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Abstract: In this paper, a non-classical symmetry method for obtaining the symmetries of differential–
difference equations is proposed. The non-classical symmetry method introduces an additional
constraint known as the invariant surface condition, which is applied after the infinitesimal transfor-
mation. By solving the governing equations that satisfy this condition, we can obtain the correspond-
ing reduced equation. This allows us to determine the non-classical symmetry of the differential–
difference equation. This method avoids the complicated calculation involved in extending the
infinitesimal generator and allows for a wider range of symmetry forms. As a result, it enables
the derivation of a greater number of differential–difference equations. In this paper, two kinds
of (2+1)-dimensional Toda-like lattice equations are taken as examples, and their corresponding
symmetric and reduced equations are obtained using the non-classical symmetry method.

Keywords: non-classical symmetry; Lattice equation; Lie symmetry; differential–difference equation

1. Introduction

A lattice system is a mathematical representation of a network or lattice of particles. It
can be used to describe various phenomena, such as the vibrations of atoms and molecules
in a matrix or the oscillations of particles connected by a spring [1]. Nonlinear lattice
dynamics has a wide range of applications in physics, biology, statistical physics, acoustics,
optics, condensed matter physics, and other fields [2,3]. The mathematical model of a
lattice system often takes the form of nonlinear differential–difference equations [4].

The Lie symmetry method is not only an effective approach for obtaining exact so-
lutions of partial differential equations but also for differential–difference equations [5,6].
The Lie symmetry analysis method has also been proposed for finding similarity reduction
and exact solutions of nonlinear evolution equations [7]. In 1993, Levi [8] proposed the
classical Lie symmetry method for differential–difference equations. The Toda equation is
a classical model of differential–difference equation [9–12], whose symmetries have been
studied [13] and the differential–difference Lie symmetry method was applied to solve
a class of Toda-like lattice equations [14]. In 2022, a survey of the connection between
orthogonal polynomials, Toda lattices and related lattices, and Painlevé equations (discrete
and continuous) was given [15].

In 1969, Bluman and Cole [16] generalized the classical symmetry method of Lie
to a non-classical method. They proposed the non-classical symmetry method for the
first time and obtained a new exact solution of the one-dimensional heat conduction
equation using this new method. For a partial differential equation, we know that the given
system of partial differential equations is invariant under symmetry in the usual symmetry
method. In the non-classical method [17,18], not only is the given system invariant, but the
invariant surface conditions and their differential consequences are also invariant under
the corresponding symmetry. Moreover, the over-determined system of partial differential
equations is nonlinear in the non-classical method. This implies that by using non-classical
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symmetry analysis, one could obtain new symmetries that go beyond those obtained by
using the classical symmetry method. Bluman and Tian [19] utilized the non-classical
symmetry method to solve the nonlinear Kompaneets equation. Xin et al. [20] obtained
nonlocal symmetries and solutions for the (2+1) dimension integrable Burgers equation.
ARRIGO et al. [21] discussed nonclassical symmetry solutions and the methods between
Bluman–Cole and Clarkson–Kruskal. Subhankar and Raja Sekhar [22] studied nonclassical
symmetry analysis and conservation laws of a one-dimensional macroscopic production
model and the evolution of nonlinear waves.

We consider the invariance of a given differential equation

∆ = ∆(x, t, u, u(1), · · · , u(n)) = 0, (1)

together with its invariant surface condition

∆0 = ξ(x, t, u)ux + η(x, t, u)ut − φ(x, t, u) = 0, (2)

where u = u(x, t). Equation (2) describes the solution surface, which remains invariant
under a one parameter group of transformations with the infinitesimal generator

Γ =
p

∑
i=1

ξi(x, u)
∂

∂xi
+ φ(x, u)

∂

∂u
. (3)

Γ(m) is the m-order prolongation of Γ

Γ(m) = Γ +
p

∑
i=1

∑
M

φM
[xi ]

(x, u(m))
∂

∂uxi

, (4)

where

φM
[xi ]

(x, u) = DM(φ[xi ]
−

p
∑

i=1
ξiuxi ) +

p
∑

i=1
ξiuxi ,M, (5)

with M = (m1, · · · , mi), 1 ≤ i ≤ p.
It is assumed that Equation (1) is invariant under the action of infinitesimal generators (3) and

invariant surface conditions (2), if and only if the system of governing equations is satisfied

Γ(n)∆|{∆=0,∆0=0} = 0, (6)

In this way, the non-classical symmetry of Equation (1) can be obtained.
The question that naturally arises is whether the non-classical method can be extended

to discuss discrete equations. To the best of our knowledge, this question has not been
reported so far. Based upon the discrete Lie symmetry method [23], we extend the infinites-
imal generator and its prolongation to the discrete performance to analyze the non-classical
symmetries of differential–difference equations in this Letter.

In Section 2, the non-classical symmetry method for differential–difference equations
is introduced. In Sections 3 and 4, the non-classical symmetry method of differential–
difference equations is applied to study two types of (2+1)-dimensional Toda-like lattice
equations. The determinant equations of the equation are derived, and the corresponding
reduced equations are obtained by solving the determinant equations. Conclusions are
finally presented in Section 5.

2. Non-Classical Symmetry of Differential–Difference Equations

In this paper, we will introduce the non-classical symmetric method using an example
of a differential–difference equation of order m that contains both continuous variables
x = (x1, x2, · · · , xm) and a discrete variable n. The equation is formulated as follows:

∆ = ∆(m)
n ≡ ∆(x, n, u(n + k)|bk=−a, uxi (n + k)|bi

k=−ai
, uxixj(n + k)|bij

k=−aij
) = 0, (7)
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where all a, b, ai, bi, aij, bij are finite non-negative integers, m = Max{b, bi, bij}. The infinites-
imal generators acting on Equation (7) are as follows:

Γ =
p
∑

i=1
ξi(x, u(n)) ∂

∂xi
+ φ(x, u(n), n) ∂

∂u(n) . (8)

Γ(m) is the m-order prolongation of Γ, which is formed as

Γ(m) = Γ +
p
∑

i=1
∑
M

φM
[xi ]

(x, um(n), n) ∂
∂uxi (n)

, (9)

where

φM
[xi ]

(x, u(n), n) = DM(φ[xi ]
(n)−

p
∑

i=1
ξiuxi (n)) +

p
∑

i=1
ξiuxi ,M(n), (10)

with M = (m1, · · · , mi), 1 ≤ i ≤ p.
To better understand the non-classical symmetry of differential–difference equations,

consider a differential–difference equation involving x1 = x and x2 = t as an example.

∆ ≡ ∆(x, t, u(n), u(n + 1), · · · , ux(n), ux(n + 1), · · · , ut(n), ut(n + 1), · · · , uxt(n), · · · ) = 0, (11)

Then the infinitesimal transformation acting on this equation is

x∗ = x + ξ(x, t, u(n))ε + O(ε2),
t∗ = t + η(x, t, u(n))ε + O(ε2),

u∗ = u + φ(x, t, u(n))ε + O(ε2).
(12)

The infinitesimal transformation is derived from the following equation

u(x + εξ, t + εη) = u(x, t, u(n)) + φ(x, t, u(n))ε + O(ε2). (13)

The Equation (13) is about taking the derivative ε and expanding it; thus, it can be written
as follows

∆0 = ξ(x, t, u(n))ux(n) + η(x, t, u(n))ut(n)− φ(x, t, u(n), n) = 0. (14)

Equation (14) is called the invariant surface condition of differential–difference equation.
According to the classical Lie symmetry method, the differential–difference

Equation (11) is assumed to be invariant under the infinitesimal transformations ∆0. The
non-classical symmetry method adds invariant surface conditions on this basis, which is
also invariant under infinitesimal transformations; that is, the governing equations are
satisfied for ∆ and ∆0 at the same time:

Γ(2)∆|{∆=0,∆0=0} = 0, (15)

where the infinitesimal generator is

Γ = ξ(x, t, u(n))
∂

∂x
+ η(x, t, u(n))

∂

∂t
+ φ(x, t, u(n), n)

∂

∂u(n)
. (16)

For the convenience of later calculation, the first order and second order continuation
are given respectively

Γ(1) = Γ +
n+M

∑
i=n−L

φ[x](x, t, u(i), i) ∂
∂ux(i)

+
n+M

∑
i=n−L

φ[t](x, t, u(i), i) ∂
∂ut(i)

,

Γ(2) = Γ(1) +
n+M

∑
i=n−L

φ[xx](x, t, u(i), i) ∂
∂uxx(i)

+
n+M

∑
i=n−L

φ[xt](i)(x, t, u(i), i) ∂
∂uxt(i)

+
n+M

∑
i=n−L

φ[tt](x, t, u(i), i) ∂
∂utt(i)

,

(17)
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where n − L ≤ i ≤ n + M, L, M are non-negative integers, for short ξ(x, t, u(n)) = ξ,
η(x, t, u(n)) = η, φ(x, t, u(i), i) = φ(i); hence,

φ[x](i) = Dx(φ(i)− ξux(i)− ηut(i)) + ξuxx(i) + ηuxt(i), (18)

φ[t](i) = Dt(φ(i)− ξux(i)− ηut(i)) + ξuxt(i) + ηutt(i), (19)

φ[xx](i) = Dxx(φ(i)− ξux(i)− ηut(i)) + ξuxxx(i) + ηuxxt(i), (20)

φ[xt](i) = Dxt(φ(i)− ξux(i)− ηut(i)) + ξuxxt(i) + ηuttx(i), (21)

φ[tt](i) = Dtt(φ(i)− ξux(i)− ηut(i)) + ξuxtt(i) + ηuttt(i). (22)

We substituted (18)–(22) into the governing Equation (17) by solving the determining
Equation (15); that is, the coefficient equations of the derivative of u to x, t, the expression
about ξ, η, φ can be obtained and its corresponding characteristic equation can also be
obtained under the integral of the invariant surface conditions

dx
ξ(x, t, u(n))

=
dt

η(x, t, u(n))
=

dun

φ(x, t, u(n), n)
. (23)

By solving this characteristic equation, the invariants of Equation (1) can be found. In this
article, we only need to consider two cases under the invariant surface condition (8): η ≡ 1
and η ≡ 0, ξ ≡ 1.

The invariant surface condition ∆0 introduced a new correlation equation for the
derivative of Equation (11). We substitute the invariant surface condition ∆0 into the
governing system (15), replacing the related terms and further reducing the governing
system (15) to obtain the determining system of sum ξ, η and φ. The system of determining
equations obtained by the non-classical symmetric method is usually nonlinear, while
solving the system of determining equations gives a reduced equation with the same
solution as the control equation. Finally, the group invariant solutions of Equation (11) can
be obtained by solving the reduced equations. This is the non-classical symmetric approach
to differential–difference equations. In simple terms, the non-classical symmetry method
seeks the invariance of the original equation under the invariant surface condition.

Summarizing the above, two theorems are obtained.

Theorem 1. Suppose σ(U) is a symmetry of the following differential–difference equations,

∆(n, t, δ∂U) = 0, (24)

then U is the group invariant solution of the equation corresponding to the invariant group of σ(U)
if and only if {

∆(n, t, δ∂U) = 0,
σ(U) = 0.

(25)

where δ is a difference operator and ∂ is a differetial operator.

Theorem 2. Suppose (24) is a system of differential–difference equations defined on X × t×U
with a maximum rank. G is the group of local transformations acting on X× t×U, and if any of
the generators of G are true when

Γ(n)(∆)|{∆=0,∆0=0} = 0, (26)

then G is the invariant group of this system of equations, where n ∈ X.

Theorem 2 can be called the Lie criterion for non-classical Lie symmetry.
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3. Non-Classical Symmetry of (2+1)-Dimensional Toda Lattice Equations

The (2+1)-dimensional Toda equation is a completely integrable differential–difference
equation with a Lax pair, an infinitely multiple conservation law, a Backlund transform,
a soliton solution, and the general characteristics of integrable models. The study of the
Toda equation is of great significance in the study of fully integrable nonlinear systems.
The (2+1)-dimensional Toda lattice Equation [8] has the following form

∆ = uxt(n)− eu(n−1)−u(n) + eu(n)−u(n+1), (27)

where u(n) is the function of x, t.
The invariant surface condition is

∆0 = ξ(x, t, u(n))ux(n) + η(x, t, u(n))ut(n)− φ(x, t, u(n), n). (28)

As a brief note ξ(x, t, u(n)) = ξ, η(x, t, u(n)) = η, φ(x, t, u(n), n) = φ(n), the system of
equations determining the non-classical symmetry of Equation (27) is obtained from the
following governing Equation (15).

The infinitesimal generator Γ is

Γ = ξ
∂

∂x
+ η

∂

∂t
+ φ(n)

∂

∂u(n)
, (29)

Its second-order prolongation Γ(2) is

Γ(2) = φ(n− 1)
∂

∂u(n− 1)
+ φ(n)

∂

∂u(n)
+ φ(n + 1)

∂

∂u(n + 1)

+φx(n− 1)
∂

∂ux(n− 1)
+ φx(n)

∂

∂ux(n)
+ φx(n + 1)

∂

∂ux(n + 1)

+φt(n− 1)
∂

∂ut(n− 1)
+ φt(n)

∂

∂ut(n)
+ φt(n + 1)

∂

∂ut(n + 1)

+φxx(n− 1)
∂

∂uxx(n− 1)
+ φxx(n)

∂

∂uxx(n)
+ φxx(n + 1)

∂

∂uxx(n + 1)

+φxt(n− 1)
∂

∂uxt(n− 1)
+ φxt(n)

∂

∂uxt(n)
+ φxt(n + 1)

∂

∂uxt(n + 1)

+φtt(n− 1)
∂

∂utt(n− 1)
+ φtt(n)

∂

∂utt(n)
+ φxt(n + 1)

∂

∂utt(n + 1)
,

(30)

where
φx(n− 1)

∂

∂ux(n− 1)
= φx(n)

∂

∂ux(n)
= φx(n + 1)

∂

∂ux(n + 1)
= 0, (31)

φt(n− 1)
∂

∂ut(n− 1)
= φt(n)

∂

∂ut(n)
= φt(n + 1)

∂

∂ut(n + 1)
= 0, (32)

φxx(n− 1)
∂

∂uxx(n− 1)
= φxx(n)

∂

∂uxx(n)
= φxx(n + 1)

∂

∂uxx(n + 1)
= 0, (33)

φtt(n− 1)
∂

∂utt(n− 1)
= φtt(n)

∂

∂utt(n)
= φtt(n + 1)

∂

∂utt(n + 1)
= 0, (34)

φxt(n− 1)
∂

∂uxt(n− 1)
= φxt(n + 1)

∂

∂uxt(n + 1)
= 0, (35)
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φ[xt](n) = φxt(n)
∂

∂uxt(n)
= Dxt(φ(n)− ξux(n)− ηut(n)) + ξuxxt(n) + ηuxtt(n)
= φxt + φuxut + (φuuut)ux + φuuxt − (ξxt + utξxu)ut − ξxutt
−ξuuxtut − ξuuxutt − (ξut + ξuuut)uxut − (ηxt + ηxuut)ux
−2ηuuxuxt − (ηut + ηuuut)u2

x − (ξt + ξuut)uxt
−(ηt + ηuut)uxx − ηxuxt.

(36)

Substituting (31)–(36) into Γ(2) (30), the control system (15) will take the following form:

Γ(2)∆|{∆=0,∆0=0} = φ(n− 1)eu(n−1)−u(n) + φ(n)(eu(n−1)−u(n) − eu(n)−u(n+1))

+φ(n + 1)eu(n)−u(n+1) + φxt + φxu(φ(n)− ξux) + φutux
−ξxu(φ(n)− ξux)2 − ξutux(φ(n)− ξux)− ξuuux(φ(n)− ξux)2

−ξt(eu(n−1)−u(n) − eu(n)−u(n+1)) + φuuux(φ(n)− ξux)

−ξuux[φt − ξtux − ξ(eu(n−1)−u(n) − eu(n)−u(n+1))]

+φu(eu(n−1)−u(n) − eu(n)−u(n+1))− ξxt(φ(n)− ξux)

−ξx(φt − ξtux − ξ)(eu(n−1)−u(n) − eu(n)−u(n+1))

−2ξu(eu(n−1)−u(n) − eu(n)−u(n+1))(φ(n)− ξux)
= 0,

(37)

According to the non-classical symmetry method, the non-classical symmetries of the
(2+1) dimensional Toda-like lattice Equation (27) only need to be discussed in two cases;
one is η ≡ 1 and the other case is η ≡ 0, ξ ≡ 1:

Case 1. When η ≡ 1 , the system of equations of ξ and φ is determined by

φut + φφuu − φξxt − φξux − ξxφt − φξuu + φξxξuu = 0,
ξtξu + ξξut − ξξxu − ξφuu = 0,
φu + ξξx − φξu − ξt = 0,
φ(n + 1)− φ = 0,
φ− φ(n− 1) = 0,
ξξuu = 0,
ξξu = 0.

(38)

Using the symbolic computing software Maple to solve Equation (38), the solutions are{
ξ = A(x),
φ = B(t),

(39)

where A(x) is an arbitrary function about x , B(t) is an arbitrary function of t .
Accordingly, the non-classical symmetry of Equation (27) is given by

Y1 = A(x)
∂

∂x
+

∂

∂t
+ B(t)

∂

∂u(n)
. (40)

Choose A(x) = ax2 + bx + c, B(t) = kt + d, where k, a, b, c and d are arbitrary
constants as an example. Substituting the non-classical symmetry Y1 to the invariant
surface condition (28), the following system of equations, also called symmetry reduction,
is obtained: {

ut(n) = kt + d− (ax2 + bx + c)ux(n),
uxt(n) = eu(n−1)−u(n) − eu(n)−u(n+1).

(41)

By simplifying Equation (41), a reduced equation of the same dimension as Equation (27)
can be obtained

(2ax + b)ux(n) + (ax2 + bx + c)uxx(n) + eu(n−1)−u(n) − eu(n)−u(n+1) = 0. (42)
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If we choose a = 1, b = 0 and c = 0, Equation (42) will be simplified to

2xux(n) + x2uxx(n) + eu(n−1)−u(n) − eu(n)−u(n+1) = 0. (43)

Case 2. When η ≡ 0 and ξ ≡ 1, the determining system of equations of φ is
φu + φ(n− 1) + φ = 0,
φ(n + 1)− φ− φu = 0,
φux + φφuu = 0,
φxt + φφux = 0,

(44)

Using the symbolic computing software Maple to solve the Equation (44), we can obtain

φ = C(t), (45)

where C(t) is an arbitrary function of t.
Accordingly, the non-classical symmetry of Equation (27) is given by

Y2 =
∂

∂x
+ C(t)

∂

∂u(n)
. (46)

If we choose C(t) = pt + q, with arbitrary constants p and q as an example, and
substitute the non-classical symmetry Y2 to the invariant surface condition (28), we obtain
the following system of equations:{

ux(n) = pt + q,
uxt(n) = eu(n−1)−u(n) − eu(n)−u(n+1),

(47)

By simplifying the Equation (47), a reduced equation of the same dimension as Equation (17)
can be obtained

p− eu(n−1)−u(n) + eu(n)−u(n+1) = 0. (48)

With the help of Maple, the reduced Equation (48) could be solved under the initial
condition u(0) = 0, u(1) = 1 and p = 0; that is,

u(n) = n. (49)

By using the non-classical symmetry method, the two symmetries Y1 and Y2 obtained
are about the change of the functions A(x), B(t) and C(t), respectively. According to the
different functions selected, the corresponding reduced equations of different forms can
be obtained.

The above solving process can be summarized as the following theorem.

Theorem 3. (2+1)-dimensional Toda Equation (27) has two non-classical symmetries, as follows

Y1 = A(x)
∂

∂x
+

∂

∂t
+ B(t)

∂

∂u(n)
, η ≡ 1,

Y2 =
∂

∂x
+ C(t)

∂

∂u(n)
, η ≡ 0, ξ ≡ 1.

The two symmetries Y1 and Y2 are changed according to A(x), B(t) and C(t) individually.
Depending on which is selected between A(x), B(t) and C(t), different reduced equations
can be obtained.

In [23], four Lie point symmetries were given

X1 = ∂t, X2 = t∂u(n), X3 = ∂u(n), X4 = t∂t + 2n∂u(n).
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It could be easily seen that Xi(i = 1, 2, 4) was included by Y1.

4. Non-Classical Symmetry of Another Type of (2+1)-Dimensional Toda
Lattice Equations

The other (2+1)-dimensional Toda lattice equation has the following form:

∆ = uxt(n)− [ut(n) + 1][u(n− 1)− 2u(n) + u(n + 1)] = 0. (50)

The invariant surface condition is

∆0 = ξ(x, t, u(n))ux(n) + η(x, t, u(n))ut(n)− φ(x, t, u(n), n) = 0. (51)

The system of equations determining the non-classical symmetry of Equation (50) is
obtained from the following governing Equation (15). Where the infinitesimal generator
Γ and its second-order prolongation are

Γ = ξ(x, t, u(n))
∂

∂x
+ η(x, t, u(n))

∂

∂t
+ φ(x, t, u(n), n)

∂

∂u(n)
,

Γ(2) = φ(n− 1)
∂

∂u(n− 1)
+ φ(n)

∂

∂u(n)
+ φ(n + 1)

∂

∂u(n + 1)

+φ[t](n)
∂

∂ut(n)
+ φ[xt](n)

∂

∂uxt(n)
,

(52)

where ξ(x, t, u(n))=ξ, η(x, t, u(n))=η, φ(x, t, u(n), n)=φ(n) for short. Hence,

φ[t](n) = Dt(φ(n)− ξux(n)− ηut(n)) + ξuxt(n) + ηutt(n), (53)

φ[xt](n) = Dxt(φ(n)− ξux(n)− ηut(n)) + ξuxxt(n) + ηuttx(n). (54)

The non-classical symmetries of the (2+1) dimensional Toda-like lattice Equation (50)
in two cases, η ≡ 1 and η ≡ 0, ξ ≡ 1, are discussed as follows:

Case 3. When η ≡ 1, the system of determining equations about ξ and φ(n), is

φxt(n) + φ(n)φux(n)− φ(n− 1) + 2φ(n)
−φ(n + 1)− φ(n)φ(n− 1)− φ(n)φ(n + 1) + 2φ2(n) = 0,
φut(n)− ξxt(n)− φ(n)ξux + φ(n)φuu(n)− ξφux(n) + ξφ(n− 1)
−2ξφ(n) + ξφ(n + 1) = 0,
φt(n) + ξx + φ(n)ξx − φu(n)− φ(n)φu(n) = 0,
ξξux − ξφuu(n)− ξut − φ(n)ξuu = 0,
ξt − φ(n)ξu − 2ξu + ξξx = 0,
ξt + φ(n)ξu = 0,
ξξuu = 0,
ξξu = 0.

(55)

Using the symbolic computing software Maple to solve the Equation (55), we will obtain{
ξ(x, t, u(n)) = 0,
φ(x, t, u(n)) = a,

(56)

{
ξ(x, t, u(n)) = 0,
φ(x, t, u(n)) = D(x),

(57)

 ξ(x, t, u(n)) = b,

φ(x, t, u(n)) =
E(x) + t + u(n)

F(x)− t
,

(58)

where a, b are arbitrary constants, and D(x), E(x) and F(x) are arbitrary functions of x.
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Accordingly, the non-classical symmetry of Equation (50) are represented as

Y1 =
∂

∂t
+ a

∂

∂u(n)
,

Y2 =
∂

∂t
+ D(x)

∂

∂u(n)
,

Y3 = b
∂

∂x
+

∂

∂t
+

E(x) + t + u(n)
F(x)− t

∂

∂u(n)
.

(59)

Substituting a = −1
2

into the non-classical symmetry Y1 and applying it to the in-
variant surface condition (51) for example, we obtain the following system of equations{

ut(n) = −
1
2

,

uxt(n) = [ut(n) + 1][u(n− 1)− 2u(n) + u(n + 1)].
(60)

By simplifying the Equation (60), a reduced equation of the same dimension as Equation (50)
can be obtained

u(n− 1)− 2u(n) + u(n + 1) = 0. (61)

With the help of Maple, the reduced Equation (61) could be solved under the initial
condition u(0) = 1, u(1) = 2, that is

u(n) = n + 1. (62)

If we choose to substitute D(x) = x into the non-classical symmetry Y2 to the invariant
surface condition (51) as an example, the following system of equations are obtained:{

ut(n) = x,
uxt(n) = [ut(n) + 1][u(n− 1)− 2u(n) + u(n + 1)].

(63)

By simplifying the Equation (63), a reduced equation of the same dimension as Equation (50)
can be obtained:

(x + 1)[u(n− 1)− 2u(n) + u(n + 1)]− 1 = 0. (64)

Substituting b = −1 and E(x) = 2x, F(x) = x into the non-classical symmetry Y2 and
applying it to the invariant surface condition (51), the following system of equations is
as follows:  ut(n) = ux(n) +

2x + t + u(n)
x− t

,

uxt(n) = [ut(n) + 1][u(n− 1)− 2u(n) + u(n + 1)].
(65)

By simplifying the Equation (65), a reduced equation of the same dimension as Equation (50)
can be obtained

(x− t)2uxx(n) + 3t + u(n)
−[(x− t)2ux(n) + 3x2 − 3xt + (x− t)u(n)][u(n− 1)− 2u(n) + u(n + 1)] = 0.

(66)

Case 4. When η ≡ 0, ξ ≡ 1, the system of determining equations about φ(n) is
φux(n) + φ(n)φuu(n)− φ(n− 1) + 2φ(n)− φ(n + 1) = 0,
φxt(n) + φ(n)φut(n)− φ(n− 1) + 2φ(n)− φ(n + 1) = 0,
φu(n)− φt(n) = 0.

(67)

Using the symbolic computing software Maple to solve the Equation (67), then

φ = G(x) + H(t + u(n)), (68)
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where G(x) is an arbitrary function of x, and H(t+u(n)) is an arbitrary function of (t + u(n)).
Accordingly, the non-classical symmetry of Equation (50) is expressed as

Y4 =
∂

∂x
+ [G(x) + H(t + u)]

∂

∂u(n)
. (69)

If we choose G(x) = x and H(t + u) = t + u(n) for Y4 in the invariant surface
condition (51), we obtain{

ux(n) = x + t + u(n),
uxt(n) = [ut(n) + 1][u(n− 1)− 2u(n) + u(n + 1)].

(70)

By simplifying the Equation (70), a reduced equation of the same dimension as Equation (50)
can be obtained

[u(n− 1)− 2u(n) + u(n + 1)]− 1 = 0. (71)

With the help of Maple, the reduced Equation (71) could be solved under the initial
condition u(0) = 1 and u(1) = 1; that is,

u(n) =
1
2

n2 − n
2
+ 1 =

1
2
(n− 1

2
)2 +

7
8

(72)

Figure 1 shows the image of u(n) (72).

Figure 1. The plot of u(n) (72).

The above solving process can be summarized as the following theorem:

Theorem 4. The (2+1)-dimensional Toda equation (50) has four non-classical symmetries, as follows

Y1 =
∂

∂t
+ a

∂

∂u(n)
,

Y2 =
∂

∂t
+ D(x)

∂

∂u(n)
,

Y3 = b
∂

∂x
+

∂

∂t
+

E(x) + t + u(n)
F(x)− t

∂

∂u(n)
,

Y4 =
∂

∂x
+ [G(x) + H(t + u(n))]

∂

∂u(n)
.

The four symmetries Y1, Y2 , Y3 and Y4 are changed according to a, b, D(x), E(x), F(x),
G(x) and H(t + u(n)) individually. Depending on which function is selected, different
reduced equations can be obtained.

The main steps for solving lattice equations by using the differential–difference non-
classical symmetry method are as follows:

Step 1: The non-classical Lie symmetry algorithm is used to calculate the Lie transform
group, which can be described by its infinitesimal generator, which preserves the form of
the equation on its extension space.
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Step 2: Extend the Lie group and its infinitesimal generators to include the space of
independent variables, function variables, and finite-order derivatives of function variables,
in order to obtain the extended expressions.

Step 3: Assuming that the differential–difference equation is invariant under infinitesi-
mal transformations, the invariant surface condition remains unchanged under infinitesimal
transformations. As a result, the system of governing equations is obtained.

Step 4: Further reduce the system of governing equations to obtain a system of deterministic
equations and a definite system of equations, with respect to infinitesimal generators.

Step 5: The non-classical symmetry of the differential–difference equation can be
obtained by solving the system of equations using Maple 2020 software.

Step 6: Depending on the specific circumstances, various parameter equations can be
chosen to derive low-dimensional reduction equations that yield the same solutions as the
differential–difference equation.

5. Conclusions

In this paper, we combine the classical Lie-symmetry method of differential–difference
equations proposed by Levi with the non-classical symmetry method of nonlinear partial
differential equations proposed by Bluman. Our aim is to extend the non-classical symmetry
method to differential–difference equations in order to get more symmetries of differential–
difference equations. This method incorporates the invariant surface condition (2) into the
classical Lie symmetry method in order to derive the governing equations of the studied
differential–difference equation. By solving the governing equations under the η ≡ 1 or
η ≡ 0, ξ ≡ 1, we can obtain its determination systems and then work out the non-classical
symmetries of the equation and the corresponding symmetry reduction. The non-classical
symmetries are only applicable to solutions that satisfy the invariant surface conditions.
This implies that nonclassical symmetry only leaves a small sub-manifold of the solution
manifold invariant. Finally, the effectiveness of this method is illustrated by considering
examples of two types of (2+1)-dimensional Toda-like lattice equations. It can be seen that
this method not only simplifies the calculation steps with the help of the invariant surface
condition as an additional equation but also yields many new functional symmetries (40)
and (46) of Toda-like lattice Equation (27), which cannot be obtained by the classical Lie
symmetry method [23]. According to the selected arbitrary functions A(x), B(t), C(t) of the
infinitesimal generators, one can obtain the corresponding non-classical symmetries and
the corresponding reduced equation of the (2+1)-dimensional Toda-like lattice equations.
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