Poly-Cauchy Numbers with Higher Level

Takao Komatsu ${ }^{1, *(©)}$ and Víctor F. Sirvent ${ }^{2}$

1 Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 Departamento de Matemáticas, Universidad Católica del Norte, Angamos 0610, Antofagasta 1240000, Chile

* Correspondence: komatsu@zstu.edu.cn

Abstract

In this article, mainly from the analytical aspect, we introduce poly-Cauchy numbers with higher levels (level s) as a kind of extensions of poly-Cauchy numbers with level 2 and the original poly-Cauchy numbers and investigate their properties. Such poly-Cauchy numbers with higher levels are yielded from the inverse relationship with an s-step function of the exponential function. We show such a function with recurrence relations and give the expressions of poly-Cauchy numbers with higher levels. Poly-Cauchy numbers with higher levels can be also expressed in terms of iterated integrals and a combinatorial summation. Poly-Cauchy numbers with higher levels for negative indices have a double summation formula. In addition, Cauchy numbers with higher levels can be also expressed in terms of determinants.

Keywords: poly-Cauchy numbers; Cauchy numbers; poly-Bernoulli numbers
MSC: 11B75; 11B37; 05A15; 05A19

1. Introduction

The Stirling numbers with higher level (level s) were first studied by Tweedie [1] in 1918. Namely, those of the first kind $\left[\begin{array}{c}n \\ k\end{array}\right]_{s}$ and the second kind $\left\{\left\{\begin{array}{l}n \\ k\end{array}\right\}\right\}_{s}$ appeared as

$$
x\left(x+1^{s}\right)\left(x+2^{s}\right) \cdots\left(x+(n-1)^{s}\right)=\sum_{k=0}^{n} \llbracket\left[\begin{array}{l}
n \\
k
\end{array}\right]_{s} x^{k}
$$

and

$$
x^{n}=\sum_{k=0}^{n}\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{s} x\left(x-1^{s}\right)\left(x-2^{s}\right) \cdots\left(x-(k-1)^{s}\right)
$$

respectively. They satisfy the recurrence relations

$$
\llbracket \begin{aligned}
& n \\
& k
\end{aligned} \rrbracket_{s}=\llbracket \begin{aligned}
& n-1 \\
& k-1
\end{aligned} \rrbracket_{s}+(n-1)^{s} \llbracket \begin{gathered}
n-1 \\
k
\end{gathered} \rrbracket_{s}
$$

and

$$
\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{s}=\left\{\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}\right\}_{s}+k\left\{\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}\right\}_{s}
$$

with $\left[\begin{array}{l}0 \\ 0\end{array} \rrbracket_{s}=\left\{\left\{\begin{array}{l}0 \\ 0\end{array}\right\}\right\}_{S}=1\right.$ and $\llbracket \begin{array}{l}n \\ 0\end{array} \rrbracket_{s}=\left\{\left\{\begin{array}{l}n \\ 0\end{array}\right\}\right\}_{s}=0(n \geq 1)$. When $s=1$, they are the original Stirling numbers of both kinds. When $s=2$, they have been often studied as central factorial numbers of both kinds (see, e.g., [2]). The concept introduced by Tweedie This concept was used by Bell [3] to show a generalization of Lagrange and Wilson theorems. However, such generalized Stirling numbers have been forgotten or ignored for a long time.

Recently in [4,5], the Stirling numbers with higher levels have been rediscovered and studied more deeply, in particular, from the aspects of combinatorics. On the other hand, in [6], by using the Stirling numbers of the first kind with level 2, poly-Cauchy
numbers with level 2 are introduced as a kind of generalizations of the original polyCauchy numbers, which may be interpreted as a kind of generalizations of the classical Cauchy numbers. In [7], by using the Stirling numbers of the second kind with level 2, poly-Bernoulli numbers with level 2 are introduced as a kind of generalizations of the original poly-Bernoulli numbers [8]. In [9], other poly-generalized numbers, which are called polycosecant numbers, are introduced and studied. This result leads to a variant of multiple zeta values of level 2 [10], which forms a subspace of the space of alternating multiple zeta values. However, no generalized Stirling number is considered in [9].

Another of the most famous generalized Stirling numbers is the r-Stirling number [11], which has meaningful relations with harmonic numbers from the summation formulas [12-14]. By using r-Stirling numbers, so-called various r-numbers are introduced.

It is remarkable to see that the original poly-Cauchy numbers (with level 1, ref. [15]), which may be also yielded by the logarithm function (an 1-step function) with the inverse relation of the exponential function. This can be said to be an analytical definition. Then, poly-Cauchy numbers with level 2 may be yielded or defined from the inverse relation about the hyperbolic sine function, which is a 2 -step function of the exponential function [6]. Then, it would be a natural question how the poly-Cauchy numbers with level 3,4 , and generally level s can be defined by any functions (3,4 and generally s-step functions, respectively) in a natural way.

In combinatorial ways, just as poly-Cauchy number with level 2 arises from the relationship with the Stirling numbers with level 2, poly-Cauchy number with level 3, 4 and generally level s could be hoped to arise from the Stirling numbers with level 3,4 and generally level s, respectively. However, in the case of 3 or higher level, it is not easy to define and describe most of the properties including both combinatorial and analytical meanings naturally as well as those with levels 1 and 2. For example,

$$
\left\{\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right\}_{s}=\frac{s}{(s k)!} \sum_{j=1}^{k}(-1)^{k-j}\binom{s k}{k-j} j^{s n}
$$

holds for $s=1,2$ and does not for $s \geq 3$ ([5]).
The purpose of this paper is to define poly-Cauchy numbers with higher level (level s) from the analytical implications and investigate their properties. Such poly-Cauchy numbers with higher levels are yielded from the inverse relationship with an s-step function of the exponential function. We show such a function with recurrence relations and give the expressions of poly-Cauchy numbers with higher levels. Poly-Cauchy numbers with higher levels can be also expressed in terms of iterated integrals and a combinatorial summation. Poly-Cauchy numbers with higher levels for negative indices have a double summation formula. In addition, Cauchy numbers with higher levels can be also expressed in terms of determinants.

2. Definitions

For integers n and k with $n \geq 0$, poly-Cauchy numbers $\mathcal{C}_{n, s}^{(k)}$ with level $s(s \geq 1)$ are defined by

$$
\begin{equation*}
\operatorname{Lif}_{s, k}\left(\mathfrak{A F}_{s}(t)\right)=\sum_{n=0}^{\infty} \mathcal{C}_{n, s}^{(k)} \frac{t^{n}}{n!} \tag{1}
\end{equation*}
$$

where

$$
\operatorname{Lif}_{s, k}(z)=\sum_{m=0}^{\infty} \frac{z^{s m}}{(s m)!(s m+1)^{k}}
$$

The function $\mathfrak{A F}_{s}(t)$ is the inverse function of

$$
\mathfrak{F}_{s}(t)=\sum_{m=0}^{\infty} \frac{t^{s m+1}}{(s m+1)!}
$$

When $s=1, \mathcal{C}_{n, 1}^{(k)}=c_{n}^{(k)}$ are the original poly-Cauchy numbers $[15,16]$, defined by

$$
\operatorname{Lif}_{k}\left(\mathfrak{A} \mathfrak{F}_{1}(t)\right)=\sum_{n=0}^{\infty} c_{n}^{(k)} \frac{t^{n}}{n!}
$$

where $\operatorname{Lif}_{1, k}(z)=\operatorname{Lif}_{k}(z)$ is the polylogarithm factorial function (or polyfactorial function) and $\mathfrak{A F}_{1}(t)=\log (t+1)$ is the inverse function of

$$
\sum_{m=0}^{\infty} \frac{t^{m+1}}{(m+1)!}=e^{t}-1
$$

When $k=1, c_{n}=c_{n}^{(1)}$ are the original Cauchy numbers defined by

$$
\operatorname{Lif}_{1}(\log (t+1))=\frac{t}{\log (t+1)}=\sum_{n=0}^{\infty} c_{n} \frac{t^{n}}{n!}
$$

When $s=2, \mathcal{C}_{n, 2}^{(k)}=\mathbb{C}_{n}^{(k)}$ are poly-Cauchy numbers with level 2 [6], defined by

$$
\operatorname{Lif}_{2, k}\left(\mathfrak{A F}_{2}(t)\right)=\sum_{n=0}^{\infty} \mathbb{C}_{n}^{(k)} \frac{t^{n}}{n!}
$$

where $\mathfrak{A F}_{2}(t)=\operatorname{arcsinh} t$ is the inverse function of

$$
\sum_{m=0}^{\infty} \frac{t^{2 m+1}}{(2 m+1)!}=\sinh t
$$

When $k=1, \mathbb{C}_{n}=\mathbb{C}_{n}^{(1)}$ are Cauchy numbers with level 2, defined by

$$
\operatorname{Lif}_{2,1}(\operatorname{arcsinh} t)=\frac{t}{\operatorname{arcsinh} t}=\sum_{n=0}^{\infty} \mathbb{C}_{n} \frac{t^{n}}{n!}
$$

When $k=1$ and $s=3$,

$$
\operatorname{Lif}_{3,1}(z)=\frac{e^{z}+\omega^{2} e^{\omega z}+\omega e^{\omega^{2} z}}{3 z}=\frac{\mathfrak{F}_{3}(z)}{z}
$$

where

$$
\mathfrak{F}_{3}(z)=\sum_{m=0}^{\infty} \frac{z^{3 m+1}}{(3 m+1)!} .
$$

and $\omega=(1+\sqrt{-3}) / 2$, satisfying $\omega^{3}=1$. Note that a similar function to $1 / \mathfrak{F}_{3}(z)$ is studied in [17].

For an arbitrary $s \geq 1$ and $k=1$, we have

$$
\operatorname{Lif}_{s, 1}(z)=\sum_{m=0}^{\infty} \frac{z^{s m}}{(s m+1)!}=\frac{1}{s z} \prod_{j=0}^{s-1} \zeta^{j} e^{\zeta^{s-j_{z}}}=\frac{\mathfrak{F}_{s}(z)}{z}
$$

where $\zeta=e^{2 \pi i / s}$, is the s-th root of the identity. The function $\operatorname{Lif}_{s, 1}(z)$ becomes the s-step exponential function.

3. Basic Results

When $s=3$,

$$
\mathfrak{A F}_{3}(z)=z-\frac{1}{24} z^{4}+\frac{17}{2520} z^{7}-\frac{389}{259200} z^{10}+\frac{85897}{222393600} z^{13}-\frac{887731}{8211456000} z^{16}
$$

$$
+\frac{762918737}{23870702592000} z^{19}-\frac{16283723339}{1658385653760000} z^{22}+\cdots
$$

When $s=4$,

$$
\begin{array}{r}
\mathfrak{A} \mathfrak{F}_{4}(z)=z-\frac{1}{120} z^{5}+\frac{25}{72576} z^{9}-\frac{1655}{83026944} z^{13}+\frac{32633}{24320507904} z^{17} \\
-\frac{4046837}{41098797121536} z^{21}+\frac{95346434209}{12477594806098329600} z^{25} \\
-\frac{13496484991405}{21884703082311982252032} z^{29}+\frac{7594510992880985}{148224339331565182966038528} z^{33} \\
-\frac{4010591254856244071}{921362493285009177316895490048} z^{37} \\
+\frac{116831353234301926949}{310374651792009578002102307782656} z^{41}-\cdots .
\end{array}
$$

In general, for the inverse function of $\mathfrak{F}_{s}(z)$, we have the following.

Proposition 1.

$$
\mathfrak{A} \mathfrak{F}_{s}(z)=d_{0} z-d_{1} z^{s+1}+d_{2} z^{2 s+1}-\cdots+(-1)^{n} d_{n} z^{s n+1}+\cdots,
$$

where the coefficients d_{i} satisfy the recurrence relation

$$
\begin{equation*}
d_{n}=\sum_{m=0}^{n-1}(-1)^{n-m-1} d_{m} \sum_{\substack{i_{1}+\cdots+i_{s m+1}=n-m \\ i_{1}, \ldots, i_{m+1} \geq 0}} \frac{1}{\left(s i_{1}+1\right)!\cdots\left(s i_{s m+1}+1\right)!} \quad(n \geq 1) \tag{2}
\end{equation*}
$$

with $d_{0}=1$.
Proof. The expression can be obtained by the following process. First, put $\mathfrak{F}_{s}^{-1}(z):=$ $\mathfrak{A} \mathfrak{F}_{s}(z)$ as

$$
\begin{equation*}
\mathfrak{F}_{s}^{-1}(z)=d_{0} z-d_{1} z^{s+1}+d_{2} z^{2 s+1}-\cdots+(-1)^{n} d_{n} z^{s n+1}+\cdots \tag{3}
\end{equation*}
$$

Then we can find $d_{0}=1, d_{1}, d_{2}, \ldots$ as follows. For convenience, put

$$
H_{s, n}(j):=\sum_{\substack{i_{1}+\cdots+i_{s n+1}=j \\ i_{1}, \ldots, i_{s n+1} \geq 0}} \frac{1}{\left(s i_{1}+1\right)!\cdots\left(s i_{s n+1}+1\right)!} .
$$

Since $\mathfrak{F}_{s}^{-1}\left(\mathfrak{F}_{s}(z)\right)=\mathfrak{F}_{s}\left(\mathfrak{F}_{s}^{-1}(z)\right)=z$, we see that

$$
\begin{aligned}
z & =\sum_{n=0}^{\infty}(-1)^{n} d_{n}\left(\sum_{m=0}^{\infty} \frac{z^{s m+1}}{(s m+1)!}\right)^{s n+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} d_{n} \sum_{m=0}^{\infty} H_{s, n}(m) z^{s n+s m+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} d_{n} \sum_{l=n}^{\infty} H_{s, n}(l-n) z^{s l+1} \\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n}(-1)^{m} d_{m} H_{s, m}(n-m)\right) z^{s n+1}
\end{aligned}
$$

Hence, for $n \geq 1$

$$
\sum_{m=0}^{n}(-1)^{m} d_{m} H_{s, m}(n-m)=0
$$

with $d_{0}=1$. The exact values of $d_{0}, d_{1}, d_{2}, \ldots$ can be obtained by the recurrence relation (2). Some values of $H_{s, n}(j)$ for smaller j can be given as follows.

$$
\begin{aligned}
& H_{s, n}(0)=1 \\
& H_{s, n}(1)= \frac{s n+1}{(s+1)!} \\
& H_{s, n}(2)= \frac{s n+1}{(2 s+1)!}+\frac{1}{((s+1)!)^{2}}\binom{s n+1}{2} \\
& H_{s, n}(3)= \frac{s n+1}{(3 s+1)!}+\frac{(s n+1)(s n)}{(2 s+1)!(s+1)!}+\frac{1}{((s+1)!)^{3}}\binom{s n+1}{3}, \\
& H_{s, n}(4)= \frac{s n+1}{(4 s+1)!}+\frac{(s n+1)(s n)}{(3 s+1)!(s+1)!}+\frac{1}{((2 s+1)!)^{2}}\binom{s n+1}{2} \\
& \quad+\frac{s n+1}{(2 s+1)!((s+1)!)^{2}}\binom{s n}{2}+\frac{1}{((s+1)!)^{4}}\binom{s n+1}{4} .
\end{aligned}
$$

Hence,

$$
\begin{align*}
d_{1}= & H_{s, 0}(1)=\frac{1}{(s+1)!}, \\
d_{2}= & -H_{s, 0}(2)+d_{1} H_{s, 1}(1)=\frac{1}{(s+1)!r!}-\frac{1}{(2 s+1)!}, \\
d_{3}= & H_{s, 0}(3)-d_{1} H_{s, 1}(2)+d_{2} H_{s, 2}(1) \\
= & \frac{3 r+2}{2((s+1)!)^{2} s!}-\frac{3 s+2}{(2 s+1)!(s+1)!}+\frac{1}{(3 s+1)!}, \\
d_{4}= & -H_{s, 0}(4)+d_{1} H_{s, 1}(3)-d_{2} H_{s, 2}(2)+d_{3} H_{s, 3}(1) \\
= & \frac{(4 s+3)(2 s+1)}{3((s+1)!)^{3} s!}+\frac{1}{(2 s+1)!(2 s)!}-\frac{4 s+3}{(2 s)!((s+1)!)^{2}} \\
& \quad+\frac{2(2 s+1)}{(3 s+1)!(s+1)!}-\frac{1}{(4 s+1)!}, \tag{4}
\end{align*}
$$

Thus, by the definition (1), explicit expressions of $\mathcal{C}_{n, s}^{(k)}$ for each concrete s and small n can be achieved. For $s=3$, we have

$$
\begin{aligned}
\mathcal{C}_{0,3}^{(k)} & =1 \\
\mathcal{C}_{3,3}^{(k)} & =\frac{1}{4^{k}}, \\
\mathcal{C}_{6,3}^{(k)} & =-\binom{6}{4} \frac{1}{4^{k}}+\frac{1}{7^{k}}, \\
\mathcal{C}_{9,3}^{(k)} & =\frac{3(35 \cdot 1+79)}{8}\binom{9}{7} \frac{1}{4^{k}}-\binom{9}{4} \frac{1}{7^{k}}+\frac{1}{10^{k}} \\
\mathcal{C}_{12,3}^{(k)} & =-\frac{9 \cdot 22 \cdot 153}{4}\binom{12}{10} \frac{1}{4^{k}}+\frac{3(35 \cdot 2+79)}{8}\binom{12}{7} \frac{1}{7^{k}}-\binom{12}{4} \frac{1}{10^{k}}+\frac{1}{13^{k}}
\end{aligned}
$$

For $s=4$, since

$$
\begin{aligned}
& \frac{\left(\mathfrak{A} \mathfrak{F}_{4}(x)\right)^{4 m}}{(4 m)!} \\
& =\frac{x^{4 m}}{(4 m)!}-\binom{4 m+4}{5} \frac{x^{4 m+4}}{(4 m+4)!}+\frac{2(126 m+281)}{5}\binom{4 m+8}{9} \frac{x^{4 m+8}}{(4 m+8)!}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{8\left(6006 m^{2}+40183 m+67157\right)}{5}\binom{4 m+12}{13} \frac{x^{4 m+12}}{(4 m+12)!} \\
& +\frac{16\left(12864852 m^{3}+172143972 m^{2}+767355367 m+1139488217\right)}{45}\binom{4 m+16}{17} \frac{x^{4 m+16}}{(4 m+16)!}-\cdots,
\end{aligned}
$$

we have

$$
\begin{aligned}
& \mathcal{C}_{0,4}^{(k)}=1 \\
& \mathcal{C}_{4,4}^{(k)}= \frac{1}{5^{k}} \\
& \mathcal{C}_{8,4}^{(k)}=-\binom{8}{5} \frac{1}{5^{k}}+\frac{1}{9^{k}} \\
& \mathcal{C}_{12,4}^{(k)}= \frac{2(126 \cdot 1+281)}{5}\binom{12}{9} \frac{1}{5^{k}}-\binom{12}{5} \frac{1}{9^{k}}+\frac{1}{13^{k}} \\
& \mathcal{C}_{16,4}^{(k)}=-\frac{8\left(6006 \cdot 1^{2}+40183 \cdot 1+67157\right)}{5}\binom{16}{13} \frac{1}{5^{k}} \\
&+\frac{2(126 \cdot 2+281)}{5}\binom{16}{9} \frac{1}{9^{k}}-\binom{16}{5} \frac{1}{13^{k}}+\frac{1}{17^{k}}
\end{aligned}
$$

4. Iterated Integrals

Similarly to the cases of the poly-Cauchy numbers with levels 1 and 2 ([6,15]), Cauchy numbers with higher levels have an expression in terms of iterated integrals.

Since

$$
\frac{d}{d z}\left(z \operatorname{Lif}_{s, k}(z)\right)=\operatorname{Lif}_{s, k-1}(z)
$$

we have

$$
\frac{d}{d z}\left(z \operatorname{Lif}_{s, k}(z)\right)=\frac{d}{d z}\left(\sum_{n=0}^{\infty} \frac{z^{3 n+1}}{(s n)!(s n+1)^{k}}\right)=\sum_{n=0}^{\infty} \frac{z^{s n}}{(s n)!(s n+1)^{k-1}}=\operatorname{Lif}_{s, k-1}(z)
$$

Therefore,

$$
\operatorname{Lif}_{s, k-1}(z)=\frac{1}{z} \int_{0}^{z} \operatorname{Lif}_{s, k-1}(z) d z
$$

By iteration, we get

$$
\operatorname{Lif}_{s, k}(z)=\underbrace{\frac{1}{z} \int_{0}^{z} \frac{1}{z} \int_{0}^{z} \cdots \frac{1}{z} \int_{0}^{z}}_{k-1} \operatorname{Lif}_{s, 1}(z) \underbrace{d z \cdots d z}_{k-1}
$$

Putting $z=\mathfrak{A} \mathfrak{F}_{s}(t)$, we get

$$
\operatorname{Lif}_{s, k}\left(\mathfrak{A F}_{s}(t)\right)=\frac{1}{\mathfrak{A} \mathfrak{F}_{s}(t)} \underbrace{\int_{0}^{t} \frac{\mathfrak{G}_{s}(t)}{\mathfrak{A F}_{s}(t)} \cdots \int_{0}^{t} \frac{t \mathfrak{G}_{s}(t)}{\mathfrak{A} \mathfrak{F}_{s}(t)} \underbrace{d t \cdots d t}_{k-1}, ~ ; ~, ~}_{k-1}
$$

where

$$
\begin{aligned}
\mathfrak{G}_{s}(z)= & \frac{d}{d z} \mathfrak{A F}_{s}(z)=\sum_{n=0}^{\infty}(-1)^{n}(s n+1) d_{n} z^{s n} \\
= & 1-\frac{1}{s!} z^{s}+\frac{1}{(2 s)!}\left(\binom{2 s+1}{s}-1\right) z^{2 s} \\
& -\frac{1}{(3 s)!}\left(\frac{1}{2}\binom{3 s+2}{s+1, s+1, s}-\binom{3 s+2}{s+1}+1\right) z^{3 s}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{(4 s)!}\left(\frac{1}{6}\binom{4 s+3}{s+1, s+1, s+1, s}+\binom{4 s+1}{2 s}\right. \\
& \left.\quad-\frac{1}{2}\binom{4 s+3}{2 s+1, s+1, s+1}+\binom{4 s+2}{s+1}-1\right) z^{4 s}-\cdots,
\end{aligned}
$$

where $\binom{n}{s_{1}, \ldots, s_{m}}=\frac{n!}{\left(s_{1}!\cdots\left(s_{m}\right)!\right.}$ denotes the multinomial coefficient with $n=s_{1}+\cdots+s_{m}$.
Moreover we can express the Laurent series of $\mathfrak{G}_{s}(t) / \mathfrak{A} \mathfrak{F}_{s}(t)$, in fact,

$$
\frac{\mathfrak{G}_{s}(t)}{\mathfrak{A}_{\mathfrak{F}_{s}}(t)}=\frac{\mathfrak{A} \mathfrak{F}_{s}^{\prime}(t)}{\mathfrak{A} \mathfrak{F}_{s}(t)}
$$

with $\mathfrak{A F}_{s}(t)=t \mathfrak{D}_{s}(t)$ and $\mathfrak{D}_{s}(0) \neq 0$. Hence

$$
\frac{\mathfrak{G}_{s}(t)}{\mathfrak{A F}_{s}(t)}=\frac{\mathfrak{D}_{s}(t)+t \mathfrak{D}_{s}^{\prime}(t)}{t \mathfrak{D}_{s}(t)}=\frac{1}{t}+\frac{\mathfrak{D}_{s}^{\prime}(t)}{\mathfrak{D}_{s}(t)}=\frac{1}{t}+\frac{d}{d t} \log \mathfrak{D}_{s}(t)
$$

From (3), we have

$$
\mathfrak{D}_{s}(t)=d_{0}-d_{1} t^{s}+d_{2} t^{2 s}-d_{3} t^{3 s}+\cdots=d_{0}+u(t),
$$

with $d_{0}=1$ and $u(t)=-d_{1} t^{s}+d_{2} t^{2 s}-d_{3} t^{3 s}+\cdots$. So,

$$
\log \mathfrak{D}_{s}(t)=\log (1+u(t))=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{u(t)^{k}}{k}
$$

Therefore,

$$
\begin{aligned}
\log \mathfrak{D}_{s}(t)=\left(-d_{1} t^{s}+d_{2} t^{2 s}-d_{3} t^{3 s}\right. & +\cdots)-\frac{1}{2}\left(-d_{1} t^{s}+d_{2} t^{2 s}-d_{3} t^{3 s}+\cdots\right)^{2}+ \\
& +\frac{1}{3}\left(-d_{1} t^{s}+d_{2} t^{2 s}-d_{3} t^{3 s}+\cdots\right)^{3}+\cdots
\end{aligned}
$$

So, it follows that

$$
\begin{aligned}
\log \mathfrak{D}_{s}(t)=-d_{1} t^{s} & +\left(d_{2}-\frac{d_{1}^{2}}{2}\right) t^{2 s}+\left(-d_{3}+d_{1} d_{2}-\frac{d_{1}^{3}}{3}\right) t^{3 s} \\
& +\left(d_{4}-d_{1} d_{3}-\frac{d_{2}^{2}}{2}+d_{1}^{2} d_{2}-\frac{d_{1}^{4}}{4}\right) t^{4 s}+\cdots,
\end{aligned}
$$

yielding the expression

$$
\begin{aligned}
\frac{d}{d t} \log \mathfrak{D}_{s}(t)=-s d_{1} t^{s-1}+ & 2 s\left(d_{2}-\frac{d_{1}^{2}}{2}\right) t^{2 s-1}+3 s\left(-d_{3}+d_{1} d_{2}-\frac{d_{1}^{3}}{3}\right) t^{3 s-1} \\
& +4 s\left(d_{4}-d_{1} d_{3}-\frac{d_{2}^{2}}{2}+d_{1}^{2} d_{2}-\frac{d_{1}^{4}}{4}\right) t^{4 s-1}+\cdots
\end{aligned}
$$

After substituting the vales of d_{n}, we have

$$
\begin{aligned}
\frac{\mathfrak{G}_{s}(t)}{\mathfrak{A F}_{s}(t)}= & \frac{1}{t}-\frac{s}{(s+1)!} t^{s-1}+2 s\left(\frac{2 s+1}{2((s+1)!)^{2}}-\frac{1}{(2 s+1)!}\right) t^{2 s-1} \\
& +3 s\left(\frac{3 s+1}{(2 s+1)!(s+1)!}-\frac{(3 s+2)(3 s+1)}{6((s+1)!)^{3}}-\frac{1}{(3 s+1)!}\right) t^{3 s-1}
\end{aligned}
$$

$$
\begin{align*}
& +4 s\left(\frac{4 s+1}{(3 s+1)!(s+1)!}-\frac{4 s+1}{(2 s)!((s+1)!)^{2}}+\frac{4 s+1}{2((2 s+1)!)^{2}}\right. \\
& \left.\quad+\frac{(4 s+3)(4 s+1)(2 s+1)}{12((s+1)!)^{4}}-\frac{1}{(4 s+1)!}\right) t^{4 s-1}+\cdots \tag{5}
\end{align*}
$$

Proposition 2. We have

$$
\sum_{n=0}^{\infty} \mathcal{C}_{n, s}^{(k)} \frac{t^{n}}{n!}=\frac{1}{\mathfrak{A} \mathfrak{F}_{s}(t)} \underbrace{\int_{0}^{t} \frac{\mathfrak{G}_{s}(t)}{\mathfrak{A} \mathfrak{F}_{s}(t)} \cdots \int_{0}^{t}}_{k-1} \frac{t \mathfrak{G}_{s}(t)}{\mathfrak{A} \mathfrak{F}_{s}(t)} \underbrace{d t \cdots d t}_{k-1}
$$

where $\mathfrak{G}_{s}(z)=\frac{d}{d z} \mathfrak{A} \mathfrak{F}_{s}(z)$ and a more precise expression of $\mathfrak{G}_{s}(t) / \mathfrak{A} \mathfrak{F}_{s}(t)$ is given in (5).

5. An Explicit Expression

If we know the coefficients $d_{n}(n \geq 0)$ appeared in $\mathfrak{A F}_{s}(t)$ in Proposition 1, we can get an expression of $\mathcal{C}_{n, s}^{(k)}$.

Theorem 1. For integers n and k with $n \geq 0$,

$$
\mathcal{C}_{s n, s}^{(k)}=\sum_{m=0}^{n} \frac{(-1)^{n-m}(s n)!}{(s m)!(s m+1)^{k}} \sum_{\substack{i_{1}+\ldots+i_{s m=n-m} \\ i_{1}, \ldots, i s m \geq 0}} d_{i_{1}} \cdots d_{i_{s m}} t^{s n} .
$$

Proof. By the definition in (1), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathcal{C}_{n, s}^{(k)} \frac{t^{n}}{n!}= & \sum_{n=0}^{\infty} \mathcal{C}_{s n, s}^{(k)} \frac{t^{s n}}{(s n)!} \\
= & \sum_{m=0}^{\infty} \frac{1}{(s m)!(s m+1)^{k}}\left(\sum_{l=0}^{\infty}(-1)^{l} d_{l} t^{s l+1}\right)^{s m} \\
= & \sum_{m=0}^{\infty} \frac{1}{(s m)!(s m+1)^{k}} \\
& \times \sum_{n=m}^{\infty} \sum_{\substack{i_{1}+\cdots+i_{s m m}=n-m \\
i_{1} \ldots, i_{s m \geq 0}}}(-1)^{i_{1}+\cdots+i_{s m}} d_{i_{1}} \cdots d_{i_{s m}} t^{\left(s i_{1}+1\right)+\cdots+\left(s i_{s m}+1\right)} \\
= & \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{1}{(s m)!(s m+1)^{k}} \sum_{\substack{i_{1}+\cdots+i_{i m}=n-m \\
i_{1} \cdots, \ldots, s m \geq 0}}(-1)^{n-m} d_{i_{1}} \cdots d_{i_{s m}} t^{s n} .
\end{aligned}
$$

Comparing the coefficients on both sides, we get the desired result.

6. Some Expressions of Poly-Cauchy Numbers with Higher Levels for Negative Indices

The poly-Bernoulli numbers $\mathbb{B}_{n}^{(k)}$ [8], defined by

$$
\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}=\sum_{n=0}^{\infty} \mathbb{B}_{n}^{(-k)} \frac{t^{n}}{n!}
$$

where

$$
\operatorname{Li}_{k}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{k}}
$$

is the polylogarithm function, satisfy the duality formula $\mathbb{B}_{n}^{(-k)}=\mathbb{B}_{k}^{(-n)}$ for $n, k>0$, because of the symmetric formula

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mathbb{B}_{n}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\frac{e^{x+y}}{e^{x}+e^{y}-e^{x+y}}
$$

Though the corresponding duality formula does not hold for the original polyCauchy numbers (ref. [16], Proposition 1) and poly-Cauchy numbers with level 2 (ref. [6], Theorem 4.1), we still have the double summation formula of poly-Cauchy numbers with higher level.

Theorem 2. For nonnegative integers n and k,

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mathcal{C}_{s n, s}^{(-s k)} \frac{x^{s n}}{(s n)!} \frac{y^{s k}}{(s k)!}=\frac{1}{s^{2}} \sum_{j=0}^{s-1} \sum_{h=0}^{s-1} e^{\zeta^{j} y}\left(\mathfrak{B} \mathfrak{F}_{s}(x)\right)^{\zeta^{h} e^{j^{j} y}}
$$

where $\mathfrak{B} \mathfrak{F}_{s}(x)=e^{\mathfrak{A} \mathfrak{F}_{s}(x)}$ and ζ is the s-th root of unity as $\zeta=e^{2 \pi i / s}=\cos (2 \pi / s)+i \sin (2 \pi / s)$.
Proof. From the definition in (1), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mathcal{C}_{s n, s}^{(-s k)} \frac{x^{s n}}{(s n)!} \frac{y^{s k}}{(s k)!}=\sum_{k=0}^{\infty} \operatorname{Lif}_{s, k}\left(\mathfrak{A}_{s}(x)\right) \frac{y^{s k}}{(s k)!} \\
& =\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{\left(\mathfrak{A} \mathfrak{F}_{s}(x)\right)^{s m}}{(s m)!}(s m+1)^{s k} \frac{y^{s k}}{(s k)!} \\
& =\sum_{m=0}^{\infty} \frac{\left(\mathfrak{A} \mathfrak{F}_{s}(x)\right)^{s m}}{(s m)!} \frac{1}{s} \sum_{j=0}^{s-1} e^{\zeta^{j}(s m+1) y} \\
& =\frac{1}{s} \sum_{j=0}^{s-1} e^{\zeta^{j} y} \sum_{m=0}^{\infty} \frac{e^{\zeta^{j} y \mathfrak{A} \mathfrak{F}_{s}(x)}}{(s m)!} \\
& =\frac{1}{s^{2}} \sum_{j=0}^{s-1} \sum_{h=0}^{s-1} e^{\zeta^{j} y} e^{\zeta^{h} e^{\tau^{j} y} \mathfrak{A} \mathfrak{F}_{s}(x)}
\end{aligned}
$$

yielding the desired result.

7. Cauchy Numbers with Higher Level

When $k=1$ in (1), $\mathcal{C}_{n, s}=\mathcal{C}_{n, s}^{(1)}$ are the Cauchy numbers with higher level, defined by

$$
\begin{equation*}
\frac{t}{\mathfrak{A} \mathfrak{F}_{s}(t)}=\sum_{n=0}^{\infty} \mathcal{C}_{n, s} \frac{t^{n}}{n!} \tag{6}
\end{equation*}
$$

In this section, we shall show some properties of $\mathcal{C}_{n, s}=\mathcal{C}_{n, s}^{(1)}$. First, we give its determinant expression. A similar expression for the hypergeometric Cauchy numbers is given in [18].

Theorem 3. For $n \geq 1$,

$$
\mathcal{C}_{s n, s}=(s n)!\left|\begin{array}{ccccc}
d_{1} & 1 & 0 & & \\
d_{2} & d_{1} & 1 & & \\
\vdots & & \ddots & \ddots & 0 \\
\vdots & & & d_{1} & 1 \\
d_{n} & \cdots & \cdots & d_{2} & d_{1}
\end{array}\right|
$$

where d_{n} is the coefficient of $t^{s n+1}$ appeared in $\mathfrak{A F}_{s}(t)$ in Proposition 1.
Remark 1. By using the values of d's in (4), Theorem 3 yields

$$
\begin{aligned}
\mathcal{C}_{0, s}= & 1, \quad \mathcal{C}_{s, s}=\frac{1}{s+1}, \quad \mathcal{C}_{2 s, s}=\frac{1}{2 s+1}-\frac{s(2 s)!}{((s+1)!)^{2}} \\
\mathcal{C}_{3 s, s}= & \frac{1}{3 s+1}-\frac{3 s(3 s)!}{(2 s+1)!(s+1)!}+\frac{s(3 s+1)!}{2((s+1)!)^{3}} \\
\mathcal{C}_{4 s, s}= & \frac{1}{4 s+1}-\frac{4 s(4 s)!}{(3 s+1)!(s+1)!}-\frac{(8 s+3)(4 s)!}{(2 s+1)!((s+1)!)^{2}} \\
& -\frac{2 s(4 s)!}{(2 s+1)!((s+1)!)^{2}}+\frac{(4 s+3)(4 s)!}{(2 s)!(s+1)!)^{2}}-\frac{s\left(8 s^{2}+6 s+1\right)(4 s)!}{((s+1)!)^{4}}, \ldots
\end{aligned}
$$

Proof of Theorem 3. From (6), we have

$$
\begin{aligned}
1 & =\left(\sum_{m=0}^{\infty} \mathcal{C}_{s m, s} \frac{t^{s m}}{(s m)!}\right)\left(\sum_{l=0}^{\infty}(-1)^{l} d_{l} t^{s l}\right) \\
& =\sum_{n=0}^{\infty} \sum_{l=0}^{n} \frac{\mathcal{C}_{s n-s l, s}}{(s n-s l)!}(-1)^{l} d_{l} t^{s n} .
\end{aligned}
$$

where the coefficients d_{0}, d_{1}, \ldots are also given in (3) with (4). Comparing the coefficients on both sides,

$$
\sum_{l=0}^{n} \frac{\mathcal{C}_{s n-s l, s}}{(s n-s l)!}(-1)^{l} d_{l}=0 \quad(n \geq 1)
$$

By the inversion relation

$$
\begin{aligned}
& \sum_{k=0}^{n}(-1)^{n-k} \alpha_{k} R(n-k)=0 \quad(n \geq 1) \quad \text { with } \quad \alpha_{0}=R(0)=1 \\
& \Longleftrightarrow \\
& \alpha_{n}=\left|\begin{array}{cccc}
R(1) & 1 & & 0 \\
R(2) & \ddots & \ddots & \\
\vdots & \ddots & \ddots & 1 \\
R(n) & \cdots & R(2) & R(1)
\end{array}\right| \quad \Longleftrightarrow \quad R(n)=\left|\begin{array}{cccc}
\alpha_{1} & 1 & & 0 \\
\alpha_{2} & \ddots & \ddots & \\
\vdots & \ddots & \ddots & 1 \\
\alpha_{n} & \cdots & \alpha_{2} & \alpha_{1}
\end{array}\right|
\end{aligned}
$$

(e.g., see [19]), we get the result as

$$
\alpha_{n}=d_{n} \quad \text { and } \quad R(n)=\frac{\mathcal{C}_{s n, s}}{(s n)!}
$$

By the inversion formula shown in the above proof, we also have the following Corollary. Similar determinant expressions of Bernoulli, Cauchy and related numbers were found in [20]).

Corollary 1. For $n \geq 1$,

$$
d_{n}=\left|\begin{array}{cccc}
\frac{\mathcal{C}_{s, s}}{\frac{\mathcal{C}_{s, s}}{}} & 1 & & 0 \\
\frac{\mathcal{C}_{3 s, s}}{(2 s)!} & \left.\frac{}{3 s}\right)! \\
\vdots & & \ddots & 1 \\
\frac{\mathcal{C}_{s n, s}}{(s n)!} & \cdots & \frac{\mathcal{C}_{2 s, s}}{(2 s)!} & \frac{\mathcal{C}_{s, s}}{s!}
\end{array}\right| .
$$

By Trudi's formula

$$
\left.\begin{array}{|ccccc}
a_{1} & a_{2} & \cdots & \cdots & a_{m} \\
a_{0} & a_{1} & \ddots & & \vdots \\
& \ddots & \ddots & \ddots & \vdots \\
& & \ddots & a_{1} & a_{2} \\
0 & & & a_{0} & a_{1}
\end{array} \right\rvert\, \quad \begin{aligned}
& \\
& \\
&
\end{aligned}
$$

(refs. [21,22]; ref. [23],Volume 3, pp. 208-209, p. 214), we have a different expression of $\mathcal{C}_{n, s}$.

Theorem 4.

$$
\mathcal{C}_{s n, s}=(s n)!\sum_{t_{1}+2 t_{2}+\cdots+n t_{n}=n}\binom{t_{1}+\cdots+t_{n}}{t_{1}, \ldots, t_{n}}(-1)^{n-t_{1}-\cdots-t_{n}}\left(d_{1}\right)^{t_{1}}\left(d_{2}\right)^{t_{2}} \cdots\left(d_{n}\right)^{t_{n}}
$$

and

$$
\begin{aligned}
& d_{n}=\sum_{t_{1}+2 t_{2}+\cdots+n t_{n}=n}\binom{t_{1}+\cdots+t_{n}}{t_{1} \ldots, t_{n}}(-1)^{n-t_{1}-\cdots-t_{n}} \\
& \times\left(\frac{\mathcal{C}_{s, s}}{s!}\right)^{t_{1}}\left(\frac{\mathcal{C}_{2 s, s}}{(2 s)!}\right)^{t_{2}} \cdots\left(\frac{\mathcal{C}_{s n, s}}{(s n)!}\right)^{t_{n}}
\end{aligned}
$$

8. A Recurrence Relation for $\mathcal{C}_{n, s}^{(k)}$ in Terms of $\mathcal{C}_{n, s}$

We can show a recurrence formula for $\mathcal{C}_{n, s}^{(k)}$ in terms of $\mathcal{C}_{n, s}^{(k-1)}$ and $\mathcal{C}_{n, s}$.
Theorem 5. For integers n and k with $n \geq 0$ and $k \geq 1$,

$$
\mathcal{C}_{s n, s}^{(k)}=(s n)!\sum_{v=0}^{n} \sum_{m=0}^{v} \frac{(-1)^{v-m}(s v-s m+1) d_{v-m} \mathcal{C}_{s n-s v, s} \mathcal{C}_{s m, s}^{(k-1)}}{(s n-s v)!(s m)!(s v+1)}
$$

where d_{n} is the coefficient of $t^{s n+1}$ appeared in $\mathfrak{A} \mathfrak{F}_{s}(t)$ in Proposition 1.
Remark 2. Poly-Cauchy numbers $c_{n}^{(k)}$ have a recurrence formula (ref. [16], Theorem 7)

$$
c_{n}^{(k)}=n!\sum_{v=0}^{n} \sum_{m=0}^{v} \frac{(-1)^{v-m} c_{n-v} c_{m}^{(k-1)}}{(n-v)!m!(v+1)}
$$

Poly-Cauchy numbers $\mathbb{C}_{n}^{(k)}$ with level 2 have a recurrence formula (ref. [6], Theorem 3.4)

$$
\mathbb{C}_{2 n}^{(k)}=(2 n)!\sum_{v=0}^{n} \sum_{m=0}^{v}\left(-\frac{1}{4}\right)^{v-m}\binom{2 v-2 m}{v-m} \frac{\mathbb{C}_{2 n-2 v} \mathbb{C}_{2 m}^{(k-1)}}{(2 n-2 v)!(2 m)!(2 v+1)}
$$

Proof of Theorem 5. Similarly to the description in Section 4, we obtain

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{C}_{s n, s}^{(k)} \frac{x^{s n}}{(s n)!}=\operatorname{Lif}_{s, k}\left(\mathfrak{A F}_{s}(x)\right) \\
& =\frac{1}{\mathfrak{A} \mathfrak{F}_{s}(x)} \int_{0}^{x} \operatorname{Lif}_{s, k-1}\left(\mathfrak{A F}_{s}(\sigma)\right) \mathfrak{G}_{s}(\sigma) d \sigma
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{n=0}^{\infty} \mathcal{C}_{s n, s} \frac{x^{s n-1}}{(s n)!}\right) \int_{0}^{x}\left(\sum_{m=0}^{\infty} \mathcal{C}_{s m, s}^{(k-1)} \frac{\sigma^{s m}}{(s m)!}\right)\left(\sum_{j=0}^{\infty}(-1)^{j}(s j+1) d_{j} \sigma^{r j}\right) d \sigma \\
& =\left(\sum_{n=0}^{\infty} \mathcal{C}_{s n, s} \frac{x^{s n-1}}{(s n)!}\right) \int_{0}^{x}\left(\sum_{v=0}^{\infty} \sum_{m=0}^{v}(-1)^{v-m}(s v-s m+1) d_{v-m} \frac{\mathcal{C}_{s m, s}^{(k-1)}}{(s m)!} \sigma^{s v}\right) d \sigma \\
& =\left(\sum_{n=0}^{\infty} \mathcal{C}_{s n, s} \frac{x^{s n-1}}{(s n)!}\right)\left(\sum_{v=0}^{\infty} \sum_{m=0}^{v}(-1)^{v-m}(s v-s m+1) d_{v-m} \frac{\mathcal{C}_{s m, s}^{(k-1)}}{(s m)!} \frac{x^{s v+1}}{s v+1}\right) \\
& =\sum_{n=0}^{\infty} \sum_{v=0}^{n} \sum_{m=0}^{v} \frac{(-1)^{v-m}(s v-s m+1) d_{v-m} \mathcal{C}_{s n-s v, s} \mathcal{C}_{s m, s}^{(k-1)}}{(s n-s v)!(s m)!(s v+1)} x^{s n} .
\end{aligned}
$$

Comparing the coefficients on both sides, we get the result.

9. Conclusions

In this paper, we define poly-Cauchy numbers with higher level (level s) from the analytical implications, and study their properties. Such poly-Cauchy numbers with higher levels are yielded from the inverse relationship with an s-step function of the exponential function. When $s \geq 3$, the inverse function is not given using a known function, but it can be used to obtain the expressions and relations.

Poly-Bernoulli numbers with level 2 are defined and studied in [7]. Is it possible to introduce poly-Bernoulli numbers with higher levels? If so, is there any relation between them and poly-Cauchy numbers with higher levels?

Author Contributions: Writing—original draft preparation, T.K.; writing—review and editing, V.F.S. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Data Availability Statement: Not applicable.
Acknowledgments: The authors thank the anonymous referees for careful reading of this manuscript.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Tweedie, C. The Stirling numbers and polynomials. Proc. Edinb. Math. Soc. 1918, 37, 2-25. [CrossRef]
2. Butzer, P.L.; Schmidt, M.; Stark, E.L.; Vogt, L. Central factorial numbers; their main properties and some applications. Numer. Funct. Anal. Optim. 1989, 10, 419-488. [CrossRef]
3. Bell, E.T. Lagrange and Wilson theorems for the generalized Stirling numbers. Proc. Edinb. Math. Soc. 1938, 5, 171-173. [CrossRef]
4. Komatsu, T.; Ramírez, J.L.; Villamizar, D. A combinatorial approach to the Stirling numbers of the first kind with higher level. Stud. Sci. Math. Hung. 2021, 58, 293-307. [CrossRef]
5. Komatsu, T.; Ramírez, J.L.; Villamizar, D. A combinatorial approach to the generalized central factorial numbers. Mediterr. J. Math. 2021, 18, 192. [CrossRef]
6. Komatsu, T.; Pita-Ruiz, C. Poly-Cauchy numbers with level 2. Integral Transform. Spec. Funct. 2020, 317, 570-585. [CrossRef]
7. Komatsu, T. Stirling numbers with level 2 and poly-Bernoulli numbers with level 2. Publ. Math. Debr. 2022, 100, 241-256. [CrossRef]
8. Kaneko, M. Poly-Bernoulli numbers. J. Théor. Nombres Bordx. 1997, 9, 199-206. [CrossRef]
9. Kaneko, M.; Pallenwatta, M.; Tsumura, H. On polycosecant numbers. arXiv 2019, arXiv:1907.13441.
10. Kaneko, M.; Tsumura, H. On multiple zeta values of level two. Tsukuba J. Math. 2020, 44, 213-234. [CrossRef]
11. Broder, A.Z. The r-Stirling numbers. Discret. Math. 1984, 49, 241-259. [CrossRef]
12. Kargin, L. On Cauchy numbers and their generalizations. Gazi Univ. J. Sci. 2020, 33, 456-474. [CrossRef]
13. Kargin, L.; Cenkci, M.; Dil, A.; Can, M. Generalized harmonic numbers via poly-Bernoulli polynomials. Publ. Math. Debr. 2022, 100, 365-386. [CrossRef]
14. Kargin, L.; Can, M. Harmonic number identities via polynomials with r-Lah coefficients. Comptes Rendus Mathématique 2020, 358, 535-550. [CrossRef]
15. Komatsu, T. Poly-Cauchy numbers. Kyushu J. Math. 2013, 67, 143-153. [CrossRef]
16. Komatsu, T. Poly-Cauchy numbers with a q parameter. Ramanujan J. 2013, 31, 353-371. [CrossRef]
17. Lehmer, D.H. Lacunary recurrence formulas for the numbers of Bernoulli and Euler. Ann. Math. 1935, 36, 637-649. [CrossRef]
18. Aoki, M.; Komatsu, T. Remarks on hypergeometric Cauchy numbers. Math. Rep. 2020, 22, 363-380.
19. Komatsu, T.; Ramirez, J.L. Some determinants involving incomplete Fubini numbers. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 2018, 26, 143-170. [CrossRef]
20. Glaisher, J.W.L. Expressions for Laplace's coefficients, Bernoullian and Eulerian numbers etc. as determinants. Messenger 1875, 6, 49-63.
21. Brioschi, F. Sulle funzioni Bernoulliane ed Euleriane. Ann. di Mat. Pura ed Appl. 1858, 1, 260-263 [CrossRef]
22. Trudi, N. Intorno ad Alcune Formole di Sviluppo, Rendic; dell' Accad: Napoli, Italy, 1862; pp. 135-143.
23. Muir, T. The Theory of Determinants in the Historical Order of Development; Four Volumes; Dover Publications: New York, NY, USA, 1960.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and / or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

