ Ci

}
= Clα(χζ).
Conversely, consider χζ = Clα(χζ),
χζ ∈ {Ci|Ci is a FFαC set and χζ ⊆ Ci

}
Thus, χζ is an FFα-closed set.

Proposition 10. In an FFTS ,(ג{,=) the following hold for q-ROα-closure:
(1) Clα(0) = 0;
(2) Clα(χζ) is a q-ROαC in (ג{,=) for every FFS χζ in =;
(3) Clα(χζ) ⊆ Clα(R) whenever χζ ⊆ R for every χζ and R in =;
(4) Clα

(
Clα(χζ)

)
= Clα(χζ) for every FFS χζ in =.

Proof. (1) The proof is obvious;
(2) By preposition, χζ is FFαC iff the χζ = Clα(χζ) we obtain Clα(χζ) is an FFαC for

every χζ in =.
(3) By the same preposition, we obtain χζ = Clα(χζ) and R = Clα(R). whenever

χζ ⊆ R, we have Clα(χζ) ⊆ Clα(R).
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(4) Let χζ be an FFFS in =. We know that χζ = Clα(χζ),
Clα(χζ) = Clα

(
Clα(χζ)

)
. Thus, Clα

(
Clα(χζ)

)
= Clα(χζ) for every χζ in =.

Definition 22. Let
(
=ג{,=

)
and

(
q̆,}גq̆

)
be FFTSs. A mapping i : = → q̆ is named FFα-

continuous (FFαCN) if the inverse image of each FFOS of q̆ is an FFαO set in =.

Theorem 9. Let i :
(
=ג{,=

)
→

(
q̆,}גq̆

)
be a mapping from a FFTS

(
=ג{,=

)
to an

FFTS
(
q̆,}גq̆

)
. If i is FFα-continues, then:

(1) i(Cl(Int(Cl(χζ)))) ⊆ Cl(i(χζ)) for all FFS χζ in =.
(2) Cl

(
Int
(
i−1(F̃)

))
⊆ i−1(Cl(F̃)) for all F̃ in q̆.

6. Fermatean Fuzzy Codas Approach

Combinative distance-based assessment (CODAS) is a method for evaluating the
similarity between two sets of data. This method is particularly useful in applications
where the datasets are complex and may not be easily compared using traditional methods
such as Euclidean distance. One of the main advantages of CODAS is its ability to handle
data with missing or incomplete values. This is important because, in many real-world
applications, data are often missing or incomplete due to various reasons such as errors in
data collection or missing information. CODAS can handle such data using a combination of
different distance measures which can be customised based on the needs of the application.
CODAS is also highly flexible and can be applied to a wide range of data types, including
numerical, categorical, and ordinal data. This makes it an ideal method for applications
where datasets may contain a mix of different data types.

The CODAS method is a useful tool for evaluating the similarity between two sets of
data, particularly when the data are complex or contain missing or incomplete values. It
is flexible and can be applied to a wide range of data types, making it a valuable tool for
many different applications.

The fundamental task in general MCDM problems is that of selecting one or even
more options from a set of available alternatives based on numerous criteria. The CODAS
method is a comparatively recent MCDM method introduced by Ghorabaee et al. [46]
in 2016. Ghorabaee et al. [47] also extended the CODAS approach to the fuzzy set. We
extended the CODAS approach to FFSs with an application to supplier selection. To begin,
in contrast to the vast majority of existing group decision-making techniques, which assume
either a known reputation vector or equal expert weights, the experts’ reputation is deter-
mined by their qualifications and experience. Second, the Fermatean fuzzy direct rating
approach is used to establish the relative relevance of criteria based on the expert group’s
evaluation preferences. Thirdly, the Fermatean fuzzy CODAS approach is used to construct
alternative orderings based on their assessment scores. Assume that there are n alternatives
given as ℵג =

{
ℵ1ג, . . . ,ℵגi , . . . ,ℵגn

}
(n ≥ 2) and ℵk =

{
ℵk1 , . . . ,ℵkj , . . . ,ℵkm

}
(m ≥ 2) is the

finite set of m criteria. Suppose that ℘f =
{
℘f

1 , . . . ,℘f
e , . . . ,℘f

z
}
(z ≥ 2) constitute the

assemblage of invited DMs. The FF-CODAS approach consists of the following steps.

Step 1: Determine the reputation of the experts:

∆̂e = avg
(

Θ(1)
e , Θ(2)

e

)
=

(
µη

Θ(1)
e

+ µη
Θ(2)

e

2
,

νη
Θ(1)

e
+ νη

Θ(2)
e

2

)
, e = 1, 2, . . . , z (1)

here, ∆̂e indicates the FF average reputation of the invited DM ℘f
e . Θ(1)

e and Θ(2)
e are

FFNs that express the education and expertise of the invited DM ℘f
e , respectively.

Table 2 shows an FF linguistic scale that can be used to distinguish specialists based
on their credentials and expertise.
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Table 2. FF linguistic scale to distinct DMs

Qualifications Experience (Years) FFNs

F.Sc. (Higher Secondary) [6.5, 10) (0.150, 0.900)
B.Sc. (Graduate) [10, 15.5) (0.250, 0.700)
M.Sc. (Master’s) [15.5, 20) (0.500, 0.500)
M.S./M.Phil. (Postgraduate) [20, 35) (0.700, 0.250)
Ph.D. (Doctorate) ≥ 35 (0.900, 0.150)

Step 2: Normalise the importance of the DMs:

eג =
scoreP

(
∆̂e

)
∑z

t=1 scoreP
(

∆̂t

) =
1 + µη3

∆̂e
− νη3

∆̂e

∑z
t=1

(
1 + µη3

∆̂t
− νη3

∆̂t

) , e = 1, . . . , z (2)

here, ג = ,1ג) . . . , ,eג . . . , (zג
T is the importance vector of the DMs, with eג ∈ [0, 1] and

∑z
e=1 eג = 1.

Step 3: Evaluate the criteria importance matrices Ve =
[
Ve

j

]
m×1

:

ℵk1 (µη e
V1

, νη e
V1
)[t]ℵk2 (µη e

V2
, νη e

V2
)
...
...
...
...ℵkm(µη e

Vm
, νη e

Vm)[b]

where Ve
j =

(
µη e

Vj
, νη e

Vj

)
(j = 1, . . . , m; e = 1, . . . , z) is an FFN representing the impor-

tant assessment of the criterion ℵkj provided by the DM ℘f
e . It is defined by utilising

an FF linguistic importance scale, which is shown in Table 3 and can be used to offer
expert criteria importance preferences.

Table 3. FF linguistic scale to evaluate criteria importance.

Linguistic Term FFN

Extremely unimportant (EU) (0.100, 0.975)
Not important (NI) (0.200, 0.850)
Slightly important (SI) (0.350, 0.700)
Moderately important (MI) (0.550, 0.500)
Important (I) (0.700, 0.350)
Very important (VI) (0.850, 0.200)
Extremely important (EI) (0.975, 0.100)

Step 4: Compute the consolidated criterion significance matrix:

Ŵ =
[
Ŵj

]
m×1

:

Ŵj =
(

µη
Ŵj

, νη
Ŵj

)
= FFWGג

(
V1

j , . . . , Ve
j , . . . , Vz

j

)
=

z⊗
e=1

(
Ve

j

eג(

=

 z

∏
e=1

µηגe
Ve

j
, 3

√√√√1−
z

∏
e=1

(
1− νη3

Ve
j

eג(

, j = 1, . . . , m (3)

where Ŵj =
(

µη
Ŵj

, νη
Ŵj

)
is the FF aggregated importance evaluation of the criterion

ℵkj given by the DMs.
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Step 5: Normalise the aggregated criteria importance:

ij =
scoreP

(
Ŵj

)
∑m

l=1 scoreP
(

Ŵl

) =
1 + µη3

Ŵj
− νη3

Ŵj

∑m
l=1

(
1 + µη3

Ŵl
− νη3

Ŵl

)
where i =

(
i1, . . . ,ij, . . . ,im

)T is the importance vector of the criteria, with ij ∈
[0, 1](j = 1, . . . , n) and ∑n

j=1 ij = 1.

Step 6: Obtain the decision matrices Γe =
[
Γe

ij

]
n×m

:

where Γe
ij =

(
µη

Γe
ij
, νη

Γe
ij

)
(i = 1, . . . , n; j = 1, . . . , m; e = 1, . . . , z ) is an FFN that

represents the assessment of the alternative ℵגi with respect to the criterion ℵkj given

by the invited expert ℘f
e . It is defined using a Fermatean fuzzy linguistic assessment

scale. The nine-point Fermatean fuzzy linguistic scale presented in Table 4 can be used
to present the alternative assessment preferences of experts.

Table 4. FF linguistic scale to evaluate alternatives.

Linguistic Term FFNs

Inadequate (I) (0.100, 0.975)
Very poor (VP) (0.200, 0.900)
Poor (P) (0.300, 0.800)
Medium poor (MP) (0.400, 0.650)
Medium (M) (0.550, 0.500)
Medium good (MG) (0.650, 0.400)
Good (G) (0.800, 0.300)
Very good (VG) (0.900, 0.200)
Exceptional (E) (0.975, 0.100)

Step 7: Determine the aggregated decision matrix G =
[
Gij
]

n×m :

Gij = FFWGג
(

Γ1
ij, . . . , Γ̂e

ij, . . . , Γk
ij

)

=

(
z

∏
e=1

µηגe
Γe

ij
, 3

√
1−

z

∏
e=1

(
1− νη

Γe
ij

eג(

)
(4)

where the aggregation is determined by applying the “Fermatean fuzzy weighted
geometric (FFWG) operator” [48] and Gij =

(
µη

Gij
, νη

Gij

)
is the Fermatean fuzzy

aggregated assessment of the alternative ℵגi with respect to the criterion ℵkj given by
the experts.
Step 8: Determine the normalised decision matrix R̂ =

[
R̂ij

]
n×m

:

R̂ij =

{(
Gij
)c; | ℵkj ∈ C−

Gij; | ℵkj ∈ C+.
(5)

where R̂ij =
(

µη
R̂ij

, νη
R̂ij

)
denotes the FF normalised assessment of the alternative

ℵגi with respect to the criterion ℵkj given by the experts, C+ ⊆ C is the set of benefit
criteria, C− ⊆ C is the set of cost criteria, and C+ ∪ C− = C. Only alternative
assessments with respect to cost criteria are transformed by utilising the complement
operation.
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Step 9: Determine the Fermatean fuzzy negative-ideal solution (FFNIS).

Ŝ−j =

(
µη

Ŝ−j
, νη

Ŝ−j

)
= R̂−j | score

(
R̂−j
)

= min
1≤i≤n

[
score

(
Rij
)]

, j = 1, . . . , m

Ŝ− =
{

Ŝ−1 , . . . , Ŝ−j , . . . , Ŝ−m
}

is a collection of FFNs that represent the FFNIS and

R̂−j is an FFN with the lowest score function value of alternatives with respect to the

criterion ℵkj .
Step 10: Calculate the weighted Euclidean distance (Hi) and weighted Hamming dis-
tance (Ei) of the alternatives from the FFNIS given in Equations (6) and (7), respectively.

Hi

(
ℵגi , Ŝ−

)
=

1
2

n

∑
j=1

ωj

(∣∣∣∣µη3
R̂ij
− µη3

R̂−j

∣∣∣∣+ ∣∣∣∣νη3
R̂ij
− νη3

Ŝ−j

∣∣∣∣+ ∣∣∣∣π3
R̂ij
− π3

Ŝ−j

∣∣∣∣) (6)

Ei

(
ℵגi , Ŝ−

)
=

√√√√1
2

n

∑
j=1

ωj

[(
µη3

R̂ij
− µη3

R̂−j

)2
+

(
νη3

R̂ij
− νη3

Ŝ−j

)2
+

(
π3

R̂ij
− π3

Ŝ−j

)2
]

(7)

Step 11: Construct the relative assessment matrix P = [Pit]n×n :

Pit = Ei

(
ℵגi , Ŝ−

)
− Et

(
ℵגt , Ŝ−

)
+ Φit

(
Ei

(
ℵגi , Ŝ−

)
− Et

(
ℵגt , Ŝ−

))
·
[

Hi

(
ℵגi , Ŝ−

)
− Ht

(
ℵגt , Ŝ−

)]
i, t = 1, . . . , n, where Φ is a threshold function to recognise the equality of Euclidean
distance measures of two alternatives. It is defined as follows

Φit

(
Ei

(
ℵגi , Ŝ−

)
− Et

(
ℵגt , Ŝ−

))
=


1 φ ≤ |Ei

(
ℵגi , Ŝ−

)
− Et

(
ℵגt , Ŝ−

)
|

0 φ > |Ei

(
ℵגi , Ŝ−

)
− Et

(
ℵגt , Ŝ−

)
|

(8)

where φ is the threshold parameter.
Step 12: Calculate the assessment scores and rank the alternatives:

Ri =
n

∑
t=1

Pit, i = 1, 2, . . . , n (9)

where Ri represents the assessment scores of the alternative ℵגi . The alternatives are
ranked according to the decreasing values of their assessment score. The highest score
is the most desirable alternative.

7. Case Study

Sustainable supplier selection (SSS) is the process of evaluating and choosing suppliers
based on their ability to meet the needs of an organisation while also considering the
environmental and social impact of their practices. This approach to sourcing is becoming
increasingly important as organisations recognise the need to minimise their environmental
footprint and promote ethical business practices.

There are several reasons for which SSS is important. Firstly, it helps organisations
meet their sustainability goals and reduce their environmental impact. By choosing sup-
pliers that are committed to sustainability, organisations can minimise the environmental
impact of their supply chain and reduce their greenhouse gas emissions. This can help
organisations meet their sustainability targets and reduce their carbon footprint. Secondly,
SSS can help organisations reduce their risk. By choosing suppliers that are committed



Symmetry 2023, 15, 433 18 of 26

to sustainability, organisations can reduce the risk of supply chain disruptions caused by
environmental disasters or social unrest. This is particularly important for organisations
that rely on global supply chains, as these may be vulnerable to risks such as natural
disasters or political instability. Thirdly, SSS can help organisations build and maintain a
positive reputation. Consumers and other stakeholders are increasingly concerned about
the environmental and social impact of the products and services they consume, and are
more likely to choose companies that are transparent about their supply chain practices
and that have a strong commitment to sustainability. By choosing sustainable suppliers,
organisations can demonstrate their commitment to sustainability and build trust among
their stakeholders.

There are several approaches that organisations can take to implementing SSS. One
approach is to incorporate sustainability criteria into the supplier selection process. This
can involve evaluating suppliers based on their environmental performance, labour prac-
tices, and social impact. Organisations can use tools such as sustainability assessment
frameworks or rating systems to evaluate suppliers based on these criteria.

Another approach is to work with suppliers to improve their sustainability practices.
This can involve setting sustainability targets for suppliers and providing them with
support to meet these targets. Organisations can also work with suppliers to implement
sustainability initiatives, such as reducing waste or increasing the use of renewable energy.
SSS is often approached as an MCDM problem, as it involves the evaluation of multiple
criteria such as cost, quality, delivery performance, and sustainability. MCDM methods
are used to weigh these criteria and determine the most suitable supplier based on the
organisation’s specific needs and priorities.

SSS is an important aspect of corporate responsibility and can be approached as a
MCDM problem. By choosing suppliers that are committed to sustainability and incorpo-
rating sustainability criteria into the supplier selection process, organisations can minimise
their environmental impact, reduce risk, and build a positive reputation. Using MCDM
methods, organisations can evaluate multiple criteria and choose suppliers that best meet
their needs while also considering the environmental and social impacts of their practices.

Supplier selection is a critical process for firms to conduct in order to maintain a
competitive edge and achieve their supply chain objectives. According to industry statistics,
manufacturers spend up to 70% of their total product costs on products and services, while
high-technology businesses spend up to 80% of their total product costs on goods and
services. To properly manage this strategically critical purchasing function, it is crucial
to choose the most appropriate strategy and parameters for the situation. In today’s
dynamic business environment, all the aspects of delivering goods must be considered,
including reliability, versatility, and fast response, through the successful structure and
implementation of the distribution chain. Vendor assessment is a critical part of the
supply network, as it has an impact on the organisation’s long objectives and productivity.
Manufacturers have a variety of qualities and shortcomings that must be carefully evaluated
by purchasers before they are ranked according to certain criteria. As a result, each choice
must be integrated by weighing the performance of various suppliers at each supply
chain level.

The problem becomes much more acute in manufacturing plants because considerable
amounts of effort and money are spent on acquiring. Reliable vendors assist organisations
in achieving the highest levels of their manufacturing strategy while also supplying practi-
tioners with the greatest number of benefits. Supplier selection is regarded as a challenging
task due to the high number of variables and the interactions among them. In general,
the supply chain supplier selection problem is a group decision-making problem with a
large number of criteria that must be met. Because group decision making involves human
judgement, precise facts are insufficient to convey these judgments, which are based on
human preferences. The more pragmatic approach is to make judgments based on language
rather than numerical qualities. As a result, linguistic variables are utilised to assess the
grades and weights given to the problem’s criteria.
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Supplier selection is an MCDM dilemma that is influenced by a number of compet-
ing considerations, including cost, reliability, and execution. Dickson conducted a study
questionnaire-based distributed to 273 purchasing professionals, which resulted in the
identification of 23 different regularly utilised criteria for the supplier selection problem.
Dickson came to the conclusion that quality, delivery, and performance history are the most
essential criteria out of the 23 elements considered [49]. Numerous strategies have been
developed over the years to efficiently handle the challenge. In the literature, methods
such as “analytic hierarchy process” (AHP), “analytic network process” (ANP), “linear
programming” (LP), “mathematical programming”, “multi-objective programming”, “data
envelopment analysis” (DEA), “neural networks” (NN), “case-based reasoning” (CBR),
and “fuzzy set theory” (FST) have been used [50]. Additionally, the integration of many ap-
proaches has been developed by academics, and the integration capitalises on the strengths
of each method while compensating for its flaws.

7.1. Criterion for SSS

There are several criteria that organisations can use to evaluate the sustainability of
their suppliers. These criteria can be grouped into three main categories: environmental,
social, and economic.

7.1.1. Environmental Criteria

• Carbon emissions: Organisations can evaluate suppliers based on their carbon emis-
sions and the steps they are taking to reduce them. This can include evaluating the
energy efficiency of their facilities, their use of renewable energy sources, and their
transportation practices.

• Resource use: Organisations can evaluate suppliers based on their use of natural
resources such as water and raw materials and their efforts to conserve these resources.

• Waste reduction: Organisations can evaluate suppliers based on their waste reduction
efforts, including the recycling of materials and the implementation of zero waste
initiatives.

• Environmental compliance: Organisations can evaluate suppliers based on their
compliance with environmental regulations and their efforts to minimise the environ-
mental impact of their operations.

7.1.2. Social Criteria

• Labour practices: Organisations can evaluate suppliers based on their treatment of
employees, including their working conditions, wages, and benefits. This can also
include evaluating the suppliers’ policies on issues such as diversity, equity, and
inclusion.

• Community involvement: Organisations can evaluate suppliers based on their in-
volvement in and impact on the local community, including their charitable activities
and efforts to address community needs.

• Human rights: Organisations can evaluate suppliers based on their respect for human
rights and their efforts to prevent human rights abuses in their operations.

7.1.3. Economic Criteria

• Cost: Organisations can evaluate suppliers based on the cost of their products or
services and the value they provide.

• Quality: Organisations can evaluate suppliers based on the quality of their products
or services and their ability to meet the needs of the organisation.

• Delivery performance: Organisations can evaluate suppliers based on their ability to
deliver products or services on time and in the required quantities.

• Innovation: Organisations can evaluate suppliers based on their ability to bring
innovative products or services into the market and their willingness to collaborate on
new product development.
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There are several criteria that organisations can use to evaluate the sustainability of their
suppliers. These criteria can be grouped into environmental, social, and economic categories
and can be customised based on the specific needs and priorities of the organisation.

7.2. Decision-Making Application

A high-tech industrial business wishes to find an appropriate material supplier from
whom to procure critical components for future products. Following preliminary screening,
five candidates (ℵ1ג,ℵ2ג,ℵ3ג,ℵ4ג, and ℵ5ג) will be evaluated further. To pick the best acceptable
supplier, a committee of four DMs, ℘f

1 ,℘f
2 ,℘f

3 , and ℘f
4 , has been constituted. Seven criteria

are taken into account, as given in Table 5.

Table 5. Criterion for the assessment.

Criteria

ℵk1 Quality
ℵk2 Technical support
ℵk3 Performance history
ℵk4 Cost
ℵk5 Reputation in industry
ℵk6 Risk factor
ℵk7 Professionalism

Step 1: Four DMs participated in the provided case study. The five-point FF linguistic
scale was applied to various DMs given in Table 6. The table contains FFNs that denote
the experts’ credentials and expertise. Then, utilising Equation (1) and the related
FFNs, a Fermatean fuzzy average distinction of an expert is calculated, as given in
Table 7.

Table 6. Information about the DMs.

DMs Qualifications Experience (Years) Gender

℘f
1 Ph.D. 15 Male

℘f
2 M.S. 19 Female

℘f
3 Ph.D. 23 Male

℘f
4 Ph.D. 35 Male

Table 7. Information about the DMs in terms of FFNs.

DMs Qualifications Experience (Years) Average Positive Score

℘f
1 (0.900, 0.150) (0.250, 0.700) (0.575, 0.425) 1.113

℘f
2 (0.700, 0.250) (0.500, 0.500) (0.600, 0.375) 1.163

℘f
3 (0.900, 0.150) (0.700, 0.250) (0.800, 0.200) 1.504

℘f
4 (0.900, 0.150) (0.900, 0.150) (0.900, 0.150) 1.726

Step 2: The FF average reputations of DMs are normalised using Equation 2. Because a
DM cannot have a negative reputation value, the positive score algorithm is employed
to obtain a crisp average result. The obtained reputation vector of the DMs is ג =
(0.2021, 0.2112, 0.2732, 0.3135).
Step 3: The seven-point FF linguistic scale shown in Table 3 is used to determine
the relative relevance of criteria. DMs examine predefined factors that influence the
supplier evaluation process. Table 8 contains the ratings of the criteria’s linguistic
significance. Table 9 has seven matrices of criterion importance, one for each DM.
These are generated using the matching FF linguistic importance scale and linguistic
evaluations gathered from the field.
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Table 8. DM evaluations of the criteria using linguistic terms.

Criterion DMs

℘f
1 ℘f

2 ℘f
3 ℘f

4

ℵk1 EI VI MI I
ℵk2 VI I VI MI
ℵk3 I MI VI I
ℵk4 VI VI MI VI
ℵk5 MI I VI MI
ℵk6 I MI EI VI
ℵk7 EI I VI MI

Table 9. DM evaluations of the criteria in terms of corresponding FFNs.

Criterion DMs

℘f
1 ℘f

2 ℘f
3 ℘f

4

ℵk1 (0.975, 0.100) (0.850, 0.200) (0.550, 0.500) (0.700, 0.350)
ℵk2 (0.850, 0.200) (0.700, 0.350) (0.850, 0.200) (0.550, 0.500)
ℵk3 (0.700, 0.350) (0.550, 0.500) (0.850, 0.200) (0.700, 0.350)
ℵk4 (0.850, 0.200) (0.850, 0.200) (0.550, 0.500) (0.850, 0.200)
ℵk5 (0.550, 0.500) (0.700, 0.350) (0.850, 0.200) (0.550, 0.500)
ℵk6 (0.700, 0.350) (0.550, 0.500) (0.975, 0.100) (0.850, 0.200)
ℵk7 (0.975, 0.100) (0.700, 0.350) (0.850, 0.200) (0.550, 0.500)

Step 4: Equation (3) aggregates the FF significance ratings of the parameters by taking
into account the DMs’ repute vector. Table 10 contains the calculated value.

Table 10. Aggregated FFNs for the criteria.

Criterion Importance

Aggregated FFNs Positive Score Normalised

ℵk1 (0.730090, 0.370315) 1.33838 0.1440
ℵk2 (0.711773, 0.376696) 1.30715 0.1407
ℵk3 (0.701479, 0.372318) 1.29357 0.1392
ℵk4 (0.754690, 0.346039) 1.38840 0.1494
ℵk5 (0.651828, 0.425725) 1.19979 0.2150
ℵk6 (0.773977, 0.339312) 1.42458 0.1533
ℵk7 (0.731785, 0.373507) 1.33977 0.1442

Step 5: In this step, we normalise the FF aggregated importance evaluations of the
criteria. Because criteria cannot have a negative significance, the positive score function
is used to calculate the crisp aggregated values. Normalised values are given in
Table 10.
Step 6: The alternatives are evaluated using the nine-point FF linguistic scale listed
in Table 4. Table 11 contains the linguistic assessments of the options in relation to
four DMs’ decision criteria. Table 12 contains the initial decision matrices. These were
designed using the FF linguistic assessment scale as a guide.
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Table 11. DM evaluations for the alternatives in linguistic terms.

Experts Alternatives Criterion

ℵk1 ℵk2 ℵk3 ℵk4 ℵk5 ℵk6 ℵk7
℘f

1 ℵ1ג VG G MG G VG VG G
ℵ2ג MP M G MG VG P G
ℵ3ג MG I G MP M VG P
ℵ4ג G I MP VG M G MP
ℵ5ג P MP G VG M VG MP

℘f
2 ℵ1ג VG VG G MG VG G MG

ℵ2ג M G MP VG M P G
ℵ3ג MP I VG MP M P VG
ℵ4ג M MP VP G M VG G
ℵ5ג G M MP P MP P VG

℘f
3 ℵ1ג VG G VG G G MG G

ℵ2ג MP M VG P MP MP MG
ℵ3ג G VG MP P VG VG MG
ℵ4ג M I G MP VP G VG
ℵ5ג M MP P VP VG I G

℘f
4 ℵ1ג VG VG G MG VG G MG

ℵ2ג M G MP VG M P G
ℵ3ג MP I VG MP M P VG
ℵ4ג M MP VP G M VG G
ℵ5ג G M MP P MP P VG

Table 12. DM evaluations for the alternative terms of the corresponding FFNs.

Experts Alternatives Criterion

ℵk
1 ℵk

2 ℵk
3 ℵk

4 ℵk
5 ℵk

6 ℵk
7

℘f
1 ℵ1ג (0.900, 0.200) (0.800, 0.300) (0.650, 0.400) (0.800, 0.300) (0.900, 0.200) (0.900, 0.200) (0.800, 0.300)

ℵ2ג (0.400, 0.650) (0.550, 0.500) (0.800, 0.300) (0.650, 0.400) (0.900, 0.200) (0.300, 0.800) (0.800, 0.300)
ℵ3ג (0.650, 0.400) (0.100, 0.975) (0.800, 0.300) (0.400, 0.650) (0.550, 0.500) (0.900, 0.200) (0.300, 0.800)
ℵ4ג (0.800, 0.300) (0.100, 0.975) (0.400, 0.650) (0.900, 0.200) (0.550, 0.500) (0.800, 0.300) (0.400, 0.650)
ℵ5ג (0.300, 0.800) (0.400, 0.650) (0.800, 0.300) (0.900, 0.200) (0.550, 0.500) (0.900, 0.200) (0.400, 0.650)

℘f
2 ℵ1ג (0.900, 0.200) (0.900, 0.200) (0.800, 0.300) (0.650, 0.400) (0.900, 0.200) (0.800, 0.300) (0.650, 0.400)

ℵ2ג (0.550, 0.500) (0.800, 0.300) (0.400, 0.650) (0.900, 0.200) (0.550, 0.500) (0.300, 0.800) (0.800, 0.300)
ℵ3ג (0.400, 0.650) (0.100, 0.975) (0.900, 0.200) (0.400, 0.650) (0.550, 0.500) (0.300, 0.800) (0.900, 0.200)
ℵ4ג (0.550, 0.500) (0.400, 0.650) (0.200, 0.900) (0.800, 0.300) (0.550, 0.500) (0.900, 0.200) (0.800, 0.300)
ℵ5ג (0.800, 0.300) (0.550, 0.500) (0.400, 0.650) (0.300, 0.800) (0.400, 0.650) (0.300, 0.800) (0.900, 0.200)

℘f
3 ℵ1ג (0.900, 0.200) (0.800, 0.300) (0.900, 0.200) (0.800, 0.300) (0.800, 0.300) (0.650, 0.400) (0.800, 0.300)

ℵ2ג (0.400, 0.650) (0.550, 0.500) (0.900, 0.200) (0.300, 0.800) (0.400, 0.650) (0.400, 0.650) (0.650, 0.400)
ℵ3ג (0.800, 0.300) (0.900, 0.200) (0.400, 0.650) (0.300, 0.800) (0.900, 0.200) (0.900, 0.200) (0.650, 0.400)
ℵ4ג (0.550, 0.500) (0.100, 0.975) (0.800, 0.300) (0.400, 0.650) (0.200, 0.900) (0.800, 0.300) (0.900, 0.200)
ℵ5ג (0.550, 0.500) (0.400, 0.650) (0.300, 0.800) (0.200, 0.900) (0.900, 0.200) (0.100, 0.975) (0.800, 0.300)

℘f
4 ℵ1ג (0.900, 0.200) (0.900, 0.200) (0.800, 0.300) (0.650, 0.400) (0.900, 0.200) (0.800, 0.300) (0.650, 0.400)

ℵ2ג (0.550, 0.500) (0.800, 0.300) (0.400, 0.650) (0.900, 0.200) (0.550, 0.500) (0.300, 0.800) (0.800, 0.300)
ℵ3ג (0.400, 0.650) (0.100, 0.975) (0.900, 0.200) (0.400, 0.650) (0.550, 0.500) (0.300, 0.800) (0.900, 0.200)
ℵ4ג (0.550, 0.500) (0.400, 0.650) (0.200, 0.900) (0.800, 0.300) (0.550, 0.500) (0.900, 0.200) (0.800, 0.300)
ℵ5ג (0.800, 0.300) (0.550, 0.500) (0.400, 0.650) (0.300, 0.800) (0.400, 0.650) (0.300, 0.800) (0.900, 0.200)

Step 7: Four decision matrices are aggregated using the FFWG operator specified in
Equation (4), which take the DMs’ reputational vector into consideration. Table 13
contains the derived FF aggregated assessments of the alternatives in relation to the
criteria specified by four DMs.
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Table 13. FF aggregated assessments of the alternatives.

Criterion Alternatives

ℵג
1 ℵג

2 ℵג
3 ℵג

4 ℵג
5

ℵk1 (0.900, 0.200) (0.473, 0.584) (0.533, 0.557) (0.593, 0.473) (0.592, 0.562)
ℵk2 (0.851, 0.258) (0.669, 0.421) (0.182, 0.948) (0.207, 0.911) (0.473, 0.584)
ℵk3 (0.792, 0.309) (0.574, 0.545) (0.704, 0.459) (0.336, 0.809) (0.425, 0.676)
ℵk4 (0.717, 0.360) (0.624, 0.577) (0.369, 0.693) (0.677, 0.462) (0.335, 0.804)
ℵk5 (0.872, 0.236) (0.557, 0.528) (0.629, 0.455) (0.417, 0.714) (0.532, 0.563)
ℵk6 (0.774, 0.322) (0.325, 0.769) (0.506, 0.681) (0.851, 0.258) (0.277, 0.872)
ℵk7 (0.717, 0.359) (0.755, 0.333) (0.659, 0.536) (0.718, 0.428) (0.740, 0.419)

Step 8: Table 14 contains the normalised decision matrix. Equation (5) is used to
determine it based on the aggregated decision matrix. The complement operation is
used solely for the cost type attributes. Here, ℵk4 and ℵk6 are the cost-type attributes.

Table 14. Normalised assessment matrix.

Criterion Alternatives

ℵג
1 ℵג

2 ℵג
3 ℵג

4 ℵג
5

ℵk1 (0.900, 0.200) (0.473, 0.584) (0.533, 0.557) (0.593, 0.473) (0.592, 0.562)
ℵk2 (0.851, 0.258) (0.669, 0.421) (0.182, 0.948) (0.207, 0.911) (0.473, 0.584)
ℵk3 (0.792, 0.309) (0.574, 0.545) (0.704, 0.459) (0.336, 0.809) (0.425, 0.676)
ℵk4 (0.360, 0.717) (0.577, 0.624) (0.693, 0.369) (0.462, 0.677) (0.804, 0.335)
ℵk5 (0.872, 0.236) (0.557, 0.528) (0.629, 0.455) (0.417, 0.714) (0.532, 0.563)
ℵk6 (0.322, 0.774) (0.769, 0.325) (0.681, 0.506) (0.258, 0.851) (0.872, 0.277)
ℵk7 (0.717, 0.359) (0.755, 0.333) (0.659, 0.536) (0.718, 0.428) (0.740, 0.419)

Step 9: To begin, the values of the FF normalised assessments’ score functions are
determined using the formulation of the FFNs’ score function. Then, the FFNIS is
calculated and provided as{(

0.473, 0.584
)
,
(
0.182, 0.948

)
,
(
0.336, 0.809

)
,
(
0.462, 0.677

)
,
(
0.417, 0.714

)
,(

0.258, 0.851
)
,
(
0.659, 0.536

)}
.

Step 10: Evaluate the weighted Euclidean distances and weighted Hamming distances
using Equations (6) and (7), given in Table 15.

Table 15. Weighted Euclidean distances and weighted Hamming distances.

Distance Measure Alternatives

ℵג
1 ℵג

2 ℵג
3 ℵג

4 ℵג
5

Weighted Euclidean 0.372646 0.266123 0.211559 0.0420982 0.278918
Weighted Hamming 0.599526 0.478071 0.364525 0.1012120 0.493522

Step 11: Construct the relative assessment matrix, which is given in Table 16. In the
base case scenario, the threshold parameter φ > 0 is set to 0.40.
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Table 16. Relative assessment matrix.

Alternatives ℵג
1 ℵג

2 ℵג
3 ℵג

4 ℵג
5

ℵ1ג 0 0.106523 0.161087 0.330548 0.093728
ℵ2ג 0.106523 0 0.054564 0.224025 −0.012795
ℵ3ג −0.161087 −0.054564 0 0.169461 −0.067359
ℵ4ג −0.330548 −0.224025 −0.169461 0 −0.236820
ℵ5ג −0.093728 0.012795 0.067359 -0.236820 0

Step 12: Calculate assessment scores and rank the alternatives using Equation (9)
given in Table 17.

Table 17. Assessment scores and final ranking.

Alternatives Assessment Score Rank

ℵ1ג 0.691886 1
ℵ2ג 0.372317 2
ℵ3ג −0.113549 4
ℵ4ג −0.960854 5
ℵ5ג 0.250394 3

7.3. Comparison Analysis

We compare our findings to existing models to confirm their veracity and validity, as
shown in Table 18.

Table 18. Comparison analysis.

Methods Authors Top Ranking

TOPSIS method Aydemir and Gunduz [51] ℵ1ג
VIKOR method Gül [52] ℵ1ג
CODAS method Simic et. al. [53] ℵ1ג

8. Conclusions

Numerous practitioners and academics have emphasised the benefits of supply chain
management. Many organisations have learned that a well-managed supply chain system
is a vital instrument for strengthening their competitive edge. Under these circumstances,
establishing strong and long-term connections between customers and suppliers is impor-
tant to the supply chain system’s performance. As a result, the issue of supplier selection
becomes the key concern when developing an effective supply chain system. We invented
the Fermatean fuzzy “Combinative Distance-based Assessment” CODAS approach for
the selection of optimum provider. To begin, in contrast to the overwhelming majority of
existing group decision-making systems, which assume either a known reputation vec-
tor or equal expert weights, experts’ reputation is established by their qualifications and
experience. Second, the Fermatean fuzzy direct rating approach is utilised to establish
the relative significance of criteria based on the expert group’s evaluation preferences.
Thirdly, the Fermatean fuzzy CODAS technique is utilised to generate alternative orderings
based on their assessment scores. Topological data analysis (TDA) techniques are quickly
gaining traction as methods for managing massive amounts of data. Moreover, numerous
concepts relevant to FFTSs are explored in this paper. Examples are supplied for the FF
interior, FF closure, and FF border of any FFS. The notions of FF base, FF subbase, FF con-
tinuous mapping, FF homeomorphism, FF open function, and FF closed function are also
introduced, along with several crucial proofs. Furthermore, the novel idea of “Fermatean
fuzzy α-continuous mapping” between FFTSs and “Fermatean fuzzy connectedness” is
introduced and studied.
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