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Abstract: In this article, mainly from the analytical aspect, we introduce poly-Cauchy numbers with
higher levels (level s) as a kind of extensions of poly-Cauchy numbers with level 2 and the original
poly-Cauchy numbers and investigate their properties. Such poly-Cauchy numbers with higher
levels are yielded from the inverse relationship with an s-step function of the exponential function.
We show such a function with recurrence relations and give the expressions of poly-Cauchy numbers
with higher levels. Poly-Cauchy numbers with higher levels can be also expressed in terms of iterated
integrals and a combinatorial summation. Poly-Cauchy numbers with higher levels for negative
indices have a double summation formula. In addition, Cauchy numbers with higher levels can be
also expressed in terms of determinants.
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1. Introduction

The Stirling numbers with higher level (level s) were first studied by Tweedie [1] in
1918. Namely, those of the first kind

[[ n
k
]]

s and the second kind
{{ n

k
}}

s appeared as

x(x + 1s)(x + 2s) · · · (x + (n− 1)s) =
n

∑
k=0

[[n
k

]]
s
xk

and

xn =
n

∑
k=0

{{n
k

}}
s
x(x− 1s)(x− 2s) · · ·

(
x− (k− 1)s) ,

respectively. They satisfy the recurrence relations[[n
k

]]
s
=

[[
n− 1
k− 1

]]
s
+ (n− 1)s

[[
n− 1

k

]]
s

and {{n
k

}}
s
=

{{
n− 1
k− 1

}}
s
+ k
{{

n− 1
k

}}
s

with
[[

0
0

]]
s
=
{{

0
0

}}
s
= 1 and

[[ n
0
]]

s =
{{ n

0
}}

s = 0 (n ≥ 1). When s = 1, they are the original
Stirling numbers of both kinds. When s = 2, they have been often studied as central
factorial numbers of both kinds (see, e.g., [2]). The concept introduced by Tweedie This
concept was used by Bell [3] to show a generalization of Lagrange and Wilson theorems.
However, such generalized Stirling numbers have been forgotten or ignored for a long time.

Recently in [4,5], the Stirling numbers with higher levels have been rediscovered
and studied more deeply, in particular, from the aspects of combinatorics. On the other
hand, in [6], by using the Stirling numbers of the first kind with level 2, poly-Cauchy
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numbers with level 2 are introduced as a kind of generalizations of the original poly-
Cauchy numbers, which may be interpreted as a kind of generalizations of the classical
Cauchy numbers. In [7], by using the Stirling numbers of the second kind with level 2,
poly-Bernoulli numbers with level 2 are introduced as a kind of generalizations of the
original poly-Bernoulli numbers [8]. In [9], other poly-generalized numbers, which are
called polycosecant numbers, are introduced and studied. This result leads to a variant
of multiple zeta values of level 2 [10], which forms a subspace of the space of alternating
multiple zeta values. However, no generalized Stirling number is considered in [9].

Another of the most famous generalized Stirling numbers is the r-Stirling num-
ber [11], which has meaningful relations with harmonic numbers from the summation
formulas [12–14]. By using r-Stirling numbers, so-called various r-numbers are introduced.

It is remarkable to see that the original poly-Cauchy numbers (with level 1, ref. [15]),
which may be also yielded by the logarithm function (an 1-step function) with the inverse
relation of the exponential function. This can be said to be an analytical definition. Then,
poly-Cauchy numbers with level 2 may be yielded or defined from the inverse relation
about the hyperbolic sine function, which is a 2-step function of the exponential function [6].
Then, it would be a natural question how the poly-Cauchy numbers with level 3, 4, and
generally level s can be defined by any functions (3, 4 and generally s-step functions,
respectively) in a natural way.

In combinatorial ways, just as poly-Cauchy number with level 2 arises from the
relationship with the Stirling numbers with level 2, poly-Cauchy number with level 3, 4
and generally level s could be hoped to arise from the Stirling numbers with level 3, 4 and
generally level s, respectively. However, in the case of 3 or higher level, it is not easy to
define and describe most of the properties including both combinatorial and analytical
meanings naturally as well as those with levels 1 and 2. For example,

{{n
k

}}
s
=

s
(sk)!

k

∑
j=1

(−1)k−j
(

sk
k− j

)
jsn

holds for s = 1, 2 and does not for s ≥ 3 ([5]).
The purpose of this paper is to define poly-Cauchy numbers with higher level (level

s) from the analytical implications and investigate their properties. Such poly-Cauchy
numbers with higher levels are yielded from the inverse relationship with an s-step function
of the exponential function. We show such a function with recurrence relations and give the
expressions of poly-Cauchy numbers with higher levels. Poly-Cauchy numbers with higher
levels can be also expressed in terms of iterated integrals and a combinatorial summation.
Poly-Cauchy numbers with higher levels for negative indices have a double summation
formula. In addition, Cauchy numbers with higher levels can be also expressed in terms
of determinants.

2. Definitions

For integers n and k with n ≥ 0, poly-Cauchy numbers C(k)n,s with level s (s ≥ 1) are
defined by

Lifs,k
(
AFs(t)

)
=

∞

∑
n=0
C(k)n,s

tn

n!
, (1)

where

Lifs,k(z) =
∞

∑
m=0

zsm

(sm)!(sm + 1)k .

The function AFs(t) is the inverse function of

Fs(t) =
∞

∑
m=0

tsm+1

(sm + 1)!
.
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When s = 1, C(k)n,1 = c(k)n are the original poly-Cauchy numbers [15,16], defined by

Lifk
(
AF1(t)

)
=

∞

∑
n=0

c(k)n
tn

n!
,

where Lif1,k(z) = Lifk(z) is the polylogarithm factorial function (or polyfactorial function)
and AF1(t) = log(t + 1) is the inverse function of

∞

∑
m=0

tm+1

(m + 1)!
= et − 1 .

When k = 1, cn = c(1)n are the original Cauchy numbers defined by

Lif1
(
log(t + 1)

)
=

t
log(t + 1)

=
∞

∑
n=0

cn
tn

n!
.

When s = 2, C(k)n,2 = C(k)
n are poly-Cauchy numbers with level 2 [6], defined by

Lif2,k
(
AF2(t)

)
=

∞

∑
n=0

C(k)
n

tn

n!
,

where AF2(t) = arcsinht is the inverse function of

∞

∑
m=0

t2m+1

(2m + 1)!
= sinh t

When k = 1, Cn = C(1)
n are Cauchy numbers with level 2, defined by

Lif2,1
(
arcsinht

)
=

t
arcsinht

=
∞

∑
n=0

Cn
tn

n!
.

When k = 1 and s = 3,

Lif3,1(z) =
ez + ω2eωz + ωeω2z

3z
=

F3(z)
z

,

where

F3(z) =
∞

∑
m=0

z3m+1

(3m + 1)!
.

and ω = (1+
√
−3)/2, satisfying ω3 = 1. Note that a similar function to 1/F3(z) is studied

in [17].

For an arbitrary s ≥ 1 and k = 1, we have

Lifs,1(z) =
∞

∑
m=0

zsm

(sm + 1)!
=

1
sz

s−1

∏
j=0

ζ jeζs−jz =
Fs(z)

z
,

where ζ = e2πi/s, is the s-th root of the identity. The function Lifs,1(z) becomes the s-step
exponential function .

3. Basic Results

When s = 3,

AF3(z) = z− 1
24

z4 +
17

2520
z7 − 389

259200
z10 +

85897
222393600

z13 − 887731
8211456000

z16
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+
762918737

23870702592000
z19 − 16283723339

1658385653760000
z22 + · · · .

When s = 4,

AF4(z) = z− 1
120

z5 +
25

72576
z9 − 1655

83026944
z13 +

32633
24320507904

z17

− 4046837
41098797121536

z21 +
95346434209

12477594806098329600
z25

− 13496484991405
21884703082311982252032

z29 +
7594510992880985

148224339331565182966038528
z33

− 4010591254856244071
921362493285009177316895490048

z37

+
116831353234301926949

310374651792009578002102307782656
z41 − · · · .

In general, for the inverse function of Fs(z), we have the following.

Proposition 1.

AFs(z) = d0z− d1zs+1 + d2z2s+1 − · · ·+ (−1)ndnzsn+1 + · · · ,

where the coefficients di satisfy the recurrence relation

dn =
n−1

∑
m=0

(−1)n−m−1dm ∑
i1+···+ism+1=n−m

i1,...,ism+1≥0

1
(si1 + 1)! · · · (sism+1 + 1)!

(n ≥ 1) (2)

with d0 = 1.

Proof. The expression can be obtained by the following process. First, put F−1
s (z) :=

AFs(z) as

F−1
s (z) = d0z− d1zs+1 + d2z2s+1 − · · ·+ (−1)ndnzsn+1 + · · · . (3)

Then we can find d0 = 1, d1, d2, . . . as follows. For convenience, put

Hs,n(j) := ∑
i1+···+isn+1=j

i1,...,isn+1≥0

1
(si1 + 1)! · · · (sisn+1 + 1)!

.

Since F−1
s
(
Fs(z)

)
= Fs

(
F−1

s (z)
)
= z, we see that

z =
∞

∑
n=0

(−1)ndn

(
∞

∑
m=0

zsm+1

(sm + 1)!

)sn+1

=
∞

∑
n=0

(−1)ndn

∞

∑
m=0

Hs,n(m)zsn+sm+1

=
∞

∑
n=0

(−1)ndn

∞

∑
l=n

Hs,n(l − n)zsl+1

=
∞

∑
n=0

(
n

∑
m=0

(−1)mdm Hs,m(n−m)

)
zsn+1 .

Hence, for n ≥ 1
n

∑
m=0

(−1)mdm Hs,m(n−m) = 0
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with d0 = 1. The exact values of d0, d1, d2, . . . can be obtained by the recurrence relation (2).
Some values of Hs,n(j) for smaller j can be given as follows.

Hs,n(0) = 1 ,

Hs,n(1) =
sn + 1
(s + 1)!

,

Hs,n(2) =
sn + 1

(2s + 1)!
+

1(
(s + 1)!

)2

(
sn + 1

2

)
,

Hs,n(3) =
sn + 1

(3s + 1)!
+

(sn + 1)(sn)
(2s + 1)!(s + 1)!

+
1(

(s + 1)!
)3

(
sn + 1

3

)
,

Hs,n(4) =
sn + 1

(4s + 1)!
+

(sn + 1)(sn)
(3s + 1)!(s + 1)!

+
1(

(2s + 1)!
)2

(
sn + 1

2

)
+

sn + 1

(2s + 1)!
(
(s + 1)!

)2

(
sn
2

)
+

1(
(s + 1)!

)4

(
sn + 1

4

)
.

Hence,

d1 = Hs,0(1) =
1

(s + 1)!
,

d2 = −Hs,0(2) + d1Hs,1(1) =
1

(s + 1)!r!
− 1

(2s + 1)!
,

d3 = Hs,0(3)− d1Hs,1(2) + d2Hs,2(1)

=
3r + 2

2
(
(s + 1)!

)2s!
− 3s + 2

(2s + 1)!(s + 1)!
+

1
(3s + 1)!

,

d4 = −Hs,0(4) + d1Hs,1(3)− d2Hs,2(2) + d3Hs,3(1)

=
(4s + 3)(2s + 1)

3
(
(s + 1)!

)3s!
+

1
(2s + 1)!(2s)!

− 4s + 3

(2s)!
(
(s + 1)!

)2

+
2(2s + 1)

(3s + 1)!(s + 1)!
− 1

(4s + 1)!
, (4)

Thus, by the definition (1), explicit expressions of C(k)n,s for each concrete s and small n
can be achieved. For s = 3, we have

C(k)0,3 = 1 ,

C(k)3,3 =
1
4k ,

C(k)6,3 = −
(

6
4

)
1
4k +

1
7k ,

C(k)9,3 =
3(35 · 1 + 79)

8

(
9
7

)
1
4k −

(
9
4

)
1
7k +

1
10k ,

C(k)12,3 = −9 · 22 · 153
4

(
12
10

)
1
4k +

3(35 · 2 + 79)
8

(
12
7

)
1
7k −

(
12
4

)
1

10k +
1

13k .

For s = 4, since(
AF4(x)

)4m

(4m)!

=
x4m

(4m)!
−
(

4m + 4
5

)
x4m+4

(4m + 4)!
+

2(126m + 281)
5

(
4m + 8

9

)
x4m+8

(4m + 8)!



Symmetry 2023, 15, 354 6 of 13

− 8(6006m2 + 40183m + 67157)
5

(
4m + 12

13

)
x4m+12

(4m + 12)!

+
16(12864852m3 + 172143972m2 + 767355367m + 1139488217)

45

(
4m + 16

17

)
x4m+16

(4m + 16)!
− · · · ,

we have

C(k)0,4 = 1 ,

C(k)4,4 =
1
5k ,

C(k)8,4 = −
(

8
5

)
1
5k +

1
9k ,

C(k)12,4 =
2(126 · 1 + 281)

5

(
12
9

)
1
5k −

(
12
5

)
1
9k +

1
13k ,

C(k)16,4 = −8(6006 · 12 + 40183 · 1 + 67157)
5

(
16
13

)
1
5k

+
2(126 · 2 + 281)

5

(
16
9

)
1
9k −

(
16
5

)
1

13k +
1

17k .

4. Iterated Integrals

Similarly to the cases of the poly-Cauchy numbers with levels 1 and 2 ([6,15]), Cauchy
numbers with higher levels have an expression in terms of iterated integrals.

Since
d
dz

(z Lifs,k(z)) = Lifs,k−1(z) ,

we have

d
dz

(z Lifs,k(z)) =
d
dz

(
∞

∑
n=0

z3n+1

(sn)!(sn + 1)k

)
=

∞

∑
n=0

zsn

(sn)!(sn + 1)k−1 = Lifs,k−1(z) .

Therefore,

Lifs,k−1(z) =
1
z

∫ z

0
Lifs,k−1(z) dz .

By iteration, we get

Lifs,k(z) =
1
z

∫ z

0

1
z

∫ z

0
· · · 1

z

∫ z

0︸ ︷︷ ︸
k−1

Lifs,1(z) dz · · · dz︸ ︷︷ ︸
k−1

.

Putting z = AFs(t), we get

Lifs,k(AFs(t)) =
1

AFs(t)

∫ t

0

Gs(t)
AFs(t)

· · ·
∫ t

0︸ ︷︷ ︸
k−1

tGs(t)
AFs(t)

dt · · · dt︸ ︷︷ ︸
k−1

,

where

Gs(z) =
d
dz

AFs(z) =
∞

∑
n=0

(−1)n(sn + 1)dnzsn

= 1− 1
s!

zs +
1

(2s)!

((
2s + 1

s

)
− 1
)

z2s

− 1
(3s)!

(
1
2

(
3s + 2

s + 1, s + 1, s

)
−
(

3s + 2
s + 1

)
+ 1
)

z3s
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+
1

(4s)!

(
1
6

(
4s + 3

s + 1, s + 1, s + 1, s

)
+

(
4s + 1

2s

)
−1

2

(
4s + 3

2s + 1, s + 1, s + 1

)
+

(
4s + 2
s + 1

)
− 1
)

z4s − · · · ,

where ( n
s1,...,sm

) = n!
(s1)!···(sm)! denotes the multinomial coefficient with n = s1 + · · ·+ sm.

Moreover we can express the Laurent series of Gs(t)/AFs(t), in fact,

Gs(t)
AFs(t)

=
AF′s(t)
AFs(t)

with AFs(t) = tDs(t) and Ds(0) 6= 0. Hence

Gs(t)
AFs(t)

=
Ds(t) + tD′s(t)

tDs(t)
=

1
t
+

D′s(t)
Ds(t)

=
1
t
+

d
dt

logDs(t) .

From (3), we have

Ds(t) = d0 − d1ts + d2t2s − d3t3s + · · · = d0 + u(t) ,

with d0 = 1 and u(t) = −d1ts + d2t2s − d3t3s + · · · . So,

logDs(t) = log(1 + u(t)) =
∞

∑
k=1

(−1)k−1 u(t)k

k

Therefore,

logDs(t) = (−d1ts + d2t2s − d3t3s + · · · )− 1
2
(−d1ts + d2t2s − d3t3s + · · · )2+

+
1
3
(−d1ts + d2t2s − d3t3s + · · · )3 + · · · .

So, it follows that

logDs(t) = −d1ts +

(
d2 −

d2
1

2

)
t2s +

(
−d3 + d1d2 −

d3
1

3

)
t3s

+

(
d4 − d1d3 −

d2
2

2
+ d2

1d2 −
d4

1
4

)
t4s + · · · ,

yielding the expression

d
dt

logDs(t) = −sd1ts−1 + 2s

(
d2 −

d2
1

2

)
t2s−1 + 3s

(
−d3 + d1d2 −

d3
1

3

)
t3s−1

+4s

(
d4 − d1d3 −

d2
2

2
+ d2

1d2 −
d4

1
4

)
t4s−1 + · · · .

After substituting the vales of dn, we have

Gs(t)
AFs(t)

=
1
t
− s

(s + 1)!
ts−1 + 2s

(
2s + 1

2
(
(s + 1)!

)2 −
1

(2s + 1)!

)
t2s−1

+ 3s

(
3s + 1

(2s + 1)!(s + 1)!
− (3s + 2)(3s + 1)

6
(
(s + 1)!

)3 − 1
(3s + 1)!

)
t3s−1
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+ 4s

(
4s + 1

(3s + 1)!(s + 1)!
− 4s + 1

(2s)!
(
(s + 1)!

)2 +
4s + 1

2
(
(2s + 1)!

)2

+
(4s + 3)(4s + 1)(2s + 1)

12
(
(s + 1)!

)4 − 1
(4s + 1)!

)
t4s−1 + · · · . (5)

Proposition 2. We have

∞

∑
n=0
C(k)n,s

tn

n!
=

1
AFs(t)

∫ t

0

Gs(t)
AFs(t)

· · ·
∫ t

0︸ ︷︷ ︸
k−1

tGs(t)
AFs(t)

dt · · · dt︸ ︷︷ ︸
k−1

,

where Gs(z) = d
dzAFs(z) and a more precise expression of Gs(t)/AFs(t) is given in (5).

5. An Explicit Expression

If we know the coefficients dn (n ≥ 0) appeared in AFs(t) in Proposition 1, we can get
an expression of C(k)n,s .

Theorem 1. For integers n and k with n ≥ 0,

C(k)sn,s =
n

∑
m=0

(−1)n−m(sn)!
(sm)!(sm + 1)k ∑

i1+···+ism=n−m
i1,...,ism≥0

di1 · · · dism tsn .

Proof. By the definition in (1), we have

∞

∑
n=0
C(k)n,s

tn

n!
=

∞

∑
n=0
C(k)sn,s

tsn

(sn)!

=
∞

∑
m=0

1
(sm)!(sm + 1)k

(
∞

∑
l=0

(−1)ldltsl+1

)sm

=
∞

∑
m=0

1
(sm)!(sm + 1)k

×
∞

∑
n=m

∑
i1+···+ism=n−m

i1,...,ism≥0

(−1)i1+···+ism di1 · · · dism t(si1+1)+···+(sism+1)

=
∞

∑
n=0

n

∑
m=0

1
(sm)!(sm + 1)k ∑

i1+···+ism=n−m
i1,...,ism≥0

(−1)n−mdi1 · · · dism tsn .

Comparing the coefficients on both sides, we get the desired result.

6. Some Expressions of Poly-Cauchy Numbers with Higher Levels for Negative Indices

The poly-Bernoulli numbers B(k)
n [8], defined by

Lik(1− e−t)

1− e−t =
∞

∑
n=0

B(−k)
n

tn

n!
,

where

Lik(z) =
∞

∑
n=1

zn

nk
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is the polylogarithm function, satisfy the duality formula B(−k)
n = B(−n)

k for n, k > 0,
because of the symmetric formula

∞

∑
n=0

∞

∑
k=0

B(−k)
n

xn

n!
yk

k!
=

ex+y

ex + ey − ex+y .

Though the corresponding duality formula does not hold for the original poly-
Cauchy numbers (ref. [16], Proposition 1) and poly-Cauchy numbers with level 2 (ref. [6],
Theorem 4.1), we still have the double summation formula of poly-Cauchy numbers with
higher level.

Theorem 2. For nonnegative integers n and k,

∞

∑
n=0

∞

∑
k=0
C(−sk)

sn,s
xsn

(sn)!
ysk

(sk)!
=

1
s2

s−1

∑
j=0

s−1

∑
h=0

eζ jy(BFs(x)
)ζheζ jy

,

where BFs(x) = eAFs(x) and ζ is the s-th root of unity as ζ = e2πi/s = cos(2π/s) + i sin(2π/s).

Proof. From the definition in (1), we have

∞

∑
n=0

∞

∑
k=0
C(−sk)

sn,s
xsn

(sn)!
ysk

(sk)!
=

∞

∑
k=0

Lifs,k
(
AFs(x)

) ysk

(sk)!

=
∞

∑
k=0

∞

∑
m=0

(
AFs(x)

)sm

(sm)!
(sm + 1)sk ysk

(sk)!

=
∞

∑
m=0

(
AFs(x)

)sm

(sm)!
1
s

s−1

∑
j=0

eζ j(sm+1)y

=
1
s

s−1

∑
j=0

eζ jy
∞

∑
m=0

eζ jyAFs(x)
(sm)!

=
1
s2

s−1

∑
j=0

s−1

∑
h=0

eζ jyeζheζ jyAFs(x) ,

yielding the desired result.

7. Cauchy Numbers with Higher Level

When k = 1 in (1), Cn,s = C(1)n,s are the Cauchy numbers with higher level, defined by

t
AFs(t)

=
∞

∑
n=0
Cn,s

tn

n!
. (6)

In this section, we shall show some properties of Cn,s = C(1)n,s . First, we give its
determinant expression. A similar expression for the hypergeometric Cauchy numbers is
given in [18].

Theorem 3. For n ≥ 1,

Csn,s = (sn)!

∣∣∣∣∣∣∣∣∣∣∣∣

d1 1 0
d2 d1 1
...

. . . . . . 0
... d1 1

dn · · · · · · d2 d1

∣∣∣∣∣∣∣∣∣∣∣∣
,



Symmetry 2023, 15, 354 10 of 13

where dn is the coefficient of tsn+1 appeared in AFs(t) in Proposition 1.

Remark 1. By using the values of d’s in (4), Theorem 3 yields

C0,s = 1, Cs,s =
1

s + 1
, C2s,s =

1
2s + 1

− s(2s)!(
(s + 1)!

)2 ,

C3s,s =
1

3s + 1
− 3s(3s)!

(2s + 1)!(s + 1)!
+

s(3s + 1)!

2
(
(s + 1)!

)3 ,

C4s,s =
1

4s + 1
− 4s(4s)!

(3s + 1)!(s + 1)!
− (8s + 3)(4s)!

(2s + 1)!
(
(s + 1)!

)2

− 2s(4s)!

(2s + 1)!
(
(s + 1)!

)2 +
(4s + 3)(4s)!

(2s)!
(
s + 1)!

)2 −
s(8s2 + 6s + 1)(4s)!(

(s + 1)!
)4 , . . . .

Proof of Theorem 3. From (6), we have

1 =

(
∞

∑
m=0
Csm,s

tsm

(sm)!

)(
∞

∑
l=0

(−1)ldltsl

)

=
∞

∑
n=0

n

∑
l=0

Csn−sl,s

(sn− sl)!
(−1)ldltsn .

where the coefficients d0, d1, . . . are also given in (3) with (4). Comparing the coefficients
on both sides,

n

∑
l=0

Csn−sl,s

(sn− sl)!
(−1)ldl = 0 (n ≥ 1) .

By the inversion relation

n

∑
k=0

(−1)n−kαkR(n− k) = 0 (n ≥ 1) with α0 = R(0) = 1

⇐⇒

αn =

∣∣∣∣∣∣∣∣∣∣

R(1) 1 0

R(2)
. . . . . .

...
. . . . . . 1

R(n) · · · R(2) R(1)

∣∣∣∣∣∣∣∣∣∣
⇐⇒ R(n) =

∣∣∣∣∣∣∣∣∣∣

α1 1 0

α2
. . . . . .

...
. . . . . . 1

αn · · · α2 α1

∣∣∣∣∣∣∣∣∣∣
(e.g., see [19]), we get the result as

αn = dn and R(n) =
Csn,s

(sn)!
.

By the inversion formula shown in the above proof, we also have the following
Corollary. Similar determinant expressions of Bernoulli, Cauchy and related numbers were
found in [20]).

Corollary 1. For n ≥ 1,

dn =

∣∣∣∣∣∣∣∣∣∣∣

Cs,s
s! 1 0
C2s,s
(2s)!

C3s,s
(3s)!

...
. . . 1

Csn,s
(sn)! · · · C2s,s

(2s)!
Cs,s
s!

∣∣∣∣∣∣∣∣∣∣∣
.
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By Trudi’s formula

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 · · · · · · am

a0 a1
. . .

...
. . . . . . . . .

...
. . . a1 a2

0 a0 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ∑

t1+2t2+···+mtm=m

(
t1 + · · ·+ tm

t1, . . . , tm

)
(−a0)

m−t1−···−tm at1
1 at2

2 · · · a
tm
m

(refs. [21,22]; ref. [23],Volume 3, pp. 208–209, p. 214), we have a different expression of Cn,s.

Theorem 4.

Csn,s = (sn)! ∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn

t1, . . . , tn

)
(−1)n−t1−···−tn(d1)

t1(d2)
t2 · · · (dn)

tn

and

dn = ∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn

t1, . . . , tn

)
(−1)n−t1−···−tn

×
(
Cs,s

s!

)t1
(
C2s,s

(2s)!

)t2

· · ·
(
Csn,s

(sn)!

)tn

.

8. A Recurrence Relation for C(k)n,s in Terms of Cn,s

We can show a recurrence formula for C(k)n,s in terms of C(k−1)
n,s and Cn,s.

Theorem 5. For integers n and k with n ≥ 0 and k ≥ 1,

C(k)sn,s = (sn)!
n

∑
ν=0

ν

∑
m=0

(−1)ν−m(sν− sm + 1)dν−mCsn−sν,sC(k−1)
sm,s

(sn− sν)!(sm)!(sν + 1)
,

where dn is the coefficient of tsn+1 appeared in AFs(t) in Proposition 1.

Remark 2. Poly-Cauchy numbers c(k)n have a recurrence formula (ref. [16], Theorem 7)

c(k)n = n!
n

∑
ν=0

ν

∑
m=0

(−1)ν−mcn−νc(k−1)
m

(n− ν)!m!(ν + 1)
.

Poly-Cauchy numbers C(k)
n with level 2 have a recurrence formula (ref. [6], Theorem 3.4)

C(k)
2n = (2n)!

n

∑
ν=0

ν

∑
m=0

(
−1

4

)ν−m(2ν− 2m
ν−m

) C2n−2νC
(k−1)
2m

(2n− 2ν)!(2m)!(2ν + 1)
.

Proof of Theorem 5. Similarly to the description in Section 4, we obtain

∞

∑
n=0
C(k)sn,s

xsn

(sn)!
= Lifs,k

(
AFs(x)

)
=

1
AFs(x)

∫ x

0
Lifs,k−1

(
AFs(σ)

)
Gs(σ)dσ
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=

(
∞

∑
n=0
Csn,s

xsn−1

(sn)!

) ∫ x

0

(
∞

∑
m=0
C(k−1)

sm,s
σsm

(sm)!

)(
∞

∑
j=0

(−1)j(sj + 1)djσ
rj

)
dσ

=

(
∞

∑
n=0
Csn,s

xsn−1

(sn)!

) ∫ x

0

(
∞

∑
ν=0

ν

∑
m=0

(−1)ν−m(sν− sm + 1)dν−m
C(k−1)

sm,s

(sm)!
σsν

)
dσ

=

(
∞

∑
n=0
Csn,s

xsn−1

(sn)!

)(
∞

∑
ν=0

ν

∑
m=0

(−1)ν−m(sν− sm + 1)dν−m
C(k−1)

sm,s

(sm)!
xsν+1

sν + 1

)

=
∞

∑
n=0

n

∑
ν=0

ν

∑
m=0

(−1)ν−m(sν− sm + 1)dν−mCsn−sν,sC(k−1)
sm,s

(sn− sν)!(sm)!(sν + 1)
xsn .

Comparing the coefficients on both sides, we get the result.

9. Conclusions

In this paper, we define poly-Cauchy numbers with higher level (level s) from the
analytical implications, and study their properties. Such poly-Cauchy numbers with higher
levels are yielded from the inverse relationship with an s-step function of the exponential
function. When s ≥ 3, the inverse function is not given using a known function, but it can
be used to obtain the expressions and relations.

Poly-Bernoulli numbers with level 2 are defined and studied in [7]. Is it possible to
introduce poly-Bernoulli numbers with higher levels? If so, is there any relation between
them and poly-Cauchy numbers with higher levels?
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