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Abstract: Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed
of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific
surface area, and high porosity. MOFs are widely used for environmental protection, biosensors,
regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies
have reported various significant properties of MOFs for biomedical applications, such as drug
detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in
binding to the target. MOF-based membranes improve the stability and specificity of conventional
MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while
conjugated membranes dramatically increase the area of active functional groups. This special
property makes them attractive for drug and biosensor fabrication, as both the spreading and
solubility components of the porosity can be changed. Asymmetric membranes are a structure with
high potential in the biomedical field, due to the different characteristics on its two surfaces, the
possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and
surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes
can provide a platform with different properties and characteristics in the biomedical field. The
latest version of MOF materials/membranes has several potential applications, especially in medical
engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this
review, along with their advantages, disadvantages, and challenges.

Keywords: metal-organic frame works; MOF membrane; drug delivery; cancer therapy;
asymmetric membranes

1. Introduction

All types of cancer and bacterial infections are serious threats to global health. Accord-
ing to reports until 2018, nearly 18 million people die annually due to cancer and bacterial
infection [1]. The development of nanotechnology has experienced exponential growth in
recent years and has led to entry into interdisciplinary branches of various sciences, such as
biomedicine, bio-nano-technology, nanobiotechnology, and nanomedicine. Nanostructures
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are designed with acceptable biocompatibility and efficiency. This class of materials has
attracted researchers and scientists to explore nanostructures as innovative and efficient
nanoplatforms for anticancer drug/gene delivery and nanocarriers, as well as promising
devices for various bioassay and diagnostic applications (especially for therapy/diagnosis
of cancer) to be used [2–4]. Metal-organic frameworks (MOFs) are organic-inorganic hybrid
materials that have been rapidly developed for various applications such as clean energy,
storage of gases such as hydrogen and methane, catalytic processes, and drug delivery
platforms [3,5]. MOFs are composed of organic ligands as bases and clusters of suitable
metal ions as nodes. MOFs with different properties can be obtained by adjusting the
almost infinite combination of metal nodes and organic ligands. The wide range in the
choice of ingredients of MOFs makes it possible to adjust the different sizes of their pores
from micropores to mesopores or macropores. Like other nanomaterials, one of the main
characteristics of MOFs is their high surface area. In addition, by modifying the surface of
MOFs, their performance increases. These properties make MOFs suitable candidates for
biomedical applications such as drug delivery and magnetic resonance imaging (MRI) [6–8].
The high specific surface area and large pore size of MOFs facilitate the encapsulation of
drugs with drug loads, and besides, the structural and functional flexibility of MOFs allows
them to be adapted to shape size, and function [9,10]. Modifying the surface of MOFs with
different chemical groups makes it possible to carry various drugs and can simultaneously
act as MRI contrast agents. MOFs perform both diagnosis and treatment goals at the same
time. According to the mentioned contents, MOFs offer new advantages in the field of
biomedicine, including the fields of monitoring, diagnosis, and treatment [11,12]. The
MOFs show greater than 90% porosity at physiological conditions, as well as a high degree
of stability, whereas the MOFs have a high potential for biomolecular in situ functional-
ization with metals or organic molecules. Additionally, flexible membranes enable the
design of bioactive substrates effectively. In addition, by using different metal groups and
multiple organic molecules, structures with a tunable pore size (typically 0.4–6 nm) and
specific surface area (500–4500 m2/g) of MOFs can be obtained [13–15]. ZIF-8 is one of
the types of MOFs. In 2020 Ejeian, and colleagues [16,17], used polypropylene, polyurea,
and ZIF-8 (PP/PDA/ZIF-8) as a selective thin film to support the essential activities of
cells using dental pulp stem cells (DPSCs). The results of this study indicated that ZIF-8
nanostructures offer new opportunities for the surface functionalization of polypropylene
membranes as nanomedicines with significant therapeutic benefits. The researchers tested
the primary cell attachment, proliferation rate, and multilineage differentiation of cells on
this platform. guided bone regeneration (GBR). In the continuation of this review, some
applications of MOFs in the biomedical field and recent developments in this field have
been discussed.

2. MOF Synthesis

In the still relatively young field of MOF synthesis, the chemistry of the solid state
and zeolites have been recognized as forming the basis of this field [18]. As coordination
polymers are formed by connecting metal ions with organic ligands as linkers, coordination
chemistry has investigated compounds labeled as coordination polymers for years. Even
though Prussian blue compounds and Hofmann clathrates showed reversible sorption
properties, interest in porous coordination polymers emerged much later [19]. A layered
co-trimester that demonstrated reversible sorption properties was first called MOF by Yaghi
et al. around 1995 [20]. HKUST-1 and MOF-5, which were synthesized in 1999, became
among the most studied MOFs in the following years [21,22].

Hydrothermal or solvothermal synthesis routines have traditionally been used to pre-
pare MOFs on small scales through electrical heating, which can take several hours or days
to complete. To prepare high-quality single crystals suitable for structural analysis in dilute
liquid phase conditions, efforts were primarily focused on preparing high-quality single
crystals. Later, microwave-assisted synthesis, sonochemical synthesis, electrochemical
synthesis, and mechanochemical synthesis methods were used to shorten the synthesis
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time. Several studies were conducted on the scale-up of MOF synthesis conditions to
obtain high yields of solid products for industrial applications; some of these studies also
investigated the optimization of MOF synthesis conditions to achieve high yields [23,24].

A variety of elements, including zinc, copper, chromium, aluminum, and zirconium,
are commonly used to form frameworks containing bivalent or trivalent aromatic carboxylic
acids or aromatics that contain N [25].

According to Table 1, the MOF structures were synthesized using the following meth-
ods and the key findings of these studies are presented.

Table 1. Some of the MOFs and synthesis methods.

Sample Ligand Metal Synthesis Method Ref

ZIF-8 2methyl imidazole Zn(NO3)2·6H2O Microwave-assisted [26]

IRMOF-3 2-amino-1,4-benzene dicarboxylic acid Zn(NO3)2·6H2O Microwave-assisted [27]

UiO-66 1,4-benzenedicarboxylic acid ZrCl4
Conventional solvothermal

heating [28]

Fe-MIL-100 1,3,5-benzenetricarboxylic acid Metallic iron (Fe0)
Conventional solvothermal

heating [29]

MOF-5 1,4-benzenedicarboxylic acid Zn(NO3)2·4H2O Conventional solvothermal
heating [30]

MOF-5 1,4-benzenedicarboxylic acid Zn(NO3)2·4H2O Microwave-assisted [31]

ZIF-8 2methyl imidazole ZnO Mechanochemical synthesis [32]

ZIF-4 Imidazole ZnO Mechanochemical synthesis [32]

Al-MIL-100 1,3,5-benzenetricarboxylic acid Al(NO3)3·9H2O Electrochemical [33]

Mg-MOF-74 2,5- 4 dihydroxy-1,4-benzenedicarboxylic
acid Mg(NO3)·6H2O Sonochemical [34]

Cr-MIL-101 1,4-benzenedicarboxylic acid Cr(NO2)3·9H2O Microwave-assisted [35]

3. MOF Membranes

MOF membranes are widely employed in the food industry, gas separation, drug
delivery, and cancer therapy. various protocols have been applied for the design of MOF
membranes. Thereby produced various types of MOF membranes with unique properties
such as amorphous and low-crystalline MOF membranes, stimuli-responsive MOF mem-
branes, ultra-thin MOF membranes, oriented MOF membranes, and pilot scale-up of MOF
membranes. MOFs are gaining attention since they have regular nanopores and are highly
selective in gas separation membranes. MOFs can be integrated into membrane materials
in two different ways. In one way, MOF particles can be blended with a polymer matrix to
form mixed matrix membranes (MMMs), while in another, dense MOF films can be grown
on porous substrates. It is important in both cases to ensure the compatibility of MOFs
with polymer matrixes and substrates at the interface [36,37].

3.1. Asymmetric Membranes

Asymmetric membranes were first manufactured out of cellulose acetate in the late
1950s by Loeb and Sourirajan and were used in reverse osmosis [38,39]. Since then, asym-
metric membranes have been used in various fields of separation processes such as ultrafil-
tration, microfiltration, dialysis, gas separation, and wastewater treatment.

In addition to the mentioned applications, asymmetric membranes have also been
used as wound dressings to treat skin injuries [40]. The first efforts of scientists in the
field of regenerative medicine began with the development of occlusive wound dressings.
Failure to absorb exudate in occlusive wound dressings such as Opsite®, Omiderm®, or
Spandre® results in delayed healing in resuscitation medicine. Despite their effectiveness,
these dressings did not prevent the penetration of microorganisms and dehydration of
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wounds. Researchers later concluded that a combination of both systems (occlusive as well
as macroporous) would be ideal, since the bacteria could not penetrate both structures and
exudate could be absorbed and gas exchanged simultaneously [41].

The first wound dressings used in regenerative medicine were impermeable and pre-
vented exudate from being absorbed through the wound, causing the healing process to be
delayed. Eventually, microporous constructs (e.g., Coldex®, Surfasoft®) were developed
that allowed wound exudate to be better drained. Although these dressings prevented
microbial penetration and wound dehydration, they were incapable of preventing penetra-
tion of microorganisms. The researchers concluded that combining both systems (occlusive
and macroporous structures) would be the best option since it would prevent bacteria from
entering while allowing exudate to be absorbed and gaseous exchange to occur. In order to
improve blood flow, dressings were developed with a macroporous sublayer or a hydrogel
linked to a dense or hydrophobic microporous top layer. These types of dressings include
Lyofoam®, Epigard®, and Duoderm®. Although they were effective, they also had some
disadvantages. For example, they had limited drainage capacity, exudate accumulation,
and frequent replacements, which meant more wound infections. In the 1990s, Hinrichs
et al., following Loeb and Sourirajan’s work, developed for the first time an asymmetric
polyurethane membrane (PU) [39]. Based on in vitro bacterial testing using P. aeruginosa,
the asymmetric PU membrane exhibited an interconnected microporous top layer (pore size
0.7 m), which prevented wound dehydration and bacterial penetration. The sublayer also
possesses a sponge-like structure that contains micropores (pore size: ten micrometers) and
macropores (pore size: 50–100 µm) that enhance tissue regeneration and absorption capaci-
ties. Moreover, both layers acted as drug release reservoirs, allowing controlled gaseous
exchange in a way that surpasses the limitations of Lyofoam®, Epigard®, and Duoderm®

described in the previous paragraph. The use of chitosan (CS) membranes in asymmetrical
forms has also been demonstrated. Due to its intrinsic properties, such as antimicrobial
activity, biocompatibility, biodegradability and hemostatic properties, CS, a natural poly-
mer derived from deacetylation of chitin, has been extensively used for wound dressing
production. A platelet recognizes the CS surface and initiates coagulation in a matter of
seconds by attracting the negatively charged residues on red blood cell membranes with
its protonated amine groups, leading to a strong agglutination, thrombin production, and
fibrin mesh synthesis within the microenvironment created by this polysaccharide [39,42].
Considering the various properties of MOFs, the use of these materials with asymmetric
membranes have shown a high potential in separating different materials, especially gases,
with the help of membranes [43]. However, the use of these two-dimensional materials and
asymmetric membranes in the biomedical field, especially in the field of wound dressing,
still has room for improvement.

3.2. Electrospinning

Normally, polymer melts or solutions are electrospun by either pressing them through
a needle, coating them on a wire, rotating a cylinder, etc., or introducing them into a strong
electric field. Generally, a strong electric field is used to melt or introduce the polymer solu-
tion [44,45]. Its higher production performance can be attributed to needleless technology,
which can usually be scaled up from the laboratory to the industrial level. A biotechnology
or medical application often uses nanofiber mats of this type [44,46]. Nanofiber mats
are typically produced with incidentally oriented nanofibers using a static collector plate.
Biotechnology and biomedicine often use these kinds of nanofiber mats. Nanofiber mats
aligned in a particular direction are beneficial for cell growth [44,47,48]. A rapidly rotating
collector and blades can be used to prepare them. A conductive substrate with grounding
can be used in orienting nanofiber mats, including magnetic nanofibers, allowing fiber
alignment. Dielectric coatings can also be applied to parts of the substrate to modify the
electric field during electrospinning. In their study, Nguyen et al. study a cylinder collector
shielded by two dielectric films that rotate at a high speed. A thin gap between these two
cylinders amplifies the electronic field, which controls fiber alignment and position through
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diverting airflow due to cylinder rotation [49,50]. It is possible, as well, to create one or
more layers with different mechanical properties by partially growing nanofiber layers
on conductive structures and partly consolidating them. Different polymers and polymer
blends can be used for electrospinning nanofiber mats. An electrospinning process can
be carried out using aqueous solutions for some polymers. This method is simple and
environmentally friendly. To use nanofiber mats in humid environments, a crosslinking
step is required. The majority of water-resistant polymers must be electrospun using
toxic or corrosive solvents, as opposed to electrospinning with low-toxic solvents such
as dimethyl sulfoxide (DMSO). Electrospinning often uses polyacrylonitrile (PAN) due
to its spinnability from DMSO. Another reason PAN is often electrospun is that it can be
used as a precursor for carbon nanofibers. There is a wide range of materials that can be
spun and co-spun into nanofiber mats, making them attractive for applications in many
fields, including biotechnology and biomedicine. It is, however, for this discussion that we
will be focusing on materials that are suitable for tissue engineering as well as other types
of cell growth that apply to this discussion [51,52]. It is highly desirable for biomedical
and biotechnological applications due to its low toxic nature and ability to be electrospun
from dimethyl sulfoxide (DMSO). Its use for tissue engineering is less frequent, however
than that of other polymers. Scientists found that electrospun nanofiber mats with low
Fe-MOF levels were highly porous, had an appropriate fiber diameter, and were chemically
stable [53,54]. Fe-MOF scaffolds showed better attachment, proliferation, and spreading
of human umbilical vein endothelial cells (HUVEC) than pure PAN nanofiber mats, as
shown in Figure 1. It was possible to exclude cytotoxic effects for Fe-MOF in low quantities;
in vivo implantation did not result in any inflammatory response. The optimal concentra-
tion of Fe-MOF is the concentration that has a balance between scaffold degradation and
an increase in cytotoxicity. A negative effect of Fe-MOF is that it negatively impacts cell
activity, but it positively impacts pH values at the biointerface [54–56].
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4. Biomedical Applications

In coordination chemistry, open framework materials such as zeolites have been
crucial since their discovery. In a wide range of applications, including catalysis, ion
exchange, and gas separation, porous solids have been developed with targeted topology,
architecture, crystallinity, and porosity [6,57,58]. Crystallized MOFs are open framework
materials composed of metal nodes and organic ligands. The large surface area and
well-defined pore distribution of MOFs have made them a valuable material for a wide
range of applications since they were discovered at the end of the 1990s [59]. As well as
tuning their chemical functionality during synthesis, they are capable of modifying their
physical properties [60,61]. There has however been considerable effort made to improve
the resistance of MOFs to degradation under different/harsh chemical conditions because
of their chemical, thermal, and mechanical stability [62,63].

4.1. Biosensors

Biosensors allow for molecular interactions to be detected and converted into an elec-
trical signal that can be detected [64,65]. An electrochemical, optical, piezoelectric, acoustic,
or calorimetric biosensor involves the combination of biological elements, such as enzymes,
DNA, RNA, metabolites, cells, and oligonucleotides [66–68]. An important characteristic of
biosensors is their ability to convert biochemical interactions into electric signals that can
be measured and quantified. Further, it is imperative that the minute changes that occur
during biological processes, such as the interaction of various biomolecules, are analyzed
efficiently. Therefore, biosensors are being developed to diagnose diseases, ensure food
quality, and monitor the environment. As far as medical applications are concerned, biosen-
sors are designed to detect tumors, bacteria, toxins, and biomarkers early in the onset of
various disorders. Several factors have contributed to the popularity of biological sensors,
including their low manufacturing costs, rapid response time, portability, high specificity,
and high sensitivity, along with their ability to determine minute changes in biological
elements [64,69–71]. Detecting biomolecules intracellularly presents a challenging task
since non-specific targets can bind to biosensors [70,72]. To overcome this defect, structured
materials from the Institute Lavoisier (MIL) family of metal-organic frameworks (MOF) are
being utilized. In particular, a combination of MILs and fluorescence was used to detect
intracellular ATP molecules. An indicator of active metabolism is the concentration of ATPs
within the cell, which is the cellular energy currency [70,73]. As ATP aptamers (Apt-F)
labeled with carboxyfluorescein (FAM) were linked to MIL-100, and thus quenched by
PET (photoinduced electron transfer), Apt-F is bound to the ATP molecules at this point,
thereby restoring FAM fluorescence. Using a chemiluminescent sensor, microfluidics-based
nanosensors have been developed for identifying CD4 cells in the presence of HIV. Based
on previous research, CD4+ and CD8+ T-helper cells are thought to play a role in wound
healing, and so immunosensors can be used to monitor wound healing [64,74,75]. Due to
the difficulty of finding water-soluble photosensitizer molecules that can bind selectively
to tumor tissues that have a wide range of characteristics and are water-soluble (for high
cell uptake), nanoscale agents are generally used for delivering photosensitizer molecules
(molecules that destruct tumors upon exposure to light) [64,71]. With their high porosity,
large surface area, and high tunability, MOFs can be used as nanocarriers for the treatment
of sick tissue. The size, stability, half-life, and biocompatibility of these nano-carriers must
also be monitored to increase their specificity to tumor tissue [76,77].

4.2. Drug Delivery

It has been proven that drug delivery systems (DDSs) consist of a carrier and a drug.
Conventional DDSs such as tablets, capsules, and granules have several limitations and
disadvantages such as high doses needed, poor bioavailability issues, and side effects.
Due to various limitations of conventional DDSs, new DDSs have been created and de-
signed in the last decade. Recently, numerous DDSs have been developed to reduce side
effects and increase therapeutic efficacy. Therefore, inorganic materials such as carbon



Symmetry 2023, 15, 403 7 of 22

nanotubes, graphene, magnetic nanoparticles (NPs) of iron oxide, and gold nanoparticles
were used. MOF membranes are a fascinating and versatile class of NPs, assembled from
metal ions/clusters and organic linkers. MOF membranes have various properties, such as
high porosity and surface area and special chemical and thermal stability. They have been
applied in diverse applications, such as gas storage, photochemistry, catalysis, separation
processes, adsorption properties, diagnostic, and antimicrobial properties, and delivery
of a large variety of active drugs, biological gases, and cosmetics. Due to these properties,
MOF membranes have become a good candidate for therapeutic and medicinal targets.
The properties, such as low side effects, stimulus-based delivery systems, and multiple
drugs loaded properties, have popularized the use of MOFs in drug delivery in the last
decade. MOF membranes have been synthesized by diverse methods such as solvother-
mal, sonochemical, mechanochemical, and electrochemical. Drug release is controlled by
MOFs, which have a high loading capacity, and targeting capabilities thanks to their high
specific surface area, adjustable structure, modifications, and biodegradability [78]. Their
physicochemical properties change as a result of being absorbed by proteins and cellular
components [79,80]. This makes it extremely problematic for nanomaterials to have low
therapeutic efficacy, poor targeting, and adverse side effects, which are all the result of their
nano size. It is still possible to modify biomaterials (PEG, polymers, liposomes, hyaluronic
acid, proteins, peptides, etc.) with MOF surfaces to some extent, despite MOFs’ properties
of biocompatibility, active/passive targeting, and long circulation. However, there are still
some limitations, such as easy degradation, immune recognition, and low targeting effi-
ciency [81–85]. Moreover, the immune system can easily recognize and eliminate synthetic
composites as foreign materials. Hence, most synthetic MOF carriers have a short half-life,
which makes it difficult for them to accumulate in diseased parts of the body [86,87].The
ideal drug carrier should therefore be biocompatible, stable, and able to target drugs.
Physiochemically and biologically, biomimetic nanomaterials are derived from cell mem-
branes [88–90]. Thus, they can avoid detection and elimination by the immune system as
well as perform functions such as long circulation, targeted delivery, and controlled release.
To achieve bionic camouflage, cell membrane biomimetic technology entraps MOFs and
transfers their natural properties to the surface of MOFs using cell membrane biomimetic
technology. Multifunctional MOF carriers can be designed easily using this method [91,92].
Since cell membrane-cloaked MOFs have similar properties to membrane-extracted source
cells, they are capable of long circulation and disease-related targeting. Nano-carriers are
currently made from various plasma membranes and cancer cell membranes, including
those from blood-circulating cells [93,94]. The MOF platform has already been used to
modify red blood cells (RBCs), platelets, neutrophils, macrophages, dendritic cells, and
various cancer cell membranes to achieve biological camouflage [95–98]. The combination
of enhanced bio-functions with improved drug delivery properties can be exhibited in a
biomimetic MOF carrier. Considering the mentioned advantages of MOFs, the synergy of
these properties with the capabilities that membranes bring can be considered a promising
option in the field of controlled drug delivery [99]. Researchers are investigating porous
polymers for applications apart from commercial applications, such as in catalysis and
photo energy conversion [46,100]. For porous polymeric membranes, the most commercial
potential may be found in the area of biomedicine, particularly in drug delivery, tissue
engineering, bio-separation, and hemodialysis. Biodegradability and easy dissolution in
certain solvents make these materials ideal for biomedical applications [85,101,102]. Bio-
logical scaffolds fabricated in vivo from membranes require controlled biodegradability,
for example, for tissue engineering [103,104]. The development of porous polymeric mem-
branes with diverse designs was enabled by selective solubility in polymer fabrication
techniques such as electrospinning or block copolymer self-assembly [105]. The second half
of this review discusses the use of porous polymeric membranes in biomedical applications.
Detailed discussions of membrane properties, and features, including pore diameter ranges,
porosity, and mechanical strength, will guide drug delivery techniques, including tissue
engineering, biosensing, and bio-separation [87,106].
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4.2.1. Biomaterial Types

Tissue engineering uses synthetic biodegradable polymers and acellular tissue ma-
trixes such as decellularized tissues and organs [107,108]. These include natural polymers
(such as collagen and alginate), acellular tissue matrixes, and synthetic biodegradable
polymers (such as poly (glycolic acid) (PGA), poly (lactic acid) (PLA), and their copoly-
mers) [109,110]. A biochemical, biomechanical, and biological evaluation of these bio-
materials has been conducted. There are several differences between natural polymers
and synthetic polymers, including their mechanical strength, degradation rate, and repro-
ducible microstructures [46,111]. By electrospinning, nanofibers with unique properties
such as high porosity, high permeability, and large surface area can be produced from
natural and synthetic polymers. According to previous studies, a composite made of
polycaprolactone (PCL) and collagen combines the excellent mechanical properties of PCL
with excellent biocompatibility of collagen, making the composite a tissue engineering
substrate for nerves, skin, bones, vascular scaffolds, etc. As a result, the electrospinning
of PCL/Collagen can serve as an effective tissue-engineered substrate [112,113]. Since 2D
nanomaterials possess unique physical, electronic, and chemical characteristics, they tend
to possess remarkable properties compared to 1D and 3D nanomaterials [114]. In addition
to having outstanding physical and chemical properties, 2D nanomaterials are also very
biocompatible and biodegradable, which means they can be used in tissue or organ con-
struction by combining them with cell biology [115,116]. Furthermore, 2D nanomaterials
have high aspect ratios (surface area to volume ratios), which makes them suitable for
use in drug delivery systems, as they can encapsulate a large number of molecules and
provide superior control over the release of those molecules [117]. A variety of methods
can be used to prepare MOFs, including solvochemical, electrochemical, mechanochemi-
cal, and sonochemical methods [23,77,118]. MOFs have proved a promising platform for
biomedical applications due to their unique structure, large surface area, tunable pore
sizes, and biodegradability. Rather than bridging metal ions with organic ligands, MOFs
consist of organic bonds [119,120]. A polymer fibrous mat can have increased porosity by
adding MOFs as high-porosity compounds. There are many composites of these porous
materials reported that consist of fibers or monoliths of MOFs embedded in a polymer
matrix [121,122].

4.2.2. Osmotic and Diffusion-Controlled Membranes
Osmotic-Controlled Membranes

A porous polymeric membrane diffuses drug molecules through its pores. The proper-
ties of the membrane are adjusted to control the permeation and release of drug molecules.
As far as membrane systems go, there are two main types: (1) membrane systems con-
trolled by osmosis, and (2) membrane systems controlled by diffusion [123,124]. A polymer
membrane reservoir is usually used for osmotic systems, which are capable of permeating
water but not drugs. This approach involves pore-forming agents being added to the
membranes to create pores in situ. Meanwhile, diffusion-controlled membranes transport
drugs across the membrane via drug diffusion, swelling of polymers, and degradation of
the polymers [125,126]. Porous polymeric membranes are critical for the delivery of drugs
because they must remain chemically and mechanically stable till the drug cargo reaches
the target point, they must be uniform in size to control drug permeability and they should
be easily adjustable to fit the drug’s size. Block copolymer self-assembly methods have
gained popularity for drug delivery applications due to their ability to control pore sizes in
the nanometer range and low fabrication costs [126–128].

Diffusion-Controlled Membranes

Compared to intravenous and oral drug delivery methods, transdermal drug delivery
generally offers several advantages. In contrast to intravenous and oral DDS that require
the internalization of membranes, the membranes do not need to be internalized in the
body, thereby removing many barriers, such as controlled drug release or discomfort
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from needles [129–131]. It can be achieved by either injecting the drugs directly into the
stratum corneum (SC) or by injecting them directly into the hair follicles and sweat ducts.
To prevent drugs from leaking out of the transdermal drug delivery membrane, a drug
impermeable layer is placed on top of it. In the case of porous polymer matrixes, an
adhesive layer is used to attach the polymer matrix to the skin, followed by a drug reservoir
and porous membrane to control drug release [132,133]. It has been demonstrated that a
wide range of polymers can be used to produce transdermal drug delivery membranes,
including gelatin, semi-synthetic polymers like hydroxypropyl cellulose, nitrocellulose,
or cellulose, as well as synthetic polymers such as polysiloxane, polyisoprene, polyester,
polyurethane, polyethylene vinyl acetate, polyacrylamide, and PVA [134,135]. Using a
low current, the charged drug molecules pass through the body safely without causing
physiological damage. Iontophoresis is a commonly used technique for this system that
has been widely studied. Artificial membranes made of biocompatible materials are the
main component of almost all iontophoresis patches. A significant improvement in drug
penetration is possible due to active transport because: (1) without releasing the drug
into the bloodstream, the superficial distribution of the drugs can be controlled; and
(2) rather than releasing drugs into the bloodstream, the superficial distribution of the
drugs can be controlled. The versatility of MOFs, their porosity, their large surface areas,
and their high drug uptake have made them popular as DDSs in recent years [134,136].
The bioactive molecules can be incorporated into MOF materials in different ways. A
one-pot synthesis and loading method takes advantage of the coordinative properties of
the bioactive molecule by soaking the MOF system in a saturated solution of the bioactive
molecule. The limitations of these methods are related to poor solubility of the bioactive
molecules, competition with solvent molecules, or the absence of coordinative properties of
the molecules. Mechanochemical methods are an alternative strategy. An environmentally
friendly method for synthesizing MOFs and immobilizing catalysts has been reported
based on mechanochemical synthesis [137,138].

4.3. MOFs for Cardio-Vascular Implants

The prevalence of coronary artery disease (CAD) in industrialized societies is ap-
proximately 4%. The traditional treatment for artery occlusions is the administration of
anti-thrombotic medications and small molecular weight nitric oxide donors [139]. The
artery may also be blocked permanently by implanting a drug-eluting stent. The use of
copper-based MOFs in antithrombotic coatings for cardio-vascular implants has recently
become more prevalent. Using Cu-BTC as a catalyst, it has been established that blood-
borne s-nitroso-cysteine can be converted into cysteine and nitric oxide in vitro [140,141].
S-Ntirosoglutathione can also be catalyzed by more complex Cu-MOFs. MOF/polymer
composite materials show promise as lead materials for novel implants due to their nitric
oxide release properties. In addition to these preliminary studies, Cu-BTC was directly
grown on stent surfaces and demonstrated acceptable hemocompatibility in vitro. The MIL-
101 (Fe) polycaprolactone composite, which was evaluated as an effective non-copper-based
MOF for cardiovascular implants, used the MOF as mechanical reinforcement, a sustained
drug release vehicle, as well as an MRI contrast agent. The interactions between MOFs
and cardiomyocytes are also poorly studied [140,142]. A coating of Cu-BTC combined with
polydopamine demonstrated effective surface modification of cardiovascular stents in vivo.
The reduction of protein absorption, thrombus formation, platelet adhesion, and increased
vasodilation, especially with nitric oxide donors that require catalytic degradation, resulted
in a significant reduction in protein absorption, thrombus formation, and platelet adhesion
(Figure 2). Other studies have reported that 3-(1H-tetrazole-5-yl) isophthalic acid-based
MOFs reduced sympathetic excitability and prevented arrhythmia. In the future, MOFs
will need to be compared to clinically used materials to determine their effectiveness and
safety [120,140,143].
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Figure 2. By continuously releasing earth-alkaline ions from MOFs, bone implants are improved,
increasing bone regeneration and biomineralization (A). By enhancing osteoinduction and integra-
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and antibacterial effects (C), MOFs facilitate osteoinduction and integration. Reprinted from [140].
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4.3.1. Tissue Engineering

Despite donor availability, the need for organ and tissue transplantation is still con-
sidered one of the biggest challenges in the medical field [144,145]. Tissue engineering
scaffolds are materials that, by mimicking the extracellular matrix environment (ECM),
enable connection to the cells of living tissues and can be implanted in the tissues of living
organisms [146,147]. Tissue engineering scaffolds must have characteristics such as biocom-
patibility and high mechanical properties. On the other hand, the scaffold should have a
suitable biodegradability speed for optimal tissue regeneration and match the new tissue re-
generation speed [148–151]. The goal of regenerative medicine is to restore and maintain the
normal function of injured or diseased tissues through the use of biological substitutes that
mimic native tissues’ anatomical and functional characteristics. Engineering, cell biology,
and materials science principles are used in this approach [152,153]. Today, tissue engi-
neering is largely based on cell-based approaches and scaffold-based approaches [154,155].
Traditionally, tissues are engineered using natural and synthetic scaffold materials. For
proper direction and orientation of new tissue in growth, scaffold-based tissue engineering
relies more on the body’s natural ability to regenerate [53,156,157]. By mechanically and
chemically removing cellular components from tissues, collagen-based tissue matrices can
be prepared by constructing artificial microenvironments from natural or synthetic materi-
als [158,159]. During cell ingrowth, extracellular matrix proteins replace scaffold materials
that slowly degrade following implantation [160,161]. The field of tissue engineering, de-
spite its challenges and versatility, has established itself as a very important discipline that
combines alternative materials as replacements for damaged tissue and stimulates natural
regeneration [155]. Modern science has made tissue engineering a dominant technique
for overcoming transplantation limitations, graft rejections, and complexities in restoring
function [162,163]. In addition to nanotechnology and biosensors, tissue engineering has
expanded into the design of organs on chips, clinical trials on chips, microfluidics, genetic



Symmetry 2023, 15, 403 11 of 22

manipulation, and more. Deciphering etiologies and repairing damaged tissues is possible
using this technique [164,165]. With the growing clinical need to repair critical-sized bony
defects, guided bone biomaterials have been developed for bone tissue engineering [54]. A
range of treatment approaches can be used to achieve bone regeneration, including guided
bone regeneration (GBR), especially in the maxillofacial region [166,167]. An osseous injury
cannot be penetrated by rapidly growing fibroblasts because of a barrier between gingival
connective tissue and alveolar bone tissue. Osteoblasts can selectively repopulate bone
defects during healing by maintaining a secluded space during this process [16,168]. There
are two main types of GBR membranes: non-resorbable and resorbable materials [16,169].
Collagen (Col) membranes are advantageous for biomedical applications since they are
biocompatible and biodegradable, eliminating the need for a second surgery. Col mem-
branes, however, exhibit unsatisfactory mechanical properties and rapidly degrade, making
them unsuitable for medical applications [170,171]. A MOF has the potential to make a
promising biomedical platform because of its unusual pore structure, large surface area,
and ability to be functionalized in a variety of ways [172–174]. The solution to designing
bioactive substrates is to immobilize enzyme MOFs onto porous and flexible membranes.
A MOF is also suitable for combining short peptides, antibodies, and nucleic acids. MOF
layers have therefore been successfully used to support cellular behavior in vitro as well
as in vivo [140,173]. Multifunctional MOF-based biomaterials are being designed and
synthesized at an accelerated pace. Due to its excellent chemical and thermal stability, pH
sensitivity, and negligible cytotoxicity, zeolitic imidazolate framework-8 (ZIF-8) is an ideal
candidate for use in bone regeneration processes [172] (Figure 3).
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4.3.2. Bone Adhesives

Bone adhesives with properties such as biocompatibility and prevention of shape
changes in drugs used in the reconstruction of bone defects play an important role in bone
graft repair surgery [175]. A multifunctional hydrogel containing catechol and chitosan
modified with ZIF-8 nanoparticles (CA-CS/Z) was produced by Y. Liu et al. to stabilize graft
environment, accelerate bone regeneration, promote osteogenic differentiation, and expand
blood supply [176]. By chemically converting catechol and ZIF-8, they developed hydrogels
with excellent wet adhesion. An analyses of the characterization data demonstrated that
CA-CS/Z hydrogels were synthesized successfully, displaying reliable mechanical strength,
excellent rheological properties, and excellent adhesion for clinical application. In rat bone
marrow mesenchymal stem cells (rBMSCs), their superior biocompatibility allows them to
provide blood supply through paracrine production of vascular endothelial growth factor
(VEGF). Furthermore, ZIF-8 nanoparticles released from the hydrogels could enhance
osteogenic differentiation of rBMSCs by up-regulating the secretion and production of
collagen 1, osteocalcin, and alkaline phosphatase. Additionally, CA-CS/Z had antibacterial
properties. CA-CS/Z also demonstrated an important effect on vascularized osteogenesis
by stabilizing bone graft materials and thereby accelerating bone regeneration when applied
to wound areas [175,176].

4.4. Cancer Therapy

Different synthetic methods have been used to prepare MOFs for a variety of uses,
including catalysis, separations, sensing, drug delivery, optics, and many biomedical ap-
plications. Annually, millions of people die from cancer, one of the most serious threats
to human health [177,178]. The most common method of treatment is chemotherapy. In
addition to undesirable side effects, poor pharmacokinetics, and poor biodistribution,
therapeutic drugs cannot be administered directly to patients. To decrease side effects and
enhance therapeutic efficacy, research efforts have focused on controllable drug delivery
vehicles [179]. Over the past few decades, various nanocarriers have been developed,
including organic micelles, liposomes, and dendrimers, as well as inorganic mesoporous
silica and quantum dots. These carriers, however, do have limitations in bio application,
such as a low loading capability of liposomes, micelles, or dendrimers, and undesirable
toxicity and degradation properties of inorganic materials. The following basic require-
ments must be met in a drug-loading system: a large loading capacity is important for
intravenous drug administration; carriers must be nanoscale to allow intravenous drug
administration; carriers must also be biocompatible, i.e., not toxic, and easily degraded by
the body [179,180]. It is also possible to control the release of drugs from a vehicle loaded
with drugs. Therefore, controlled drug release systems have been extensively investigated
in cancer chemotherapy. A multimodal treatment system is also being developed to meet
the ever-growing demand for effective therapeutic interventions [181]. Janus nanocompos-
ites made of Au nanorods (NRs) and ZIF-8 were developed by Han and colleagues for CT
imaging and synergistic chemo-photothermal treatment of BALB/c mice bearing the H22
gene (see Figure 4) [182,183]. MOFs have the following obvious advantages over traditional
drug carriers, as discussed above: with a variety of morphologies, compositions, sizes, and
chemical properties, MOFs have a variety of multi-functionalities and stimuli-responsive
drug release mechanisms. In addition, MOF-based materials retain their desirable physico-
chemical characteristics after modification without significantly altering their controlled
size, shape, or uniformity. The properties described above make MOFs beneficial as delivery
systems for drugs, clinical tumor therapies, and other diseases [184]. Table 2 summarizes a
few of the most important applications of MOF composites in biomedical fields.
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Table 2. MOF/Matrix applications in biomedical fields and preparation methods.

MOF-Type Matrix/MOF-Based Material Preparation Method Application Ref

ZIF-11 Dimethylformamide Electrospinning Integrated restoration of the
tendon-to-bone interface. [106]

ZIF-8 Alumina membranes Electrochemical deposition Homologous-targeted
therapeutic applications. [185]

Cobalt-based MOF PLA/PVP Electrospinning Antibacterial applications. [186]

ZIF-8 Double-layer PCL/Col
membrane Electrospinning

Osteogenesis and
angiogenesis applications.
Bone regeneration, bone

tissue engineering.

[172]

CuBTTri Medical tubing Tubing Coating Method/chemical
vapor deposition (CVD)

Antibacterial coating for
medical devices. [187]

ZIF-8 PCL- PPCL- TAEG-PDA melt-blown Electrospinning

Day ligDaylight recyclable
antibacterial masks, medical protective

clothing, and bactericidal air
purification filter application.

[188]

ZIF-67 Au@Pt One-pot synthesis
ultrasound-assisted method

Electrochemical sensing of H2O2 in
living cells [189]

MOF-199,MOF-
74,MOF-5,

MIL-53
Cotton In situ cotton-MOF synthesis Antimicrobial activity against

nosocomial bacteria [190]

MOF-5 Ag Green and mild method Antibacterial activity [191]

Fe(III) metal-organic
frameworks PAN Electrospinning Tissue engineering investigations [173]

5. Challenges

During the past decade, membrane surface engineering has become increasingly
popular due to the use of mussel-inspired surface chemistry. The use of membranes in
different processes and different membrane preparations have been extensively investigated
and applied, but there are still several key challenges to be overcome in this field, which
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represent interesting future research opportunities. A common property of such coatings
should be considered more closely. In membrane fabrication, mussel-inspired coatings may
play a more diverse role due to their hydrophilicity. Multilayer composite membranes made
from thin film composite membranes have shown excellent interfacial compatibility when
they contain mussel-inspired interlayers. In this review, the latest applications of MOFs and
membranes based on them in the biomedical field have been discussed. Because of their
adaptability, excellent surface areas, high porosity, crystallinity, great loading capacities,
improved thermal/chemical stability, and variable affinity, MOFs are most commonly
used in biomedicine as multifunctional supports. Biomedical applications for MOF-based
composites still face critical challenges despite significant advances in laboratory research.
As a first step, toxicity issues regarding MOFs need to be addressed before or during clinical
trials. The variety of MOF structures, species, sizes, and stabilities, along with the complex
environment organisms live in, make MOFs toxic not only because of their composition,
morphology, size, or stability, but also because of the environments they live in. As a result,
a comprehensive assessment of MOF toxicity is necessary. To date, considerable research
has been conducted on the toxicity of MOF scaffolds, with most experiments focusing on
short-term in vivo or acute toxicity. However, the most important aspect of MOF scaffolds
for biomedical applications is long-term toxicity, which has rarely been addressed. In vivo
or acute toxicity studies of MOFs have been conducted in many excellent studies so far.
Despite the critical aspect of long-term toxicity that must be considered if MOF scaffolds
are to be outstanding biomedical candidates, few studies have been conducted to date. To
evaluate MOFs’ toxicity comprehensively, extensive in vivo studies and long-term tissue
accumulation monitoring is urgently needed. A ligand with strong biocompatibility and
metal ion nodes with high biocompatibility can also be used to create functional MOFs
while avoiding toxicity associated with MOFs. Considering the potential properties of
MOFs, their use in the construction of MOF-based membranes has become a promising
option in the biomedical field. Because the synergism of the properties of MOFs with the
characteristics of membranes that can be produced from various materials such as polymers
can facilitate the controlled and stable release of drugs. In addition, the use of membranes
based on tissue engineering has paved the way for many treatments. In recent years,
advances in nanotechnology and the understanding of biosensors have allowed tissue
engineering to be applied to designing organs on chips, conducting clinical trials on chips,
using microfluidics, manipulating genetics, and so on, for the puerto decodend repairing
drepairssues. Considering the variety of materials that can be used with MOFs, the field
of application of these materials in biomedical field is even wider, while among these
materials, there are plenty of materials that solve problems such as the low biocompatibility
of MOFs. However, due to the novelty of this aspect of 2D materials, there are many
undiscovered applications that need to be investigated.

6. Perspective and Conclusions

In this review, the latest applications of MOFs and membranes based on them in the
biomedical field have been discussed. Because of their adaptability, excellent surface areas,
high porosity, crystallinity, great loading capacities, improved thermal/chemical stability,
and variable affinity, MOFs are most commonly used in biomedicine as multifunctional
supports. Biomedical applications for MOF-based composites still face critical challenges
despite significant advances in laboratory research. As a first step, toxicity issues regarding
MOFs need to be addressed before or during clinical trials. The variety of MOF structures,
species, sizes, and stabilities, along with the complex environment organisms live in, make
MOFs toxic not only because of their composition, morphology, size, or stability, but
also because of the environments they live in. As a result, a comprehensive assessment
of MOF toxicity is necessary. To date, considerable research has been conducted on the
toxicity of MOF scaffolds, with most experiments focusing on short-term in vivo or acute
toxicity. However, the most important aspect of MOF scaffolds for biomedical applications
is long-term toxicity, which has rarely been addressed. In vivo or acute toxicity studies of
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MOFs have been conducted in many excellent studies so far. Despite the critical aspect
of long-term toxicity that must be considered if MOF scaffolds are to be outstanding
biomedical candidates, few studies have been conducted to date. To evaluate MOFs’
toxicity comprehensively, extensive in vivo studies and long-term tissue accumulation
monitoring is urgently needed. A ligand with strong biocompatibility and metal ion nodes
with high biocompatibility can also be used to create functional MOFs while avoiding
toxicity associated with MOFs. Considering the potential properties of MOFs, their use
in the construction of MOF-based membranes has become a promising option in the
biomedical field. Because the synergism of the properties of MOFs with the characteristics
of membranes that can be produced from various materials such as polymers can facilitate
the controlled and stable release of drugs. In addition, the use of membranes based on
tissue engineering has paved the way for many treatments. In recent years, advances in
nanotechnology and the understanding of biosensors have allowed tissue engineering
to be applied to designing organs on chips, conducting clinical trials on chips, using
microfluidics, manipulating genetics, and so on, for the purpose of decoding etiology and
repairing damaged tissues. Considering the variety of materials that can be used with
MOFs, the field of application of these materials in biomedical field is even wider, while
among these materials, there are plenty of materials that solve problems such as the low
biocompatibility of MOFs. However, due to the novelty of this aspect of 2D materials, there
are many undiscovered applications that need to be investigated.
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