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Abstract: An alloy wheel is generally a symmetrically shaped part integral to a vehicle because its
weight and strength can improve driving performance. Therefore, alloy wheel design is essential,
and a novel design method should be considered. Currently, the Multi-Additional Sampling Efficient
Global Optimization (MAs-EGO) has been proposed and widely implemented in various fields of
engineering design. This study employed a surrogate model to maximize Expected Hypervolume
Improvement (EHVI) for multi-objectives by increasing multi-sampling per iteration to update a
surrogate model and evaluate an optimal point for alloy wheel design. Latin Hypercube Sampling
(LHS) was used to generate an initial design of an alloy wheel, including the thickness and width
of the spoke wheel. The maximum principal stress according to the dynamic cornering fatigue
simulation was then evaluated for risk of failure using Finite Element (FE) analysis. The objectives
were to minimize both the principal stress and weight of the symmetric alloy wheel. The Kriging
method was used to construct a surrogate model, including a Genetic Algorithm (GA), which was
performed to maximize hypervolume improvement to explore the next additional sampling point,
and that point was also an optimal point for the process when computation had converged. Finally,
FE results were validated through a designed apparatus to confirm the numerical solution. The results
exhibit that Multi-Additional Sampling Efficient Global Optimization can achieve an optimal alloy shape.
The maximum principal stress distribution occurs in the spoke area and exhibits a symmetrical pattern
around the axis following the cyclic bending load. The optimal design point of the alloy wheel can
reduce 20.181% and 3.176% of principal stress and weight, respectively, compared to the initial design.
The experimental results are consistent trend in the same direction as FEA results.

Keywords: design optimization; alloy wheel; efficient global optimization; dynamic cornering fatigue
test; finite element analysis

1. Introduction

Alloy wheels, such as passenger cars or pickup trucks, are essential to automobiles
carrying heavy things or commercial products. Alloy wheels generally have a symmetrical
shape and are classified into four types, namely disc type, spoke type, fin type, and mesh
type, respectively, including principal components such as rim and wheel disc, as shown
in Figure 1. Each wheel supports the whole body of the vehicle in balance with static
and dynamic loads depending on carrying weight, velocity, and road surface. Because
of those loads, there is concern about the strength of the alloy wheel structure, and its
geometric parameter is significant to be determined to reach safety requirements and
standards. Generally, a passenger car wheel must pass three standard tests before running
mass production: the dynamic radial fatigue test, the dynamic cornering fatigue test, and
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the impact test. However, mechanical engineering design and wheel analysis require
predicting deformation and fatigue failure before pilot model testing [1]. The mechanical
design of alloy wheels with Finite Element Analysis (FEA) simulation is imperatively
utilized for fatigue life prediction, because it is more flexible for modeling part geometries,
applying material properties, and types of load. Strength analysis of three-wheel materials,
such as magnesium, aluminum, and alloy steels, for passenger cars using the FEA model,
is performed to determine the optimal geometry and mass under a dynamic load. The
result revealed that the steel alloy was the foremost among the three types in terms of
ultimate strength, followed by aluminum and magnesium. However, its mass increased
the rotational inertia of entire wheels. From the fatigue strength test, aluminum was the
best material for lightweight wheels. The magnesium wheel showed failure in the shortest
fatigue cycle; however, the aluminum wheel could withstand the complex dynamic load,
exhibiting load fatigue life. Stress analysis from the FEA results revealed that maximum
stress concentration is represented around the connecting area between the rim and the
drop center, where the rim plays a role as the first support of radial load from tires [2,3].

Figure 1. Type of alloy wheel in general industry and components. (a) Disc type, (b) spoke type,
(c) fin type, (d) mesh type, and (e) rim and disc type.

Structure Optimization of alloy wheels through validation of FEA simulation models
with actual experiments under static load was present in several previous studies. P. Ram-
murty et al. [4] performed an experiment fatigue test of aluminum alloy 356.2 T2 of alloy
wheel to find a correlation between stress and fatigue for taking properties of it to apply to
FEA, and compared the result from simulations against Japan Light Alloy Wheel Standard
ISO 3006:2015. The result showed that test was pass; in addition, this FEA modeling cloud
be utilized to estimate life cycle of 356.2 T2 alloy wheel. Liangmo Wang et al. [5] improved
the dimension of alloy wheels to avoid maximum stress around screw holes by using
FEA to predict the fatigue life cycle for decreasing cost before manufacturing. Xiaofeng
Wang et al. [6] studied the dynamic cornering fatigue test prediction by the fundamental
failure theory of alloy wheels and calculation of fatigue life considering bilinear isotropic
hardening, multi-axis fatigue, and rain-flow counting the Palmgren-Miner rule; the crack
area of the alloy wheel from FEA was consistent with the experiment. Dong [7] designed
the shape of an alloy wheel under dynamic cornering fatigue test with FEA by considering
stress distribution and deformation on the alloy wheel, simulated fatigue life according
to transient structural with cyclic loading, and analyzed design variables of alloy wheel
by response surface method with nine initial sampling from design of experiment. Sourav
Das [3] diagnosed the weight loss of the alloy wheel by applying FEA with radial loading
distribution and determined AlSi as a material of the alloy wheel. The radial fatigue test,
cornering fatigue test, and impact test were considered using the FE simulation, and the
result depicted that the optimal shape of the alloy cut its weight but still passed the stan-
dard fatigue test. D.H. Burande and T.N. Kazi [8] performed an alloy wheel with dynamic
cornering fatigue test and radial fatigue test following ISO 3006:2015, using FE simulation,
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which compared two material types, namely aluminum A356 and aluminum 7075-T6 on
both methods; the result showed that aluminum A356 provided FEA result was close to
experiment rather than another. Rakesh B. Thakare [9] executed a type alloy wheel on FEA
with a dynamic cornering fatigue test for comparing strain against an experiment under
the Society of Automotive Engineering (SAE) standard, aimed around holes fixing between
wheel and disc, and both results were agreeable.

Previous works tried to perform FEA and experiment; an original optimization method
has been provided to design alloy wheels, such as response surface optimization. Another
way of optimization design is Efficient Global Optimization (EGO). This technique is a high
computational cost optimization process, especially in structure design problems, because
most designs require experiments to verify numerical simulation and optimization results.
The EGO process begins with generating an initial sampling point set by the design of
the experiment. Then, yield is collected by engineering solution, namely: (1) analytical
method such as failure theory, (2) numerical method such as FEA, and (3) experiment
method such as dynamic cornering fatigue test. The surrogate model is used to predict the
correlation between design variables (input) and yield (output). Finally, data improvement
is executed by the optimization method to search for an optimal point of the surrogate
model. That point is the next additional sampling point for evaluation to increase the
accuracy of the surrogate model by adding the next sampling point into the model [10]. The
optimization method with a surrogate model is famous for being utilized in various fields
such as chemical engineering design [11,12], mechanical engineering design [13,14], mate-
rial engineering analysis [15,16], biomedical engineering [17] and especially in aerospace
engineering design [18,19] because of high computation time or cost experiment in this
field. Furthermore, the original EGO was designed for exploring only a Single Additional
sampling (Sas) point per iteration that previous research performed on the design shape
of airfoil [20] and blade of the helicopter [21] with multi-objective and multi-level fidelity
of valuation. Hence, several research works studied addition with multi-sampling per
iteration using parallel computing techniques tested with mathematics functions to prove a
novel algorithm [22,23]. Therefore, Multi-Additional sampling (MAs) EGO can save several
iterations of computation and quickly converge the answer rather than SAs-EGO or the
original EGO. Moreover, MAs-EGO can be achieved with airfoil design [24].

Due to the advantage of MAs EGO, this present work was purposed to utilize MAs
EGO for applying alloy wheel design based on the dynamic cornering fatigue test. The FE
analysis was performed to a single fidelity for output evaluation, including the Kriging
method, which was then used to construct a surrogate model. The multi-objective and
escalation of multi-sampling per iteration for the recreation surrogate model are considered.
Finally, the designed apparatus is used to validate the result of the FE simulation.

2. Multi-Objective Efficient Global Optimization

The EGO or the original EGO procedure can be displayed in Figure 2. Firstly, the EGO
starts with generating the initial sampling for input or design variables. This process is
called the design of experiment (DOE); the user can use various methods for implementa-
tion, such as full factorial, Central Composite Design (CCD), Latin Hypercube Sampling
(LHS), etc. Secondly, the created input was collected using an analytical, numerical, or
experimental method to collect the output or yield. Thirdly, the input and output were
brought together to find a correlation called a surrogate model; there are many methods
to construct it, such as Response Surface, the Kriging method, the Radial Basis Function
(RBF), etc. Finally, a surrogate model was performed into the Expected Improvement
equation (EI). The EI was maximized by an arbitrary optimization method to determine the
uncertainty area known as the following sampling point but needed only a single one. The
following sampling point was used to find the subsequent output by the collection process.
A surrogate model was updated with a new input and output, repeating the step until the
answer was converged. The last result is an answer to the EGO process [10].
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Figure 2. Schematic process of (a) the original EGO and (b) MAs EGO.

2.1. Multi-Additional Sampling

Generally, the EGO with a single objective is an uncomplicated problem. A surrogate
model represents an objective correlation between input and output, as shown in Figure 2b.
As mentioned previously, the EI has been involved in solving single objective EGO, in
which EI is the equation for the function of the hypervolume improvement combined with
the uncertainty of the additional sampling point. An arbitrary optimization method is used
to search for an additional sampling point by maximizing the EI; the EI at point x can be
defined as the following equation.

E[I(x)] =
∫ re f

−∞
( fre f − ŷ(x))Φ(ŷ(x))dy (1)

where E[I(x)] is the expected improvement function, Φ is the probability density function,
given the mean and variance that represents uncertainty about ŷ(x), and ŷ(x) is the predic-
tion value from the surrogate model. Integration from re f to −∞ over dy is the probability
value from −∞ to the reference point of the amount of improvement that is expected over
the function of response (y).

The EGO with multi-objective is rather complicated to deal with EI. Hence, EI has
developed its algorithm to become Expected Hypervolume Improvement (EHVI). The
EHVI can be manipulated with multi-objective; the EHVI at point x can be defined as:

EHVI[ f1(x), f2(x), ..., fM(x)] =
∫ fre f 1

−∞

∫ fre f 2

−∞
...
∫ fre f M

−∞
HVI[ f1(x), f2(x), ..., fM(x)]× φ1(F1)φ2(F2)...φM(FM)dF1dF2...dFM,

(2)

where Fi is denoted as a Gaussian random function N[ f̂i(x), ŝ2
i (x)]. φi(Fi) is the probability

function and fre fi
the reference value used for calculating the hypervolume.

The original EGO has obtained only a single additional sampling per iteration. The
schematic process of the original EGO is shown in Figure 2a. Also, it can be performed only
by single-core computation. Here, Figure 3a shows a diagram of a single computation EGO
and other available cores; however, it cannot perform for other evaluations. Therefore, to
break through a limitation of the original EGO, parallel core computation is released to
assist in the calculation process of EGO converges rapidly by improving the original EGO
to become MAs EGO as shown in a diagram of parallel computation EGO in Figure 3b [23].

Figure 2. Schematic process of (a) the original EGO and (b) MAs EGO.

2.1. Multi-Additional Sampling

Generally, the EGO with a single objective is an uncomplicated problem. A surrogate
model represents an objective correlation between input and output, as shown in Figure 2b.
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2.1. Multi-Additional Sampling

Generally, the EGO with a single objective is an uncomplicated problem. A surrogate
model represents an objective correlation between input and output, as shown in Figure 2b.
As mentioned previously, the EI has been involved in solving single objective EGO, in
which EI is the equation for the function of the hypervolume improvement combined with
the uncertainty of the additional sampling point. An arbitrary optimization method is used
to search for an additional sampling point by maximizing the EI; the EI at point x can be
defined as the following equation.

E[I(x)] =
∫ re f

−∞
( fre f − ŷ(x))Φ(ŷ(x))dy (1)

where E[I(x)] is the expected improvement function, Φ is the probability density function,
given the mean and variance that represents uncertainty about ŷ(x), and ŷ(x) is the predic-
tion value from the surrogate model. Integration from re f to −∞ over dy is the probability
value from −∞ to the reference point of the amount of improvement that is expected over
the function of response (y).

The EGO with multi-objective is rather complicated to deal with EI. Hence, EI has
developed its algorithm to become Expected Hypervolume Improvement (EHVI). The
EHVI can be manipulated with multi-objective; the EHVI at point x can be defined as:

EHVI[ f1(x), f2(x), ..., fM(x)] =
∫ fre f 1

−∞

∫ fre f 2

−∞
...
∫ fre f M

−∞
HVI[ f1(x), f2(x), ..., fM(x)]× φ1(F1)φ2(F2)...φM(FM)dF1dF2...dFM,

(2)

where Fi is denoted as a Gaussian random function N[ f̂i(x), ŝ2
i (x)]. φi(Fi) is the probability

function and fre fi
the reference value used for calculating the hypervolume.

The original EGO has obtained only a single additional sampling per iteration. The
schematic process of the original EGO is shown in Figure 2a. Also, it can be performed only
by single-core computation. Here, Figure 3a shows a diagram of a single computation EGO
and other available cores; however, it cannot perform for other evaluations. Therefore, to
break through a limitation of the original EGO, parallel core computation is released to
assist in the calculation process of EGO converges rapidly by improving the original EGO
to become MAs EGO as shown in a diagram of parallel computation EGO in Figure 3b [23].
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Figure 3. Diagram of (a) single computation and (b) parallel computation EGO.

This present work was to implement the MAs with multi-objective EGO. Therefore,
the schematic process of MAs EGO was updated, as shown in Figure 2b. Then, Equation (2)
was applied for multi-objective, and Figure 2b is the implementation process of this work.

2.2. Kriging Method

The Kriging method is a spatial interpolation method that originated in mining geology
and uses a limited set of sampled data points to estimate the value of a variable over a
continuous spatial field. An ordinary kriging method insists on a global model and a local
deviation to estimate the unknown function ŷ(x) [25] as follows:

ŷ(x) = µ(x)− ε(x) (3)

where µ(x) and ε(x) are global model and a local deviation, respectively. The sample points
x are interpolated with the Gaussian random function. To find ε(x) the correlation between
Z(xi) and Z(xj) is related to the distance between the two corresponding points xi and xj.
Therefore, a local deviation is expressed as:

d(xi, xj) =
m

∑
k=1

θk|xk
i − xk

j |2 (4)

Corr[Z(xi), Z(xj)] = exp−d(xi, xj) (5)

where θk(0 ≤ θk ≤ ∞) is the correlation vector parameter element, and n is the sample
point number. The Kriging equation can be rearranged as follows:

ŷ(x) = µ(x) + rT R−1(F− µ̂) (6)

where F = [ f (x1), f (x2), f (x3), ..., f (xn)]T is the value of the evaluated function at
X = {x1, x2, x3, ..., xn}, R is represented to the n × n matrix, in which (i, j) entry is
Corr[Z(xi), Z(xj)] and r is the vector ith element [26] as follows:

ri(x) = Corr[Z(xi), Z(xj)] (7)

where µ is the constant value in the original Kriging model and µ̂ is given by:

µ̂ = [µ1, µ2, µ3, ..., µn]
T (8)

and µ is defined as:

µ =
1T R−1F
1T R−11

(9)

The unknown parameter, µ, for the original Kriging model can be estimated through
maximum likelihood estimation as:

ln (µ, σ2, θ) = −n
2

ln σ2 − 1
2

ln |R| (10)
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The maximum likelihood estimation function is an m-dimension unconstrained non-
linear optimization problem and σ2 can be defined as:

σ2 =
(F− µ̂)T R−1(F− µ̂)

n
(11)

The mean square error s2(x) at a point x of this function can be calculated by using
the equation:

s2(x) = σ

[
1− rT R−1r +

1T R−1F
1T R−11

]
(12)

where 1 denotes an n-dimensional unit vector.

2.3. Genetic Algorithm

The genetic algorithm (GA) [27] is a meta-heuristic optimization method for solving
both constraint and unconstraint, and only single objective optimization problems based
on natural selection, which drives biological evolution—the procedure of GA first starts
with determining chromosome form and generating the initial population. Secondly, the
objective function value is set for searching optimal chromosomes, and fitness evaluation
is considered for contesting each chromosome. Thirdly, the genetic operation is involved
to evaluate chromosomes for finding a new generation of chromosomes that is sufficient
strength to deal with fitness function. Genetic operation consists of selection, crossover,
and mutation, respectively. The selection method is to select the initial chromosome that
contributes to the population of the next generation. The crossover method combines two
previous chromosomes called parents to form the next chromosome, called children for the
next generation. The mutation method is to apply random changes to individual parents to
children. The GA procedure repeats until it gets strong children to determine the fitness
function. The processes of GA and genetic operation are presented in Figure 4.

Figure 4. Schematic process of GA and genetic operation.
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3. Dynamic Cornering Fatigue Analysis

The dynamic cornering fatigue test simulates twisting load conditions on a single
wheel during driving. The fixtures clamp the downside flange of the rim, and a load arm
shaft is attached to the mounting surface of the wheel. A test load with a symmetrical
constant cyclical rotation and bending is applied on the arm shaft end. The bending
moment of testing can be calculated from Equation (13). Figure 5 shows a typical setup of
the cornering fatigue test for evaluating the cornering fatigue of the alloy wheel according
to the ISO 3006:2015 standard [28].

Figure 5. A schematic of dynamic cornering fatigue testing machine setup.

Mb,max = SFv(µrdyn + d) (13)

where S is the safety factor, Fv is the maximum load on the wheel (N), µ is the friction
coefficient between the tire and the road (≈ 0.7), rdyn is the maximum rotation radius that
the tire acts on the wheel (m), d is the offset distance from the center alignment of wheel (m).
The test will be passed when the rotation is at least 1.0× 105 cycles without any cracks on
the wheel.

4. Materials and Methods

The procedure of the entire present work is shown in Figure 6. The DOE is to choose
a random thickness and width of the wheel spoke as initial variables by setting several
samplings from the user. The FE analysis was performed to collect principal stress as yield
through computational simulation. A surrogate model is to construct a correlation between
design variables and alloy wheel yield and data improvement to maximize EHVI for multi-
objective and add a multi-sampling point to update a surrogate model. The algorithm has
been running until the solution converges. In addition, the FE results were validated by the
dynamic cornering fatigue test. Details of each method have been described intensively in
the topics below.
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Figure 6. Schematic process of this present work.

4.1. Design of Experiment

The DOE is the first procedure of MAs-EGO to choose randomly as initialization of
design variables. When the alloy wheel has been tested by dynamic cornering fatigue test,
stress concentration mainly appears between the rim and the spoke end. That is a critical
point for failure during tests [29]. Hence, the thickness and the width of the spoke of the
alloy wheel should be considered in the design of this present work, as shown in Figure 7.
The thickness range was initialized from 13 mm to 18 mm, while the width also had 58 mm
to 63 mm of design range. The LHS generates the initial sampling point of design variables
because the user can prescribe number sampling [30,31]. Thirty initial design variables were
created, and Figure 8 represented the distribution of initial sampling among the design range.
The main feature of LHS was generating different sampling on the vertical and horizontal
axis. As a consequence, the initial sampling could be unable for repetition.

Figure 7. Design variables of an alloy wheel.



Symmetry 2023, 15, 2169 9 of 18

Figure 8. Distribution of initial sampling among design range.

4.2. Finite Element Simulation

A case study of an axisymmetrical 13-inch diameter aluminum alloy wheel was
performed in this study. The assumption of linear elastic homogenous isotropic material
was considered. Generally, the aluminum alloy with A356 grade of material was usually
used in alloy wheel industries with different chemical ingredients, depending on the
manufacturer. The chemical composition of alloy-A356 was obtained from testing several
aluminum alloy-A356 specimens with standard tensile test (ASTM E8/E8M). Tables 1 and 2
displayed the chemical composition and mechanical properties of Alloy-A356, respectively.

Table 1. Chemical composition of Al Alloy A356 (percent of weight).

Si Fe Mg Ti Sr

6.5–7.5 % <0.15% 0.27–0.29 % 0.1–0.15 % 0.005–0.0155 %

Table 2. Mechanical Properties of Al Alloy A356.

Property Yield Strength Ultimate Strength Elongation Modulus of Elasticity
(MPa) (MPa) (%) (GPa)

220 265 3 70

The fatigue test under symmetrical cyclic load also tested another set of Al Alloy A356
specimens. The test data were collected to find a relationship between the stress and life
cycle (S-N cycle) for the input of the dynamic cornering fatigue model. The S-N curve
obtained from the fatigue test is shown in Figure 9.
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Figure 9. S-N curve of Alloy A356.

The tetrahedron element was used for the FE of the alloy wheel. According to the
boundary condition, the region of the wheel rim was considered fixed support. The distance
between the remote force and rim was equal to 700 mm according to the dynamic cornering
fatigue test of the ISO 3006:2015 standard. The remote load was used and calculated from
Equation (13). The remote force was executed as a cyclic loading starting from 0 degrees in
a step of 15 degrees, increasing until the completed cycle following the dynamic cornering
fatigue test, as shown in Figure 10.

Figure 10. The FE model of the alloy wheel included the boundary condition.

This study performed mesh convergence testing to verify that the FE result was
significantly independent according to mesh refinement. The element size was considered
between 10.0 mm to 2.0 mm until the different percentages changing of the maximum
total displacement was less than 1%, as shown in Figure 11. The result revealed that the
displacement changed insignificantly between 4 mm size and 2 mm size, with a 0.179%
difference with the total element number of 757,720 elements.

Figures 12 and 13 showed the FE results of maximum principal stress and maximum
deformation of the alloy wheel, respectively. The spoke area suffers the largest maximum stress
distribution, which is a symmetrical pattern around the axis under the cyclic bending load.
The magnitude of maximum principal stress of 156.5 MPa occurred on the spoke area zone
of a rear wheel region according to the cyclic loading of 345 degrees, because that position
was performed directly to a spoke of the wheel, as shown in Figure 12a,b, which is consistent
with past research [7,29]. However, it did not exceed the yield strength of the material. In
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addition, the result of maximum displacement was approximately 0.4 mm on the spoke of the
wheel opposite to the maximum principal stress region. The loading direction of 345 degrees
was directly performed with the bending moment to the spoke wheel. Nevertheless, this
deformation was still in a linear isotropic range that did not affect permanent failure [32–34].

Figure 11. Element convergence of alloy wheel geometry.

Figure 12. The FE result of maximum principal stress (a) front view (b) rear view.

Figure 13. The FE result for maximum deformation.
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4.3. Surrogate Model and Data Improvement
Surrogate Model

A surrogate model is used to determine a correlation between input and output.
In this study, the input is the thickness and width of the wheel, while the output is the
principal stress and weight, respectively. According to the Kriging method, the multi-
objective problem minimizes the principal stress and weight was performed. µ(x) was
calculated from Equation (7), then estimated the maximum likelihood function to find
θ from Equation (2) and substituted into Equation (10) to receive local deviation ε(x),
producing a Kriging model by integrating µ(x) and ε(x), as shown in Equation (14):

Minimize : σP(t, w)

Minimize : W(t, w)

subject to: 58 mm ≤ t ≤ 63 mm

13 mm ≤ w ≤ 18 mm

(14)

where σP(t, w) and W(t, w) are the principal stress and weight of alloy wheel that depended
on the thickness and width of the allow wheel, respectively.

4.4. Data Improvement

Data improvement is meant to evaluate the maximum hypervolume improvement.
HVI aimed to calculate the uncertainty area values of the objective function. For searching
HVI, two objective functions of this present work were put into the expected hypervolume
equation. The answer of EHVI was additional sampling, and to become multi-additional
sampling, this additional sampling was predicted yield by the kriging model for the process
cycle. This study proposes three additional sampling points per iteration; when additional
sampling was three points, they were taken to evaluate from FE simulation. Results from FE
simulation were activated instead of prediction results, and updated as a surrogate model.
The process was repeated until it converged according to the number of two objective
functions in the EHVI equation, which became one, as shown in Equation (13). Hence,
genetic algorithms can be applied to this equation. The population was initialized to 50,
and generation was set to 50. Tournament search was selected for the selection process.
The crossover method was Blend Crossover Operator (BLX) with a 0.9 crossover rate.
A mutation rate value of 0.1 was requisite to prevent replication of the next generation’s
population. The total computation of population was 2500 times for this present work.

Maximize: EHVI[σP(t, w), W(t, w)] =
∫ σP

−∞

∫ ∞

W
HVI[σP, W]×Φ1(σP)dσPΦ2(W)dW (15)

5. Results and Discussion

The result of the optimization is shown in Table 3. The number of samplings from
31 to 51 is additional samplings that have been optimized through EHVI value. The
three samplings are conducted to evaluate for one iteration as an addition of multi-sampling.
The algorithm converged when the number of additional samplings reached 51 at the
iteration of seventh, which means the uncertainty area of a surrogate model is almost
neglected, and accuracy is sufficient to give optimization results. The minimum point of
principal stress and weight of the alloy wheel is 150.0935 MPa and 4.4083 kg, respectively.
The minimum and maximum optimal solution of spoke thickness is 60.5996 mm and
62.9134 mm, respectively. The spoke width is 13.0003 mm and 17.1923 mm, respectively.

This work aims to minimize the principal stress and weight of the alloy wheel; the
result of the optimum solution is shown in Figure 14 as the Pareto front of the entire design
variables. Initial sampling is 30 points, as shown in the back circle; additional sampling
is 21 points, as shown in the white diamond; therefore, the evaluated samplings must
be 51 points. The additional samplings are a Pareto front solution, except for the 41st
sampling point because 30 initial sampling points are sufficient to construct a surrogate
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model, and the function is close to an actual function. Cause optimization of EHVI had
the solution at the Pareto front; besides, escalation of an optimum point from the previous
data improvement process into a new surrogate model causes more accuracy. That means
additional samplings are a non-dominated solution. No other samplings have less value
than them. Pareto solution points can be utilized in different conditions. If vehicles require a
lightweight alloy wheel, design point#3 should be considered because mass inertia reduces.
The mass of the wheel of design point#3 can be lighter with a percentage of 3.588 reductions
compared to the initial design with the highest weight. However, the spoke of the wheel
will be punished with 222.62 MPa of principal stress. The life cycle of this design point#3 of
the alloy wheel will be shorter because of principal stress augmentation. The alloy wheel
of this design point will be plastic deformation, because its principal stress is higher than
yield strength. If vehicles require a long cycle to be used, design point#2 will answer the
problems, because this point directly has the smallest principal stress value that causes the
life cycle. However, it must be exchanged with a reduction percentage of 34.244 compared
to the initial design with the highest principal stress, the weight increase that will influence
more fuel consumption. Generally, there is always a trade-off between the two objectives.
For this reason, design point#2 has 182.194 MPa of principal stress and 4.4494 kg of weight,
which are in the middle of the Pareto, which is most suitable for this present work because
this point can deal with the two objectives’ 20.181% and 3.176% reduction of principal stress
and weight of alloy wheel, which is lower than yield strength and weight is lighter than
initial design; hence, design point#2 should be conducted to manufacture for a safe vehicle.

Table 3. The results of multi-additional sampling optimization.

Iteration No. Width: w Thickness: t Principle Weight
Sampling (mm) (mm) Stress (MPa) (kg)

31 62.59079 13.0003 212.3612 4.41644
1 32 61.11105 14.43483 167.0227 4.47476

33 61.34294 13.85585 176.4588 4.45779

34 61.99754 13.00002 199.0943 4.42878
2 35 60.91956 14.99054 160.1323 4.49212

36 60.63268 16.63042 152.9984 4.52772

37 61.23932 14.14289 173.8995 4.46194
3 38 60.59958 17.19233 151.2951 4.54639

39 61.52394 13.653 182.1939 4.44935

40 62.9134 13.0004 222.6176 4.4083
4 41 61.60852 15.8109 163.6573 4.49525

42 61.00742 14.72151 163.2752 4.48355

43 62.27858 13.0000 189.2561 4.4413
5 44 61.78113 13.12851 191.8577 4.43697

45 62.83157 13.02221 217.3689 4.41237

46 62.2888 13.00558 207.6239 4.42054
6 47 60.82259 15.51454 157.7641 4.50077

48 61.20637 14.21846 169.126 4.47055

49 60.64988 16.47167 152.9984 4.52772
7 50 62.16986 13.00006 203.1897 4.42465

51 60.57336 17.99858 150.0935 4.56472
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Figure 14. (a) Distribution of initial sampling and additional sampling (b) Pareto front of design
variables related to the weight and principal stress.

Figure 15 shows the response surface constructed by design variables and objectives of the
Kriging model of principal stress and weight. The value of thickness multiplied by the value
of width is the cross-sectional area of the spoke wheel, and can be conducted to calculate the
entire volume of the alloy wheel; therefore, variable thickness (13 mm–18 mm) multiplies with
a constant value of thickness (60.5 mm); when thickness increases, a cross-sectional area
also has increased. The principal stress is lower as follows: the minimum principal stress
is located on the middle top, as shown in Figure 15a. However, the thickness and width
increase and the volume of the alloy wheel also increases, causing the amount of weight
of the alloy wheel to have an increasing value. Suppose a constant thickness (13 mm)
multiplied by a variable width (60.5 mm–63 mm) was considered to ensure this cross-
sectional area was less than the previous condition. The principal stress has increased on
the bottom of the middle to right-hand side of Figure 16. However, when a cross-sectional
area decreases, the weight of the alloy also decreases for the same reason as the above
condition; hence, the lesser weight of the alloy wheel occurs on the bottom right-hand
side, as displayed in Figure 15b. In this case study, there was only one type of alloy wheel
considered. Therefore, the optimization results will change if, in other cases, the wheel
geometry and the number of holes are changed.

Figure 15. (a) The contour plot of the principal stress according to the design parameters (b) The
contour plot of weight according to the design parameters.
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Figure 16. The experimental apparatus used in the study.

6. Mechanical Validation of Finite Element Simulation

The mechanical test for validating the FE simulation was performed in this study. The
result of strain at the point in the cycle pattern obtained from a computer simulation was
then compared to mechanical testing. The ISO 3006:2015 static load simulation testing
machine has been designed and constructed according to the dynamic cornering fatigue test.
The testing apparatus consists of a table frame and wheel axle shaft, which can generate
the applied forces for the radial bending moment and a rim clamping jig assembly that
can change the loading angle, as shown in Figure 16. According to the testing, the alloy
wheel specimen was constrained on the clamping jig, and the shaft was applied load for the
constant cyclical rotation bending, as shown in Figure 17. The result of strain distribution
related to the cyclic bending moment angle for four positions was monitored using the
strain gauge technique. The specimen had cyclic bending loading under the rotated angle
applied in a range from 0 to 360 degrees with an increment of 30 degrees. Four strain
sensors were installed on the alloy wheel and shaft, including three points on the wheel
spoke position and one on the shaft, as shown in Figure 16. The results from testing were
then compared to the finite element simulation.

Figure 17a–d exhibited the comparison of strain values between the mechanical test
and FE analysis for the strain sensor positions one to four, respectively. The results showed
that the strain value of all positions was changed as a symmetrical cyclic pattern related
to the changing angle of the rotating bending load. Both retain responses measured by
experiment and simulation results are on the same trend.
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Figure 17. The comparison result of the strain between the mechanical test and FE analysis; (a) strain
position one, (b) strain position two, (c) strain position three, and (d) strain position four.

The result of strain value at positions two and three displayed an initial plus sign,
and it was then decreased to the minus sign value when the loading angle was increased
and closed to 180 degrees. Also, the changed strain was increased to the plus sign when
the loading angle increased to 360 degrees. The strain exhibited the cyclic pattern due to
the effect of changing the rotation of the bending moment direction. The stain value at
position one, including position four, displayed the opposite sign due to the adjacent to
the fixation support. Comparatively, the FE result exhibited a cyclic strain pattern similar
to the experiment test. According to the FE results, however, the strain value at a point
of position one to position four revealed the maximum error compared to the experiment
result was in a range of 0.98% to 44.75%, 0.23% to 29.21%, 1.97% to 32.07%, and 1.91% to
18.44%, respectively. The maximum error occurred at the initial angle position. This may
be due to the inconsistency of the conditions in the simulation analysis with the actual test.

7. Conclusions

This present work proposed a novel method for alloy wheel design based on the
cornering fatigue test condition that no previous research had conducted. The FE combined
with the MAs-EGO approach was performed on a multiple-objective design problem,
including minimizing the principal stress and weight. The result revealed that MAs-
EGO could achieve the advantage of the optimum solution for the thickness and width
of the alloy wheel spoke. The total sampling point of the evaluation was initial with
51 points, combining 30 initial sampling points and 21 additional sampling points when the
iteration of running had reached the seventh iteration. According to the minimum principal
stress and weight, the proposed optimal thickness and width decreased by 20.181% and
3.176% compared to the initial design. In addition, the testing apparatus was conducted to
validate the FE simulation. The comparative result showed that the FE analysis exhibited a
symmetrical cyclic strain similar to the experiment test.
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